Using molecular dynamics modeling,the change in the shape and density of the macromolecular corona consisting of two oppositely charged polyelectrolytes,including those combined into one block copolymer,on the surface...Using molecular dynamics modeling,the change in the shape and density of the macromolecular corona consisting of two oppositely charged polyelectrolytes,including those combined into one block copolymer,on the surface of a polarized spherical metal nanoparticle was studied.A mathematical model of the structure of the block copolymer chain adsorbed on a polarized spherical nanoparticle is presented for the cases of polyelectrolyte blocks of large and small length.Based on the modeling results,radial and angular distributions of the density of atoms of polyelectrolyte polypeptides adsorbed on the surface of a spherical nanoparticle were calculated depending on its dipole moment.As the dipole moment of the nanoparticle increased,the dense macromolecular shell was destroyed,forming caps of polyelectrolyte macro molecules or fragments of block copolymer of different types on the poles of the polarized nanoparticle.In this case,the macromolecular corona in the region of the poles of the polarized nanoparticle swelled the more strongly,the greater the distance between the charged links in the polymer.展开更多
Three copper(Ⅱ),nickel and cadmium(Ⅱ)complexes,namely[Cu_(2)(μ-H2dbda)2(phen)2]·2H_(2)O(1),[Ni(μ-H2dbda)(μ-bpb)(H_(2)O)2]n(2),and[Cd(μ-H2dbda)(μ-bpa)]n(3),have been constructed hydrothermally using H4dbda(...Three copper(Ⅱ),nickel and cadmium(Ⅱ)complexes,namely[Cu_(2)(μ-H2dbda)2(phen)2]·2H_(2)O(1),[Ni(μ-H2dbda)(μ-bpb)(H_(2)O)2]n(2),and[Cd(μ-H2dbda)(μ-bpa)]n(3),have been constructed hydrothermally using H4dbda(4,4'-dihydroxy-[1,1'-biphenyl]-3,3'-dicarboxylic acid),phen(1,10-phenanthroline),bpb(1,4-bis(pyrid-4-yl)benzene),bpa(bis(4-pyridyl)amine),and copper,nickel and cadmium chlorides at 160℃.The products were isolated as stable crystalline solids and were characterized by IR spectra,elemental analyses,thermogravimetric analyses,and singlecrystal X-ray diffraction analyses.Single-crystal X-ray diffraction analyses revealed that three complexes crystallize in the monoclinic P21/n,tetragonal I42d,and orthorhombic P21212 space groups.The complexes exhibit molecular dimers(1)or 2D metal-organic networks(2 and 3).The catalytic performances in the Knoevenagel reaction of these complexes were investigated.Complex 1 exhibits an effective catalytic activity and excellent reusability as a heterogeneous catalyst in the Knoevenagel reaction at room temperature.CCDC:2463800,1;2463801,2;2463802,3.展开更多
Six new lanthanide complexes:[Ln(3,4-DEOBA)3(4,4'-DM-2,2'-bipy)]2·2C_(2)H_(5)OH,[Ln=Dy(1),Eu(2),Tb(3),Sm(4),Ho(5),Gd(6);3,4-DEOBA-=3,4-diethoxybenzoate,4,4'-DM-2,2'-bipy=4,4'-dimethyl-2,2'...Six new lanthanide complexes:[Ln(3,4-DEOBA)3(4,4'-DM-2,2'-bipy)]2·2C_(2)H_(5)OH,[Ln=Dy(1),Eu(2),Tb(3),Sm(4),Ho(5),Gd(6);3,4-DEOBA-=3,4-diethoxybenzoate,4,4'-DM-2,2'-bipy=4,4'-dimethyl-2,2'-bipyridine]were successfully synthesized by the volatilization of the solution at room temperature.The crystal structures of six complexes were determined by single-crystal X-ray diffraction technology.The results showed that the complexes all have a binuclear structure,and the structures contain free ethanol molecules.Moreover,the coordination number of the central metal of each structural unit is eight.Adjacent structural units interact with each other through hydrogen bonds and further expand to form 1D chain-like and 2D planar structures.After conducting a systematic study on the luminescence properties of complexes 1-4,their emission and excitation spectra were obtained.Experimental results indicated that the fluorescence lifetimes of complexes 2 and 3 were 0.807 and 0.845 ms,respectively.The emission spectral data of complexes 1-4 were imported into the CIE chromaticity coordinate system,and their corre sponding luminescent regions cover the yellow light,red light,green light,and orange-red light bands,respectively.Within the temperature range of 299.15-1300 K,the thermal decomposition processes of the six complexes were comprehensively analyzed by using TG-DSC/FTIR/MS technology.The hypothesis of the gradual loss of ligand groups during the decomposition process was verified by detecting the escaped gas,3D infrared spectroscopy,and ion fragment information detected by mass spectrometry.The specific decomposition path is as follows:firstly,free ethanol molecules and neutral ligands are removed,and finally,acidic ligands are released;the final product is the corresponding metal oxide.CCDC:2430420,1;2430422,2;2430419,3;2430424,4;2430421,5;2430423,6.展开更多
Three zinc(Ⅱ),nickel(Ⅱ),and cadmium(Ⅱ)complexes,namely[Zn(μ-Htpta)(py)_(2)]n(1),[Ni(H_(2)biim)2(H_(2)O)2][Ni(tpta)(H_(2)biim)2(H_(2)O)]2·3H_(2)O(2),and[Cd_(3)(μ4-tpta)2(μ-dpe)_(3)]_(n)(3),have been construc...Three zinc(Ⅱ),nickel(Ⅱ),and cadmium(Ⅱ)complexes,namely[Zn(μ-Htpta)(py)_(2)]n(1),[Ni(H_(2)biim)2(H_(2)O)2][Ni(tpta)(H_(2)biim)2(H_(2)O)]2·3H_(2)O(2),and[Cd_(3)(μ4-tpta)2(μ-dpe)_(3)]_(n)(3),have been constructed hydrothermally at 160℃ using H_(3)tpta([1,1':3',1″-terphenyl]-4,4',5'-tricarboxylic acid),py(pyridine),H_(2)biim(2,2'-biimidazole),dpe(1,2-di(4-pyridyl)ethylene),and zinc,nickel and cadmium chlorides,resulting in the formation of stable crystalline solids which were subsequently analyzed using infrared spectroscopy,element analysis,thermogravimetric analysis,as well as structural analyses conducted via single-crystal X-ray diffraction.The findings from these single-crystal Xray diffraction studies indicate that complexes 1-3 form crystals within the monoclinic system P2_(1)/c space group(1)or triclinic system P1 space group(2 and 3),and possess 1D,0D,and 3D structures,respectively.Complex 1 demonstrated substantial catalytic efficiency and excellent reusability as a heterogeneous catalyst in the reaction of Knoevenagel condensation under ambient temperature conditions.In addition,complex 1 also showcased notable anti-wear performance when used in polyalphaolefin synthetic lubricants.CCDC:2449810,1;2449811,2;2449812,3.展开更多
Dear Editor,We present a case of acute zonal occult outer retinopathy(AZOOR)complex in a myopic patient with angioid streaks(ASs).A 19-year-old female has been experiencing visual field defects in her left eye for mor...Dear Editor,We present a case of acute zonal occult outer retinopathy(AZOOR)complex in a myopic patient with angioid streaks(ASs).A 19-year-old female has been experiencing visual field defects in her left eye for more than 3y.She was diagnosed with ASs and choroiditis at a local hospital.She has a seven-year history of bilateral high myopia.A fundus examination confirmed the presence of ASs and myopic fundus changes in both eyes.Multimodal imaging revealed an AZOOR complex in the left eye.展开更多
