Sodium ion batteries(SIBs)have been regarded as one of the alternatives to lithium ion batteries owing to their wide availability and significantly low cost of sodium sources.However,they face serious challenges of lo...Sodium ion batteries(SIBs)have been regarded as one of the alternatives to lithium ion batteries owing to their wide availability and significantly low cost of sodium sources.However,they face serious challenges of low energy&power density and short cycling lifespan owing to the heavy mass and large radius of Na^(+).Vanadium-based polyanionic compounds have advantageous characteristic of high operating voltage,high ionic conductivity and robust structural framework,which is conducive to their high energy&power density and long lifespan for SIBs.In this review,we will overview the latest V-based polyanionic compounds,along with the respective characteristic from the intrinsic crystal structure to performance presentation and improvement for SIBs.One of the most important aspect is to discover the essential problems existed in the present V-based polyanionic compounds for high-energy&power applications,and point out most suitable solutions from the crystal structure modulation,interface tailoring and electrode configuration design.Moreover,some scientific issues of V-based polyanionic compounds shall be also proposed and related future direction shall be provided.We believe that this review can serve as a motivation for further development of novel V-based polyanionic compounds and drive them toward high energy&power applications in the near future.展开更多
Mixed polyanion phosphate Na_(4)Fe_(3)(PO_(4))_(2)P_(2)O_(7)(NFPP)is regarded as the most promising cathode material for sodium-ion batteries(SIBs),due to its high structural stability and low-cost environmental frien...Mixed polyanion phosphate Na_(4)Fe_(3)(PO_(4))_(2)P_(2)O_(7)(NFPP)is regarded as the most promising cathode material for sodium-ion batteries(SIBs),due to its high structural stability and low-cost environmental friendliness.However,its intrinsic low conductivity and sluggish Na^(+)diffusion restricted the fast-charge and low-temperature sodium storage.Herein,an NFPP composite encapsulated by in-situ pyrolytic carbon and coupled with expanded graphite(NFPP@C/EG)was constructed via a sol-gel method followed by a ballmill procedure.Due to the dual-carbon modified strategy,this NFPP@C/EG only enhanced the electronic conductivity,but also endowed more channels for Na^(+)diffusion.As cathode for SIBs,the optimized NFPP(M-NFPP@C/EG)delivers excellent rate capability(capacity of~80.5 mAh/g at 50 C)and outstanding cycling stability(11000 cycles at 50 C with capacity retention of 89.85%).Additionally,cyclic voltammetry(CV)confirmed that its sodium storage behavior is pseudocapacitance-controlled,with in-situ electrochemical impedance spectroscopy(EIS)further elucidating improvements in electrode reaction kinetics.At lower temperatures(0℃),M-NFPP@C/EG demonstrated exceptional cycling performance(8800 cycles at 10 C with capacity retention of 95.81%).Moreover,pouch cells also exhibited excellent stability.This research demonstrates the feasibility of a dual carbon modification strategy in enhancing NFPP and proposes a low-cost,high-rate,and ultra-stable cathode material for SIBs.展开更多
Rechargeable magnesium ion batteries(RMBs)are investigated as lithium-ion batteries(LIBs)alternative owing to their favorable merits of high energy density,abundance and low expenditure of Mg,as well a especially non-...Rechargeable magnesium ion batteries(RMBs)are investigated as lithium-ion batteries(LIBs)alternative owing to their favorable merits of high energy density,abundance and low expenditure of Mg,as well a especially non-toxic safety and low risk of dendrite formation in anodes,which endows them to be more easily assembled in electric-power vehicles for the extended application of civilian-military fields.Never theless,the high charge density,strong polarization effect,and slow diffusion kinetics of Mg^(2+)remain a large obstacle and thus enormous efforts have to be paid to mend the gap with commercial demand fo cathode materials.At present,RMBs cathode materials mainly contain transition metal sulfides/oxides polyanionic compounds and Prussian blue analogs,and several methods such as nano structuring,dop ing regulation and coating modification have been applied to materials design for better performance In this paper,the current research status of RMBs cathode materials at home&abroad is arranged and summarized along with challenges of development in the future focusing on synthesis of RMBs cathode materials with high energy density as well as satisfactory cycling performance.And this analysis aims to provide reference and basis for researchers working on RMBs technology advancement.展开更多
