The incorporation of dynamic covalent bonds into thermosets facilitates the reprocessing of polymer networks,thereby meeting the sustainable requirements for polymer recycling.However,the mechanical properties of many...The incorporation of dynamic covalent bonds into thermosets facilitates the reprocessing of polymer networks,thereby meeting the sustainable requirements for polymer recycling.However,the mechanical properties of many materials often decline significantly upon reprocessing due to side reactions caused by harsh processing conditions.In this work,we find that the aromatic dithiocarbamate bond can undergo dissociation under mild conditions without the need for a catalyst,enabling the efficient reprocessing of the corresponding polydithiourethane.As a consequence,the mechanical properties of the polydithiourethane can be largely preserved after reprocessing.The discovery of this dynamic chemistry is anticipated to broaden the potential for material design in dynamic covalent polymer networks.展开更多
基金financially supported by the National Natural Science Foundation of China(Nos.22275162 and 52322307)。
文摘The incorporation of dynamic covalent bonds into thermosets facilitates the reprocessing of polymer networks,thereby meeting the sustainable requirements for polymer recycling.However,the mechanical properties of many materials often decline significantly upon reprocessing due to side reactions caused by harsh processing conditions.In this work,we find that the aromatic dithiocarbamate bond can undergo dissociation under mild conditions without the need for a catalyst,enabling the efficient reprocessing of the corresponding polydithiourethane.As a consequence,the mechanical properties of the polydithiourethane can be largely preserved after reprocessing.The discovery of this dynamic chemistry is anticipated to broaden the potential for material design in dynamic covalent polymer networks.