The complexes 1-4 of cyclobutanocucurbit[5]uril(CyB5Q[5])with Na^(+)/K^(+)have been synthesized and characterized by single-crystal X-ray diffraction.The results show that although the inorganic salts are used when th...The complexes 1-4 of cyclobutanocucurbit[5]uril(CyB5Q[5])with Na^(+)/K^(+)have been synthesized and characterized by single-crystal X-ray diffraction.The results show that although the inorganic salts are used when the cations are the same and the anions are different,in complex 1,Na^(+)closes one port of CyB5Q[5]through Na—O seven coordination bonds to form a molecular bowl;in complex 3,Na^(+)completely closes the two ports of CyB5Q[5]to form a molecular capsule with six Na—O coordination bonds;in complexes 2 and 4,the two ports of CyB5Q[5]are completely closed to form K—O coordinated molecular capsules,but the K^(+)of complex 2 is six-coordinated and that of complex 4 is eight-/nine-coordinated.and complex 4 are connected by three oxygen bridges to form a 1D molecular chain.CCDC:2457122,1;2457121,2;2457400,3;2457120,4.展开更多
Complex trimalleolar ankle fractures are a major orthopaedic challenge,with an incidence of 4.22 per 10000 person-years in the United States and an annual cost of 3.4 billion dollars.This review synthesizes current ev...Complex trimalleolar ankle fractures are a major orthopaedic challenge,with an incidence of 4.22 per 10000 person-years in the United States and an annual cost of 3.4 billion dollars.This review synthesizes current evidence on diagnostic protocols and management strategies,highlighting optimal approaches and emerging trends.Initial care emphasizes soft tissue assessment,often guided by the Tscherne classification,and fracture classification systems.External fixation may be required in open injuries,while early open reduction and internal fixation within six days is linked to improved outcomes.Minimally invasive techniques for the lateral malleolus,including intramedullary nailing and locking plates,are effective,while medial malleolus fractures are commonly managed with screw fixation or tension-band wiring.Posterior malleolus fragments involving more than 25%of the articular surface usually warrant fixation.Alternatives to syndesmotic screws,such as cortical buttons or high-strength sutures,reduce the need for secondary procedures.Arthroscopic-assisted open reduction and internal fixation benefits younger,active patients by enabling concurrent management of intra-articular and ligamentous injuries.Postoperative care prioritizes early weight-bearing and validated functional scores.Despite advances,complications remain common,and further research is needed to refine surgical strategies and improve outcomes.展开更多
Cationic polyethylenimine (PEI) with dextran fluorescein anionic (DFA) or oligodeoxynucleotide (ODN) could form polyelectrolyte complex by self-assembly as a gene delivery vector. This study was designed to inve...Cationic polyethylenimine (PEI) with dextran fluorescein anionic (DFA) or oligodeoxynucleotide (ODN) could form polyelectrolyte complex by self-assembly as a gene delivery vector. This study was designed to investigate the effects on pharmaceutical characteristics and cell uptake PEI after a long-circulation modification with poly(ethylene glycol) (PEG). DFA or ODN reacted with PEI or PEI-PEG to form polyelectrolyte complexes. Surface characters of these complexes and the retardation of ODN by PEI and PEI-PEG were evaluated. The uptake rates of DFA/PEI and DFA/PEI-PEG complexes by MCF-7 cells were evaluated by flow cytometry. Confocal laser scanning microscopy was utilized to visualize the internalization of these complexes. ODN/PEI complex showed the dependence of their size and ξ potential on the N/P ratio. ODN/PEI-PEG complex were much less affected by N/P ratio and their size was around 30 100 nm. PEI and PEI-PEG retarded ODN even at N/P ratio as low as 4, and complete retardation was found at N/P ratio of 8. The uptake rate by MCF-7 cells was direct correlated to the DFA concentration and incubation time, and the uptake rate could exceed 99% under the selected condition. The results in this study showed that PEI self-assembly polyelectrolyte complex after stealth or long circulation modification may increase the ability as a gene vector to delivery genes into cells.展开更多
The achievement of both robust fire-safety and mechanical properties is of vital requirement for carbon fiber(CF)composites.To this end,a facile interracial strategy for fabricating flame-retardant carbon fibers decor...The achievement of both robust fire-safety and mechanical properties is of vital requirement for carbon fiber(CF)composites.To this end,a facile interracial strategy for fabricating flame-retardant carbon fibers decorated by bio-based polyelectrolyte complexes(PEC)consisting of chitosan(CH)and ammonium polyphosphate(APP)was developed,and its corresponding fire-retarded epoxy resin composites(EP/(PEC@CF))without any other additional flame retardants were prepared.The decorated CFs were characterized by SEM-EDX,XPS and XRD,indicating that the flame-retardant PEC coating was successfully constructed on the surface of CF.Thanks to the nitrogen-and phosphorous-containing PEC,the resulting composites exhibited excellent flame retardancy as the limiting oxygen index(LOI)increased from 31.0%of EP/CF to 40.5%and UL-94 V-0 rating was achieved with only 8.1 wt%PEC.EP/(PEC8.1@CF)also performed well in cone calorimetry with the decrease of peak-heat release rate(PHRR)and smoke production rate(SPR)by 50.0%and 30.4%,respectively,and the value of fire growth rate(FIGRA)was also reduced to 3.41 kW·m-2-s-1 from 4.84 kW·m-2·s-1,suggesting a considerably enhanced fire safety.Furthermore,SEM images of the burning residues revealed that the PEC coating exhibited the dominant flame-retardant activity in condensed phase via the formation of compact phosphorus-rich char.In addition,the impact strength of the composite was improved,together with no obvious deterioration of flexural properties and glass transition temperature.Taking advantage of the features,the PEC-decorated carbon fibers and the relevant composites fabricated by the cost-effective and facile strategy would bring more chances for widespread applications.展开更多