Mixed polyanionic compounds are potential cathode materials for sodium-ion batteries(SIBs).Herein,considering the advantages of the strong inductive effect of sulfate and the diverse,flexible coordination modes of oxa...Mixed polyanionic compounds are potential cathode materials for sodium-ion batteries(SIBs).Herein,considering the advantages of the strong inductive effect of sulfate and the diverse,flexible coordination modes of oxalate,we systematically explored mixed sulfate-oxalate systems and obtained three sodium-contained polyanionic compounds.Interestingly,the novel three-dimensional Na_(2)Co(C(2)O_(4))(SO_(4))·xH_(2)O(x=1-1.5)was found to be a promising cathode material for SIBs with good electrochemical activity at high voltage.The present study sets an example of exploring sodium-storage materials in the mixed polyanionic family and provides new insights into designing novel high-voltage cathodes for sodium-based energy storage devices.展开更多
Na_(3)V_(2)(PO_(4))_(2)F_(3)(NVPF) is shown to be an attractive cathode material for sodium storage due to its high theoretical capacity and suitable working voltage.However,its low electronic conductivity and poor cy...Na_(3)V_(2)(PO_(4))_(2)F_(3)(NVPF) is shown to be an attractive cathode material for sodium storage due to its high theoretical capacity and suitable working voltage.However,its low electronic conductivity and poor cycling stability have to be addressed in order for enhanced high-rate performance and cycle life.Herein,we have prepared a 3D reduced graphene oxide (rGO) host-supported NVPF nanocuboids.We discover that polyvinyl alcohol (PVA) serves as an important structural directing agent that bridges between NVPF and rGO through the hydrogen bonding,and thus regulates the formation of the 3D r GO framework with NVPF nanocuboids embedded inside (NVPF@C@rGO).With such a unique construction,NVPF@C@rGO exhibits excellent cycling stability and rate performance for sodium storage,showing high reversible capacities of 121 m Ah/g and 113 mAh/g at 1C and 10C,respectively,and 103 mAh/g after 700cycles at 50C with 98.3%retention.Even at an extremely high current of 100C,it also delivers a reversible capacity of 64 mAh/g,surpassing the performance of many recently reported NVPF-based electrodes.Cyclic voltammetry (CV) and galvanostatic intermittent titration technique (GITT) data confirm the much better kinetic properties of NVPF@C@rGO electrode than the control samples of NVPF@rGO and pure NVPF.In-situ XRD results reveal that the 3D rGO housing can effectively suppress the lattice variation of NVPF,with a maximum volume change of only 1.84%during cycling.Moreover,the in-situ temperature sensing reveals the more stable working temperature of NVPF@C@rGO compared to phase-pure NVPF,suggesting a higher temperature safety of the electrode.Using NVPF@C@rGO as the positive electrode and commercial hard carbon as the negative electrode,a sodium-ion full battery has been assembled with about 110 m Ah/g at 1C for 300 cycles,corresponding to an energy density of 291 Wh kg^(-1).The construction of 3D r GO housing as a conductive support offers an effective strategy for high-rate,long cycle life and high safety sodium-ion battery cathodes.展开更多
Sodium-ion batteries(SIBs)are considered as one of the most fascinating alternatives to lithium-ion batteries for grid-scale energy storage applications because of the low cost and wide abundance of sodium resources.A...Sodium-ion batteries(SIBs)are considered as one of the most fascinating alternatives to lithium-ion batteries for grid-scale energy storage applications because of the low cost and wide abundance of sodium resources.Among various cathode materials,mixed polyanion compounds come into the spotlight as promising electrode materials due to their superior electrochemical properties,such as high working voltage,long cycling stability,and facile reaction kinetics.In this review,we summarize the recent development in the exploration of different mixed polyanion cathode materials for SIBs.We provide a comprehensive understanding of the structure-composition-performance relationship of mixed polyanion cathode materials together with the discussion of their sodium storage mechanisms.It is anticipated that further innovative works on the material design of advanced cathode materials for batteries can be inspired.展开更多
