期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
The First Eccentric Zagreb Index of Linear Polycene Parallelogram of Benzenoid
1
作者 Mehdi Alaeiyan Mohammad Reza Farahani +1 位作者 Muhammad Kamran Jamil M. R. Rajesh Kanna 《Open Journal of Applied Sciences》 2016年第5期315-318,共4页
Let G = (V,E) be a graph, where V(G) is a non-empty set of vertices and E(G) is a set of edges, e = uv∈E(G), d(u) is degree of vertex u. Then the first Zagreb polynomial and the first Zagreb index Zg<sub>1</... Let G = (V,E) be a graph, where V(G) is a non-empty set of vertices and E(G) is a set of edges, e = uv∈E(G), d(u) is degree of vertex u. Then the first Zagreb polynomial and the first Zagreb index Zg<sub>1</sub>(G,x) and Zg<sub>1</sub>(G) of the graph G are defined as Σ<sub>uv∈E(G)</sub>x<sup>(d<sub>u</sub>+d<sub>v</sub>)</sup> and Σ<sub>e=uv∈E(G)</sub>(d<sub>u</sub>+d<sub>v</sub>) respectively. Recently Ghorbani and Hosseinzadeh introduced the first Eccentric Zagreb index as Zg<sub>1</sub>*</sup>=Σ<sub>uv∈E(G)</sub>(ecc(v)+ecc(u)), that ecc(u) is the largest distance between u and any other vertex v of G. In this paper, we compute this new index (the first Eccentric Zagreb index or third Zagreb index) of an infinite family of linear Polycene parallelogram of benzenoid. 展开更多
关键词 Molecular Graph Linear polycene Parallelogram of Benzenoid Zagreb Topological Index Eccentricity Connectivity Index Cut Method
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部