In general,productions of natural pigment in submerged microorganism culture were much less than that in solid-state fermentation,because the solid-state culture can provide a support carrier for the mycelium. To impr...In general,productions of natural pigment in submerged microorganism culture were much less than that in solid-state fermentation,because the solid-state culture can provide a support carrier for the mycelium. To improve natural pigment production,the cultivation of Monascus purpureus in submerged encapsulated cell was investigated. Monascus purpureus immobilized in polyelectrolyte complex(PEC) microcapsules,which were pre-pared by sodium cellulose sulphate(NaCS) and poly-dimethyl-diallyl-ammonium chloride(PDMDAAC),was a good substitute for submerged cell culture because it mimicked the solid-state environment. The repeated-batch process with encapsulated cells was studied in flasks and a bubble column. The results indicated that the bubble column was more suitable for the encapsulation culture than the shaking flasks because of its good mass transfer performance and minor shear stress on cells. Owing to the protection of the microcapsule's membrane,Monascus purpureus in microcapsules increased approximately three times over that in free cell culture with negligible cell leakage to the medium. The pigment production in the bubble column finally reached 3.82(OD500) ,which was two times higher than in free cell culture. In addition,the duration of each batch was shortened to 15% of that in free cell culture.展开更多
Interaction of anionic polyelectrolyte with cationic gemini surfactant has been investigated by coarse-grained molecular dynamics simulation.Polyelectrolyte facilitates the oppositely charged ionic surfactants to aggr...Interaction of anionic polyelectrolyte with cationic gemini surfactant has been investigated by coarse-grained molecular dynamics simulation.Polyelectrolyte facilitates the oppositely charged ionic surfactants to aggregate by suppressing the electrostatic repulsion between ionic head groups leading to the formation of micellar complex.With addition of surfactant,the conformation of polyion chain changes from stretched to random coiled to spherical,and at the same time more free micelles are formed by surfactants in mixtures.Increasing the length of spacer or tail chain in gemini surfactant will weaken its interaction with polyelectrolyte and simultaneously strengthen its tendency to self-assemble.The simulation results are consistent with experimental observations and reveal that the electrostatic interaction plays an important role in the interaction of polyelectrolyte with gemini sur- factant.展开更多
The objective of this study is to design sustained-release tablets using matrix technology, which can well control the release of highly water-soluble drugs with good system robustness and simple preparation process. ...The objective of this study is to design sustained-release tablets using matrix technology, which can well control the release of highly water-soluble drugs with good system robustness and simple preparation process. Taking venlafaxine hydrochloride(VH) as a drug model, the feasibility of using chitosan(CS), carbomer(CBM) combination system to achieve this goal was studied. Formulation and process variables influencing drug release from CS–CBM matrix tablets were investigated. It was found that CS–CBM combination system weakened the potential influence of CS, CBM material properties and gastric emptying time on drug release profile. Demonstrated by direct observation, differential scanning calorimetry(DSC) and Fourier transform infrared spectroscopy(FTIR), in situ self-assembled polyelectrolyte complex(PEC) film was formed on the tablet surface during gastrointestinal tract transition, which contributed to the tunable and robust control of drug release. The sustained drug release behavior was further demonstrated in vivo in Beagle dogs, with level A in vitro and in vivo correlation(IVIVC) established successfully. In conclusion, CS–CBM matrix tablets are promising system to tune and control the release of highly water-soluble drugs with good system robustness.展开更多
Polyelectrolyte-surfactant complexes(PESCs) were fabricated through the interaction of poly(acrylic acid) and four different cationic surfactants or their mixtures. PESC membranes were prepared by solution casting...Polyelectrolyte-surfactant complexes(PESCs) were fabricated through the interaction of poly(acrylic acid) and four different cationic surfactants or their mixtures. PESC membranes were prepared by solution casting method and were applied in ethanol recovery from aqueous solution via pervaporation. Elemental analysis(EA), Fourier transform infrared spectroscopy(FTIR), water contact angle(CA) measurement, differential scanning calorimetry(DSC) and X-ray scattering were employed to characterize the composition, structure and properties of PESCs. The results reveal that the investigated PESCs are similar in hydrophobicity but different in hierarchical nanostructures. In separating 5 wt% ethanol/water mixture, PESC membranes with high crystallinity will have both low flux and ethanol selectivity because of the high packing density and low permeability of crystalline regions. Meanwhile, the hierarchical nanostructures of PESC membranes change under pervaporation environment as was revealed by in situ synchrotron radiation X-ray scattering measurement. That is, the crystalline region could melt at high temperature in swelling state, thus consequently enhancing the ethanol selectivity.展开更多
The polyelectrolyte complex formed from the polyanion and polycation was studied by turbidimetry, static and electrophoretic light scattering, and elementary analysis. Sodium salts of polyacrylate (PA) and heparin ...The polyelectrolyte complex formed from the polyanion and polycation was studied by turbidimetry, static and electrophoretic light scattering, and elementary analysis. Sodium salts of polyacrylate (PA) and heparin (Hep) were chosen as the polyanion, and hydrochloric salts of poly(vinyl amine) (PVA) and chitosan (Chts) as the polycation. Although these vinyl polymers and polysaccharides have remarkably different backbone chemical structures and linear charge densities, all the four combinations PA-PVA, PA-Chts, Hep-PVA, and Hep-Chts provide almost stoichiometric polyelectrolyte complexes which are slightly charged owing to the adsorption of the excess polyelectrolyte component onto the neutral complex. The charges stabilize the complex colloids in aqueous solution of a non-stoichiometric mixture, and the aggregation number of the complex colloids increases with approaching to the stoichiometric mixing ratio. The mixing ratio dependence of the aggregation number for the four complexes is explained by the model proposed in the previous study.展开更多