Potassium-ion batteries (KIBs) are promising candidates for large-scale energy storage due to the abundance of potassium and its chemical similarity to lithium.Nevertheless,the performances of KIBs are still unsatisfa...Potassium-ion batteries (KIBs) are promising candidates for large-scale energy storage due to the abundance of potassium and its chemical similarity to lithium.Nevertheless,the performances of KIBs are still unsatisfactory for practical applications,mainly hindered by the lack of suitable cathode materials.Herein,combining the strong inductive effect of sulphate and the feasible preparation of Fe^(2+)-containing compounds in oxalate system,a compound with novel architecture,K_(4)Fe_(3)(C_(2)O_(4))_(3)(SO_(4))_(2),has been identified as a lowcost and environmentally friendly cathode for stable potassium-ion storage.Its unique crystal structure possesses an unprecedented two-dimensional framework of triple layers,with 3.379Åinterlayer distance and large intralayer rings in the size of 4.576×6.846Å.According to first-principles simulations,such a configuration is favorable for reversible K-ion migration with a very low volume change of 6.4%.Synchrotron X-ray absorption spectra and X-ray diffraction characterizations at different charging/discharging states and electrochemical performances based on its half and full cells further verify its excellent reversibility and structural stability.Although its performance needs to be improved via further composition tuning with multi-valent transition metals,doping,structural optimization,etc.,this study clearly presents a stable structural model for K-ion cathodes with merits of low cost and environmental friendliness.展开更多
基金financial support from the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA21070500)the DNL Cooperation Fund,CAS(DNL201914)。
文摘Sodium ion batteries(SIBs)have been regarded as one of the alternatives to lithium ion batteries owing to their wide availability and significantly low cost of sodium sources.However,they face serious challenges of low energy&power density and short cycling lifespan owing to the heavy mass and large radius of Na^(+).Vanadium-based polyanionic compounds have advantageous characteristic of high operating voltage,high ionic conductivity and robust structural framework,which is conducive to their high energy&power density and long lifespan for SIBs.In this review,we will overview the latest V-based polyanionic compounds,along with the respective characteristic from the intrinsic crystal structure to performance presentation and improvement for SIBs.One of the most important aspect is to discover the essential problems existed in the present V-based polyanionic compounds for high-energy&power applications,and point out most suitable solutions from the crystal structure modulation,interface tailoring and electrode configuration design.Moreover,some scientific issues of V-based polyanionic compounds shall be also proposed and related future direction shall be provided.We believe that this review can serve as a motivation for further development of novel V-based polyanionic compounds and drive them toward high energy&power applications in the near future.
基金supported by the National Key Research and Development Program of China(No.2022YFB2502000)the National Natural Science Foundation of China(Nos.U21A20332,51771076,U21A200970,52301266)the Science and Technology Planning Project of Guangzhou(No.2024A04J3332)。
文摘Mixed polyanion phosphate Na_(4)Fe_(3)(PO_(4))_(2)P_(2)O_(7)(NFPP)is regarded as the most promising cathode material for sodium-ion batteries(SIBs),due to its high structural stability and low-cost environmental friendliness.However,its intrinsic low conductivity and sluggish Na^(+)diffusion restricted the fast-charge and low-temperature sodium storage.Herein,an NFPP composite encapsulated by in-situ pyrolytic carbon and coupled with expanded graphite(NFPP@C/EG)was constructed via a sol-gel method followed by a ballmill procedure.Due to the dual-carbon modified strategy,this NFPP@C/EG only enhanced the electronic conductivity,but also endowed more channels for Na^(+)diffusion.As cathode for SIBs,the optimized NFPP(M-NFPP@C/EG)delivers excellent rate capability(capacity of~80.5 mAh/g at 50 C)and outstanding cycling stability(11000 cycles at 50 C with capacity retention of 89.85%).Additionally,cyclic voltammetry(CV)confirmed that its sodium storage behavior is pseudocapacitance-controlled,with in-situ electrochemical impedance spectroscopy(EIS)further elucidating improvements in electrode reaction kinetics.At lower temperatures(0℃),M-NFPP@C/EG demonstrated exceptional cycling performance(8800 cycles at 10 C with capacity retention of 95.81%).Moreover,pouch cells also exhibited excellent stability.This research demonstrates the feasibility of a dual carbon modification strategy in enhancing NFPP and proposes a low-cost,high-rate,and ultra-stable cathode material for SIBs.