The liquid-liquid phase separation of biopolymers in living cells contains multiple interactions and occurs in a dynamic environment.Resolving the regulation mechanism is still a challenge.In this work,we designed a s...The liquid-liquid phase separation of biopolymers in living cells contains multiple interactions and occurs in a dynamic environment.Resolving the regulation mechanism is still a challenge.In this work,we designed a series of peptides(XXLY)_(6)SSSGSS and studied their complexation and coacervation behavior with single-stranded oligonucleotides.The“X”and“Y”are varied to combine known amounts of charged and non-charged amino acids,together with the introduction of secondary structures and pH responsiveness.Results show that the electrostatic interaction,which is described as charge density,controls both the strength of complexation and the degree of chain relaxation,and thus determines the growth and size of the coacervates.The hydrophobic interaction is prominent when the charges are neutralized.Interestingly,the secondary structures of peptides exhibit profound effect on the morphology of the phases,such as solid phase to liquid phase transition.Our study gains insight into the phase separation under physiological conditions.It is also helpful to create coacervates with desirable structures and functions.展开更多
We investigate the solution self-assembly of a mixture of positively charged homopolymers and AB diblock copolymers,in which the A blocks are negatively charged,and the B blocks are neutral.The electrostatic complexat...We investigate the solution self-assembly of a mixture of positively charged homopolymers and AB diblock copolymers,in which the A blocks are negatively charged,and the B blocks are neutral.The electrostatic complexation between oppositely charged polymers drives the formation of many ordered phases.The microstructures and phase diagrams are calculated using self-consistent field theory(SCFT)based on an ion-pair model with an equilibrium constant K to characterize the strength of binding between positively and negatively charged monomers.The effects of the charge ratio,representing the ratio of charges from the homopolymer over all charges from polymers in the system,on the ordered structure are systematically studied,both for hydrophobic and hydrophilic A blocks.The charge ratio plays an important role in determining the phase boundaries in the phase diagram of salt concentration versus polymer concentration.We also provide information about the varying tendency of the domain spacing and core size of the spherical phase when the charge ratio is changed,and the results are in good agreement with experiments.These studies provide a deep understanding of the self-assembled microstructures of oppositely charged diblock copolymer-homopolymer systems.展开更多
Polyelectrolyte complexes(PECs)of hyperbranched(HB)and linear polysaccharides are promising as more effective encapsulation agents compared to PECs formed by linear polysaccharides.We investigated the PECs between the...Polyelectrolyte complexes(PECs)of hyperbranched(HB)and linear polysaccharides are promising as more effective encapsulation agents compared to PECs formed by linear polysaccharides.We investigated the PECs between the HB anionic polysaccharide fucoidan(FUC)and the cationic linear polysaccharide chitosan(CS).The FUC had a molecular weight(MW)of 30×106.The PECs were prepared in three solvents(water,0.01 and 0.1 mol/L acetic acid)with CS of MW of 15,110 and 170 kDa,and deacetylation degrees(DDA)of 70%and 97%.The structures of the PECs and the initial FUC were investigated by multi-angle static and dynamic light scattering.As the FUC contained 18 wt%of—OSO3 groups and 5 wt%of uronic acid units,it was a“strong-weak”copolyanion,so the HB macromolecules of the FUC formed nanogel particles in 0.1 mol/L AcOH and open branched structures in water,as confirmed by the Kratky plots.After mixing the solutions of original components,the PEC structures underwent an equilibration period,the duration of which increased with the MW of CS.As the charge stoichiometry was approached,the PECs shrank;the fractal dimension approached unity,indicating the side-by-side packing of adjacent FUC branches with the help of CS.Secondary aggregation in the vicinity of the charge compensation was hardly observed,as it occurred in a very narrow region.The PEC content at theζ-potential inversion depended on solvents’pH and the DDA of CS.In the extreme case of core-shell PECs in 0.1 mol/L AcOH,obtained by mixing FUC nanogels with the solutions of high MW CS of 97%DDA,the protruding tails of CS formed a positively charged shell in the whole range of FUC content(10 wt%<WFUC<90 wt%).Scanning electron microscopy and atomic force microscopy images of dried samples were discussed in relation to the light scattering results.展开更多
Polyelectrolyte complex micelles were prepared by self-assembly of polypeptide-based triblock copolymer as a new drug carrier for cancer chemotherapy.The triblock copolymer,poly(L-aspartic acid)-b-poly(ethylene glycol...Polyelectrolyte complex micelles were prepared by self-assembly of polypeptide-based triblock copolymer as a new drug carrier for cancer chemotherapy.The triblock copolymer,poly(L-aspartic acid)-b-poly(ethylene glycol)-b-poly(L-aspartic acid)(PLD-b-PEG-b-PLD),spontaneously self-assembled with doxorubicin(DOX)via electrostatic interactions to form spherical micelles with a particle size of 60e80 nm(triblock ionomer complexes micelles,TBIC micelles).These micelles exhibited a high loading capacity of 70%(w/w)at a drug/polymer ratio of 0.5 at pH 7.0.They showed pH-responsive release patterns,with higher release at acidic pH than at physiological pH.Furthermore,DOX-loaded TBIC micelles exerted less cytotoxicity than free DOX in the A-549 human lung cancer cell line.Confocal microscopy in A-549 cells indicated that DOX-loaded TBIC micelles were transported into lysosomes via endocytosis.These micelles possessed favorable pharmacokinetic characteristics and showed sustained DOX release in rats.Overall,these findings indicate that PLDb-PEG-b-PLD polypeptide micelles are a promising approach for anti-cancer drug delivery.展开更多
Three dendronized polymers from generation one to generation three have been prepared by complexing negatively charged Frechet-type dendrons with a polyanion, poly(diallydimethylammoniurn chloride) (PDADMAC). The ...Three dendronized polymers from generation one to generation three have been prepared by complexing negatively charged Frechet-type dendrons with a polyanion, poly(diallydimethylammoniurn chloride) (PDADMAC). The gaffing degree has been confirmed mainly by elemental analysis. In dilute solutions of tetrahydrofuran, static light scattering studies indicate that the first generation complex has a coil-like conformation, even more flexible than PDADMAC. The second and third generation complexes exhibit polyelectrolyte behavior. Dynamic light scattering experiments indicate that all the three complexes have almost the same hydrodynamic radius, indicating that they might own similar coil conformation. Atomic force microscopy shows the existence of disordered globules formed by one or a couple of complex coils. All these observations can be explained by the flowerlike coil conformation, which is formed by the intra-molecular association. This is totally different from the stretched chain conformation formed by covalently connected dendronized polymers. This result also explains why some ordered supramolecular structures, found in condensed state of the similar complexes, are not as perfect as those of conventional dendronized polymers.展开更多