基金financially supported by the National Natural Science Foundation of China(Nos.21804008,52102209)the International Technological Collaboration Project of Shanghai(No.17520710300)+1 种基金Anhui Provincial Natural Science Foundation(No.2108085QE197)Guangdong Basic and Applied Basic Research Foundation(Nos.2022A1515010834,2020A1515110221)。
文摘Rechargeable magnesium ion batteries(RMBs)are investigated as lithium-ion batteries(LIBs)alternative owing to their favorable merits of high energy density,abundance and low expenditure of Mg,as well a especially non-toxic safety and low risk of dendrite formation in anodes,which endows them to be more easily assembled in electric-power vehicles for the extended application of civilian-military fields.Never theless,the high charge density,strong polarization effect,and slow diffusion kinetics of Mg^(2+)remain a large obstacle and thus enormous efforts have to be paid to mend the gap with commercial demand fo cathode materials.At present,RMBs cathode materials mainly contain transition metal sulfides/oxides polyanionic compounds and Prussian blue analogs,and several methods such as nano structuring,dop ing regulation and coating modification have been applied to materials design for better performance In this paper,the current research status of RMBs cathode materials at home&abroad is arranged and summarized along with challenges of development in the future focusing on synthesis of RMBs cathode materials with high energy density as well as satisfactory cycling performance.And this analysis aims to provide reference and basis for researchers working on RMBs technology advancement.
基金support from the National Key R&D Program of China(grant no.2022YFB2402600)the National Natural Science Foundation of China(grant nos.52125105,52061160484,52372250)+1 种基金the Shenzhen Science and Technology Planning Project(grant nos.RCYX20221008092850072,GJHZ20210705141407023,ZDSYS20210706144000003)the Guangdong Basic and Applied Basic Research Foundation(grant nos.2021A1515010184 and 2022A1515110031).
文摘Mixed polyanionic compounds are potential cathode materials for sodium-ion batteries(SIBs).Herein,considering the advantages of the strong inductive effect of sulfate and the diverse,flexible coordination modes of oxalate,we systematically explored mixed sulfate-oxalate systems and obtained three sodium-contained polyanionic compounds.Interestingly,the novel three-dimensional Na_(2)Co(C(2)O_(4))(SO_(4))·xH_(2)O(x=1-1.5)was found to be a promising cathode material for SIBs with good electrochemical activity at high voltage.The present study sets an example of exploring sodium-storage materials in the mixed polyanionic family and provides new insights into designing novel high-voltage cathodes for sodium-based energy storage devices.
基金financially supported by the National Natural Science Foundation of China (No. 52372176)Guangdong Basic and Applied Basic Research Foundation (No. 2024A1515011517)。
文摘Na_(3)V_(2)(PO_(4))_(2)F_(3)(NVPF) is shown to be an attractive cathode material for sodium storage due to its high theoretical capacity and suitable working voltage.However,its low electronic conductivity and poor cycling stability have to be addressed in order for enhanced high-rate performance and cycle life.Herein,we have prepared a 3D reduced graphene oxide (rGO) host-supported NVPF nanocuboids.We discover that polyvinyl alcohol (PVA) serves as an important structural directing agent that bridges between NVPF and rGO through the hydrogen bonding,and thus regulates the formation of the 3D r GO framework with NVPF nanocuboids embedded inside (NVPF@C@rGO).With such a unique construction,NVPF@C@rGO exhibits excellent cycling stability and rate performance for sodium storage,showing high reversible capacities of 121 m Ah/g and 113 mAh/g at 1C and 10C,respectively,and 103 mAh/g after 700cycles at 50C with 98.3%retention.Even at an extremely high current of 100C,it also delivers a reversible capacity of 64 mAh/g,surpassing the performance of many recently reported NVPF-based electrodes.Cyclic voltammetry (CV) and galvanostatic intermittent titration technique (GITT) data confirm the much better kinetic properties of NVPF@C@rGO electrode than the control samples of NVPF@rGO and pure NVPF.In-situ XRD results reveal that the 3D rGO housing can effectively suppress the lattice variation of NVPF,with a maximum volume change of only 1.84%during cycling.Moreover,the in-situ temperature sensing reveals the more stable working temperature of NVPF@C@rGO compared to phase-pure NVPF,suggesting a higher temperature safety of the electrode.Using NVPF@C@rGO as the positive electrode and commercial hard carbon as the negative electrode,a sodium-ion full battery has been assembled with about 110 m Ah/g at 1C for 300 cycles,corresponding to an energy density of 291 Wh kg^(-1).The construction of 3D r GO housing as a conductive support offers an effective strategy for high-rate,long cycle life and high safety sodium-ion battery cathodes.
基金financial support by the National Science Foundation of China(Nos.21673165 and 21972108)the National Key Research Program of China(No.2016YFB0901500)the supercomputing system in the Supercomputing Center of Wuhan University。
文摘Sodium-ion batteries(SIBs)are considered as one of the most fascinating alternatives to lithium-ion batteries for grid-scale energy storage applications because of the low cost and wide abundance of sodium resources.Among various cathode materials,mixed polyanion compounds come into the spotlight as promising electrode materials due to their superior electrochemical properties,such as high working voltage,long cycling stability,and facile reaction kinetics.In this review,we summarize the recent development in the exploration of different mixed polyanion cathode materials for SIBs.We provide a comprehensive understanding of the structure-composition-performance relationship of mixed polyanion cathode materials together with the discussion of their sodium storage mechanisms.It is anticipated that further innovative works on the material design of advanced cathode materials for batteries can be inspired.
基金financial supports from the Key-Area Research and Development Program of Guangdong Province (2019B090914003)the National Natural Science Foundation of China (51822210,51972329 and 51902339)+2 种基金Shenzhen Science and Technology Planning Project (JCYJ20190807172001755 and JCYJ20180507182512042)SIAT Innovation Program for Excellent Young Researchers (201811 and 201825)the Science and Technology Planning Project of Guangdong Province (2019A1515110975 and 2019A1515011902)。
文摘Potassium-ion batteries (KIBs) are promising candidates for large-scale energy storage due to the abundance of potassium and its chemical similarity to lithium.Nevertheless,the performances of KIBs are still unsatisfactory for practical applications,mainly hindered by the lack of suitable cathode materials.Herein,combining the strong inductive effect of sulphate and the feasible preparation of Fe^(2+)-containing compounds in oxalate system,a compound with novel architecture,K_(4)Fe_(3)(C_(2)O_(4))_(3)(SO_(4))_(2),has been identified as a lowcost and environmentally friendly cathode for stable potassium-ion storage.Its unique crystal structure possesses an unprecedented two-dimensional framework of triple layers,with 3.379Åinterlayer distance and large intralayer rings in the size of 4.576×6.846Å.According to first-principles simulations,such a configuration is favorable for reversible K-ion migration with a very low volume change of 6.4%.Synchrotron X-ray absorption spectra and X-ray diffraction characterizations at different charging/discharging states and electrochemical performances based on its half and full cells further verify its excellent reversibility and structural stability.Although its performance needs to be improved via further composition tuning with multi-valent transition metals,doping,structural optimization,etc.,this study clearly presents a stable structural model for K-ion cathodes with merits of low cost and environmental friendliness.