The flocculating properties of polymer-colloid complexes (PCCs) formed via noncovalent interactions of positively charged aluminoxane particles (APs) with macromolecules of weakly charged cationic acrylamide copolymer...The flocculating properties of polymer-colloid complexes (PCCs) formed via noncovalent interactions of positively charged aluminoxane particles (APs) with macromolecules of weakly charged cationic acrylamide copolymers from the Praestol and Organopol series have been studied. The PCCs that spontaneously formed during mixing of sols of a high-basicity aluminum polyhydroxochloride (APHC) with aqueous solutions of the copolymers exhibit high flocculating ability under the conditions of gravity sedimentation of the model kaolin dispersion with Сd = 8 g/dm3, and their efficiency exceeds both that of the copolymers and the earlier obtained PCCs with nonionogenic polyacrylamide (PAA). In contrast to weakly charged polycationites, the fully charged KF-99 polyelectrolyte does not form PCCs and the products of its mixing with APHC do not reveal an increased flocculating effect.展开更多
基金the financial support of the Ministry of Science and Higher Education of the Russian Federation within the framework of a grant for conducting large scientific projects in priority areas of scientific and technological development 075-15-2024-550。
文摘Using molecular dynamics modeling,the change in the shape and density of the macromolecular corona consisting of two oppositely charged polyelectrolytes,including those combined into one block copolymer,on the surface of a polarized spherical metal nanoparticle was studied.A mathematical model of the structure of the block copolymer chain adsorbed on a polarized spherical nanoparticle is presented for the cases of polyelectrolyte blocks of large and small length.Based on the modeling results,radial and angular distributions of the density of atoms of polyelectrolyte polypeptides adsorbed on the surface of a spherical nanoparticle were calculated depending on its dipole moment.As the dipole moment of the nanoparticle increased,the dense macromolecular shell was destroyed,forming caps of polyelectrolyte macro molecules or fragments of block copolymer of different types on the poles of the polarized nanoparticle.In this case,the macromolecular corona in the region of the poles of the polarized nanoparticle swelled the more strongly,the greater the distance between the charged links in the polymer.
文摘Three copper(Ⅱ),nickel and cadmium(Ⅱ)complexes,namely[Cu_(2)(μ-H2dbda)2(phen)2]·2H_(2)O(1),[Ni(μ-H2dbda)(μ-bpb)(H_(2)O)2]n(2),and[Cd(μ-H2dbda)(μ-bpa)]n(3),have been constructed hydrothermally using H4dbda(4,4'-dihydroxy-[1,1'-biphenyl]-3,3'-dicarboxylic acid),phen(1,10-phenanthroline),bpb(1,4-bis(pyrid-4-yl)benzene),bpa(bis(4-pyridyl)amine),and copper,nickel and cadmium chlorides at 160℃.The products were isolated as stable crystalline solids and were characterized by IR spectra,elemental analyses,thermogravimetric analyses,and singlecrystal X-ray diffraction analyses.Single-crystal X-ray diffraction analyses revealed that three complexes crystallize in the monoclinic P21/n,tetragonal I42d,and orthorhombic P21212 space groups.The complexes exhibit molecular dimers(1)or 2D metal-organic networks(2 and 3).The catalytic performances in the Knoevenagel reaction of these complexes were investigated.Complex 1 exhibits an effective catalytic activity and excellent reusability as a heterogeneous catalyst in the Knoevenagel reaction at room temperature.CCDC:2463800,1;2463801,2;2463802,3.
文摘Six new lanthanide complexes:[Ln(3,4-DEOBA)3(4,4'-DM-2,2'-bipy)]2·2C_(2)H_(5)OH,[Ln=Dy(1),Eu(2),Tb(3),Sm(4),Ho(5),Gd(6);3,4-DEOBA-=3,4-diethoxybenzoate,4,4'-DM-2,2'-bipy=4,4'-dimethyl-2,2'-bipyridine]were successfully synthesized by the volatilization of the solution at room temperature.The crystal structures of six complexes were determined by single-crystal X-ray diffraction technology.The results showed that the complexes all have a binuclear structure,and the structures contain free ethanol molecules.Moreover,the coordination number of the central metal of each structural unit is eight.Adjacent structural units interact with each other through hydrogen bonds and further expand to form 1D chain-like and 2D planar structures.After conducting a systematic study on the luminescence properties of complexes 1-4,their emission and excitation spectra were obtained.Experimental results indicated that the fluorescence lifetimes of complexes 2 and 3 were 0.807 and 0.845 ms,respectively.The emission spectral data of complexes 1-4 were imported into the CIE chromaticity coordinate system,and their corre sponding luminescent regions cover the yellow light,red light,green light,and orange-red light bands,respectively.Within the temperature range of 299.15-1300 K,the thermal decomposition processes of the six complexes were comprehensively analyzed by using TG-DSC/FTIR/MS technology.The hypothesis of the gradual loss of ligand groups during the decomposition process was verified by detecting the escaped gas,3D infrared spectroscopy,and ion fragment information detected by mass spectrometry.The specific decomposition path is as follows:firstly,free ethanol molecules and neutral ligands are removed,and finally,acidic ligands are released;the final product is the corresponding metal oxide.CCDC:2430420,1;2430422,2;2430419,3;2430424,4;2430421,5;2430423,6.
文摘Three zinc(Ⅱ),nickel(Ⅱ),and cadmium(Ⅱ)complexes,namely[Zn(μ-Htpta)(py)_(2)]n(1),[Ni(H_(2)biim)2(H_(2)O)2][Ni(tpta)(H_(2)biim)2(H_(2)O)]2·3H_(2)O(2),and[Cd_(3)(μ4-tpta)2(μ-dpe)_(3)]_(n)(3),have been constructed hydrothermally at 160℃ using H_(3)tpta([1,1':3',1″-terphenyl]-4,4',5'-tricarboxylic acid),py(pyridine),H_(2)biim(2,2'-biimidazole),dpe(1,2-di(4-pyridyl)ethylene),and zinc,nickel and cadmium chlorides,resulting in the formation of stable crystalline solids which were subsequently analyzed using infrared spectroscopy,element analysis,thermogravimetric analysis,as well as structural analyses conducted via single-crystal X-ray diffraction.The findings from these single-crystal Xray diffraction studies indicate that complexes 1-3 form crystals within the monoclinic system P2_(1)/c space group(1)or triclinic system P1 space group(2 and 3),and possess 1D,0D,and 3D structures,respectively.Complex 1 demonstrated substantial catalytic efficiency and excellent reusability as a heterogeneous catalyst in the reaction of Knoevenagel condensation under ambient temperature conditions.In addition,complex 1 also showcased notable anti-wear performance when used in polyalphaolefin synthetic lubricants.CCDC:2449810,1;2449811,2;2449812,3.
基金Supported by the National Natural Science Foundation of China(No.82171073).
文摘Dear Editor,We present a case of acute zonal occult outer retinopathy(AZOOR)complex in a myopic patient with angioid streaks(ASs).A 19-year-old female has been experiencing visual field defects in her left eye for more than 3y.She was diagnosed with ASs and choroiditis at a local hospital.She has a seven-year history of bilateral high myopia.A fundus examination confirmed the presence of ASs and myopic fundus changes in both eyes.Multimodal imaging revealed an AZOOR complex in the left eye.
文摘The complexes 1-4 of cyclobutanocucurbit[5]uril(CyB5Q[5])with Na^(+)/K^(+)have been synthesized and characterized by single-crystal X-ray diffraction.The results show that although the inorganic salts are used when the cations are the same and the anions are different,in complex 1,Na^(+)closes one port of CyB5Q[5]through Na—O seven coordination bonds to form a molecular bowl;in complex 3,Na^(+)completely closes the two ports of CyB5Q[5]to form a molecular capsule with six Na—O coordination bonds;in complexes 2 and 4,the two ports of CyB5Q[5]are completely closed to form K—O coordinated molecular capsules,but the K^(+)of complex 2 is six-coordinated and that of complex 4 is eight-/nine-coordinated.and complex 4 are connected by three oxygen bridges to form a 1D molecular chain.CCDC:2457122,1;2457121,2;2457400,3;2457120,4.
文摘Complex trimalleolar ankle fractures are a major orthopaedic challenge,with an incidence of 4.22 per 10000 person-years in the United States and an annual cost of 3.4 billion dollars.This review synthesizes current evidence on diagnostic protocols and management strategies,highlighting optimal approaches and emerging trends.Initial care emphasizes soft tissue assessment,often guided by the Tscherne classification,and fracture classification systems.External fixation may be required in open injuries,while early open reduction and internal fixation within six days is linked to improved outcomes.Minimally invasive techniques for the lateral malleolus,including intramedullary nailing and locking plates,are effective,while medial malleolus fractures are commonly managed with screw fixation or tension-band wiring.Posterior malleolus fragments involving more than 25%of the articular surface usually warrant fixation.Alternatives to syndesmotic screws,such as cortical buttons or high-strength sutures,reduce the need for secondary procedures.Arthroscopic-assisted open reduction and internal fixation benefits younger,active patients by enabling concurrent management of intra-articular and ligamentous injuries.Postoperative care prioritizes early weight-bearing and validated functional scores.Despite advances,complications remain common,and further research is needed to refine surgical strategies and improve outcomes.
基金National Nature Science Foundation of China (Grant No.30772665)Beijing Nature Science Foundation (Grant No.7083111).
文摘Cationic polyethylenimine (PEI) with dextran fluorescein anionic (DFA) or oligodeoxynucleotide (ODN) could form polyelectrolyte complex by self-assembly as a gene delivery vector. This study was designed to investigate the effects on pharmaceutical characteristics and cell uptake PEI after a long-circulation modification with poly(ethylene glycol) (PEG). DFA or ODN reacted with PEI or PEI-PEG to form polyelectrolyte complexes. Surface characters of these complexes and the retardation of ODN by PEI and PEI-PEG were evaluated. The uptake rates of DFA/PEI and DFA/PEI-PEG complexes by MCF-7 cells were evaluated by flow cytometry. Confocal laser scanning microscopy was utilized to visualize the internalization of these complexes. ODN/PEI complex showed the dependence of their size and ξ potential on the N/P ratio. ODN/PEI-PEG complex were much less affected by N/P ratio and their size was around 30 100 nm. PEI and PEI-PEG retarded ODN even at N/P ratio as low as 4, and complete retardation was found at N/P ratio of 8. The uptake rate by MCF-7 cells was direct correlated to the DFA concentration and incubation time, and the uptake rate could exceed 99% under the selected condition. The results in this study showed that PEI self-assembly polyelectrolyte complex after stealth or long circulation modification may increase the ability as a gene vector to delivery genes into cells.
基金Financial supports by the National Natural Science Foundation of China(Nos.51773137 and 51721091)the Sichuan Province Youth Science and Technology Innovation Team(No.2017TD0006)
文摘The achievement of both robust fire-safety and mechanical properties is of vital requirement for carbon fiber(CF)composites.To this end,a facile interracial strategy for fabricating flame-retardant carbon fibers decorated by bio-based polyelectrolyte complexes(PEC)consisting of chitosan(CH)and ammonium polyphosphate(APP)was developed,and its corresponding fire-retarded epoxy resin composites(EP/(PEC@CF))without any other additional flame retardants were prepared.The decorated CFs were characterized by SEM-EDX,XPS and XRD,indicating that the flame-retardant PEC coating was successfully constructed on the surface of CF.Thanks to the nitrogen-and phosphorous-containing PEC,the resulting composites exhibited excellent flame retardancy as the limiting oxygen index(LOI)increased from 31.0%of EP/CF to 40.5%and UL-94 V-0 rating was achieved with only 8.1 wt%PEC.EP/(PEC8.1@CF)also performed well in cone calorimetry with the decrease of peak-heat release rate(PHRR)and smoke production rate(SPR)by 50.0%and 30.4%,respectively,and the value of fire growth rate(FIGRA)was also reduced to 3.41 kW·m-2-s-1 from 4.84 kW·m-2·s-1,suggesting a considerably enhanced fire safety.Furthermore,SEM images of the burning residues revealed that the PEC coating exhibited the dominant flame-retardant activity in condensed phase via the formation of compact phosphorus-rich char.In addition,the impact strength of the composite was improved,together with no obvious deterioration of flexural properties and glass transition temperature.Taking advantage of the features,the PEC-decorated carbon fibers and the relevant composites fabricated by the cost-effective and facile strategy would bring more chances for widespread applications.
基金Supported by the National Basic Research Program of China(2007CB707805) the National Natural Science Foundation of China(20876139)
文摘In general,productions of natural pigment in submerged microorganism culture were much less than that in solid-state fermentation,because the solid-state culture can provide a support carrier for the mycelium. To improve natural pigment production,the cultivation of Monascus purpureus in submerged encapsulated cell was investigated. Monascus purpureus immobilized in polyelectrolyte complex(PEC) microcapsules,which were pre-pared by sodium cellulose sulphate(NaCS) and poly-dimethyl-diallyl-ammonium chloride(PDMDAAC),was a good substitute for submerged cell culture because it mimicked the solid-state environment. The repeated-batch process with encapsulated cells was studied in flasks and a bubble column. The results indicated that the bubble column was more suitable for the encapsulation culture than the shaking flasks because of its good mass transfer performance and minor shear stress on cells. Owing to the protection of the microcapsule's membrane,Monascus purpureus in microcapsules increased approximately three times over that in free cell culture with negligible cell leakage to the medium. The pigment production in the bubble column finally reached 3.82(OD500) ,which was two times higher than in free cell culture. In addition,the duration of each batch was shortened to 15% of that in free cell culture.
基金Supported by the National Natural Science Foundation of China (No.20476025), the Doctoral Research Foundation of the Ministry of Education of China (No.20050251004), E-institute of Shanghai High Institution Grid (No.200303) and Shanghai Municipal Science and Technology Commission of China (No.05DJ14002).
文摘Interaction of anionic polyelectrolyte with cationic gemini surfactant has been investigated by coarse-grained molecular dynamics simulation.Polyelectrolyte facilitates the oppositely charged ionic surfactants to aggregate by suppressing the electrostatic repulsion between ionic head groups leading to the formation of micellar complex.With addition of surfactant,the conformation of polyion chain changes from stretched to random coiled to spherical,and at the same time more free micelles are formed by surfactants in mixtures.Increasing the length of spacer or tail chain in gemini surfactant will weaken its interaction with polyelectrolyte and simultaneously strengthen its tendency to self-assemble.The simulation results are consistent with experimental observations and reveal that the electrostatic interaction plays an important role in the interaction of polyelectrolyte with gemini sur- factant.
基金supported by the Distinguished Professor Project of Liaoning Province(2015)
文摘The objective of this study is to design sustained-release tablets using matrix technology, which can well control the release of highly water-soluble drugs with good system robustness and simple preparation process. Taking venlafaxine hydrochloride(VH) as a drug model, the feasibility of using chitosan(CS), carbomer(CBM) combination system to achieve this goal was studied. Formulation and process variables influencing drug release from CS–CBM matrix tablets were investigated. It was found that CS–CBM combination system weakened the potential influence of CS, CBM material properties and gastric emptying time on drug release profile. Demonstrated by direct observation, differential scanning calorimetry(DSC) and Fourier transform infrared spectroscopy(FTIR), in situ self-assembled polyelectrolyte complex(PEC) film was formed on the tablet surface during gastrointestinal tract transition, which contributed to the tunable and robust control of drug release. The sustained drug release behavior was further demonstrated in vivo in Beagle dogs, with level A in vitro and in vivo correlation(IVIVC) established successfully. In conclusion, CS–CBM matrix tablets are promising system to tune and control the release of highly water-soluble drugs with good system robustness.
基金financially supported by the National Natural Science Foundation of China(Nos.21376206 and 21676233)Zhejiang Province Natural Science Foundation(No.LR15B060001)
文摘Polyelectrolyte-surfactant complexes(PESCs) were fabricated through the interaction of poly(acrylic acid) and four different cationic surfactants or their mixtures. PESC membranes were prepared by solution casting method and were applied in ethanol recovery from aqueous solution via pervaporation. Elemental analysis(EA), Fourier transform infrared spectroscopy(FTIR), water contact angle(CA) measurement, differential scanning calorimetry(DSC) and X-ray scattering were employed to characterize the composition, structure and properties of PESCs. The results reveal that the investigated PESCs are similar in hydrophobicity but different in hierarchical nanostructures. In separating 5 wt% ethanol/water mixture, PESC membranes with high crystallinity will have both low flux and ethanol selectivity because of the high packing density and low permeability of crystalline regions. Meanwhile, the hierarchical nanostructures of PESC membranes change under pervaporation environment as was revealed by in situ synchrotron radiation X-ray scattering measurement. That is, the crystalline region could melt at high temperature in swelling state, thus consequently enhancing the ethanol selectivity.
基金supported by the a Grant-in-Aid for Scientific Research (No. 23350055) from the Japan Society for the Promotion of Science
文摘The polyelectrolyte complex formed from the polyanion and polycation was studied by turbidimetry, static and electrophoretic light scattering, and elementary analysis. Sodium salts of polyacrylate (PA) and heparin (Hep) were chosen as the polyanion, and hydrochloric salts of poly(vinyl amine) (PVA) and chitosan (Chts) as the polycation. Although these vinyl polymers and polysaccharides have remarkably different backbone chemical structures and linear charge densities, all the four combinations PA-PVA, PA-Chts, Hep-PVA, and Hep-Chts provide almost stoichiometric polyelectrolyte complexes which are slightly charged owing to the adsorption of the excess polyelectrolyte component onto the neutral complex. The charges stabilize the complex colloids in aqueous solution of a non-stoichiometric mixture, and the aggregation number of the complex colloids increases with approaching to the stoichiometric mixing ratio. The mixing ratio dependence of the aggregation number for the four complexes is explained by the model proposed in the previous study.
基金supported by the National Natural Science Foundation of China(No.21973002).
文摘The liquid-liquid phase separation of biopolymers in living cells contains multiple interactions and occurs in a dynamic environment.Resolving the regulation mechanism is still a challenge.In this work,we designed a series of peptides(XXLY)_(6)SSSGSS and studied their complexation and coacervation behavior with single-stranded oligonucleotides.The“X”and“Y”are varied to combine known amounts of charged and non-charged amino acids,together with the introduction of secondary structures and pH responsiveness.Results show that the electrostatic interaction,which is described as charge density,controls both the strength of complexation and the degree of chain relaxation,and thus determines the growth and size of the coacervates.The hydrophobic interaction is prominent when the charges are neutralized.Interestingly,the secondary structures of peptides exhibit profound effect on the morphology of the phases,such as solid phase to liquid phase transition.Our study gains insight into the phase separation under physiological conditions.It is also helpful to create coacervates with desirable structures and functions.
基金supported by the National Natural Science Foundation of China(NSFC)(Nos.22073002,51921002 and 22373008).
文摘We investigate the solution self-assembly of a mixture of positively charged homopolymers and AB diblock copolymers,in which the A blocks are negatively charged,and the B blocks are neutral.The electrostatic complexation between oppositely charged polymers drives the formation of many ordered phases.The microstructures and phase diagrams are calculated using self-consistent field theory(SCFT)based on an ion-pair model with an equilibrium constant K to characterize the strength of binding between positively and negatively charged monomers.The effects of the charge ratio,representing the ratio of charges from the homopolymer over all charges from polymers in the system,on the ordered structure are systematically studied,both for hydrophobic and hydrophilic A blocks.The charge ratio plays an important role in determining the phase boundaries in the phase diagram of salt concentration versus polymer concentration.We also provide information about the varying tendency of the domain spacing and core size of the spherical phase when the charge ratio is changed,and the results are in good agreement with experiments.These studies provide a deep understanding of the self-assembled microstructures of oppositely charged diblock copolymer-homopolymer systems.
基金jointly funded by the Russian Science Foundationthe St.-Petersburg Science Foundation(No.23-23-10005)
文摘Polyelectrolyte complexes(PECs)of hyperbranched(HB)and linear polysaccharides are promising as more effective encapsulation agents compared to PECs formed by linear polysaccharides.We investigated the PECs between the HB anionic polysaccharide fucoidan(FUC)and the cationic linear polysaccharide chitosan(CS).The FUC had a molecular weight(MW)of 30×106.The PECs were prepared in three solvents(water,0.01 and 0.1 mol/L acetic acid)with CS of MW of 15,110 and 170 kDa,and deacetylation degrees(DDA)of 70%and 97%.The structures of the PECs and the initial FUC were investigated by multi-angle static and dynamic light scattering.As the FUC contained 18 wt%of—OSO3 groups and 5 wt%of uronic acid units,it was a“strong-weak”copolyanion,so the HB macromolecules of the FUC formed nanogel particles in 0.1 mol/L AcOH and open branched structures in water,as confirmed by the Kratky plots.After mixing the solutions of original components,the PEC structures underwent an equilibration period,the duration of which increased with the MW of CS.As the charge stoichiometry was approached,the PECs shrank;the fractal dimension approached unity,indicating the side-by-side packing of adjacent FUC branches with the help of CS.Secondary aggregation in the vicinity of the charge compensation was hardly observed,as it occurred in a very narrow region.The PEC content at theζ-potential inversion depended on solvents’pH and the DDA of CS.In the extreme case of core-shell PECs in 0.1 mol/L AcOH,obtained by mixing FUC nanogels with the solutions of high MW CS of 97%DDA,the protruding tails of CS formed a positively charged shell in the whole range of FUC content(10 wt%<WFUC<90 wt%).Scanning electron microscopy and atomic force microscopy images of dried samples were discussed in relation to the light scattering results.
基金This research was supported by the National Research Foundation of Korea(NRF)grant funded by the Ministry of Education,Science and Technology(No.2012R1A2A2A02044997 and No.2012R1A1A1039059).
文摘Polyelectrolyte complex micelles were prepared by self-assembly of polypeptide-based triblock copolymer as a new drug carrier for cancer chemotherapy.The triblock copolymer,poly(L-aspartic acid)-b-poly(ethylene glycol)-b-poly(L-aspartic acid)(PLD-b-PEG-b-PLD),spontaneously self-assembled with doxorubicin(DOX)via electrostatic interactions to form spherical micelles with a particle size of 60e80 nm(triblock ionomer complexes micelles,TBIC micelles).These micelles exhibited a high loading capacity of 70%(w/w)at a drug/polymer ratio of 0.5 at pH 7.0.They showed pH-responsive release patterns,with higher release at acidic pH than at physiological pH.Furthermore,DOX-loaded TBIC micelles exerted less cytotoxicity than free DOX in the A-549 human lung cancer cell line.Confocal microscopy in A-549 cells indicated that DOX-loaded TBIC micelles were transported into lysosomes via endocytosis.These micelles possessed favorable pharmacokinetic characteristics and showed sustained DOX release in rats.Overall,these findings indicate that PLDb-PEG-b-PLD polypeptide micelles are a promising approach for anti-cancer drug delivery.
基金supported by the National Natural Science Foundation of China(No.20734001)
文摘Three dendronized polymers from generation one to generation three have been prepared by complexing negatively charged Frechet-type dendrons with a polyanion, poly(diallydimethylammoniurn chloride) (PDADMAC). The gaffing degree has been confirmed mainly by elemental analysis. In dilute solutions of tetrahydrofuran, static light scattering studies indicate that the first generation complex has a coil-like conformation, even more flexible than PDADMAC. The second and third generation complexes exhibit polyelectrolyte behavior. Dynamic light scattering experiments indicate that all the three complexes have almost the same hydrodynamic radius, indicating that they might own similar coil conformation. Atomic force microscopy shows the existence of disordered globules formed by one or a couple of complex coils. All these observations can be explained by the flowerlike coil conformation, which is formed by the intra-molecular association. This is totally different from the stretched chain conformation formed by covalently connected dendronized polymers. This result also explains why some ordered supramolecular structures, found in condensed state of the similar complexes, are not as perfect as those of conventional dendronized polymers.
文摘The flocculating properties of polymer-colloid complexes (PCCs) formed via noncovalent interactions of positively charged aluminoxane particles (APs) with macromolecules of weakly charged cationic acrylamide copolymers from the Praestol and Organopol series have been studied. The PCCs that spontaneously formed during mixing of sols of a high-basicity aluminum polyhydroxochloride (APHC) with aqueous solutions of the copolymers exhibit high flocculating ability under the conditions of gravity sedimentation of the model kaolin dispersion with Сd = 8 g/dm3, and their efficiency exceeds both that of the copolymers and the earlier obtained PCCs with nonionogenic polyacrylamide (PAA). In contrast to weakly charged polycationites, the fully charged KF-99 polyelectrolyte does not form PCCs and the products of its mixing with APHC do not reveal an increased flocculating effect.