期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Effect of Hydroxyapatite Filler in an Aluminosilicate Glass Ionomer Cements
1
作者 Md Alamgir Kabir Md Moshiur Rahman +4 位作者 Humayun Kabir Md Moniruzzaman Khan Khokon Hossen Sooraj H. Nandyala Artemis Stamboulis 《Journal of Materials Science and Chemical Engineering》 2025年第2期83-98,共16页
Hydroxyapatite (HA) is widely explored as a biocompatible filler to enhance the mechanical and functional properties of glass ionomer cements (GICs). HA of particle sizes 15 µm and 30 µm were added as a fill... Hydroxyapatite (HA) is widely explored as a biocompatible filler to enhance the mechanical and functional properties of glass ionomer cements (GICs). HA of particle sizes 15 µm and 30 µm were added as a filler into a matrix, composed of calcium aluminosilicate GICs and Poly-acrylic acid (PAA) in varying ratios. The tested ratios were Glass:PAA = 2:1 and Glass:HA:PAA = 2:0.5:1 to improve the mechanical strength of a conventional GIC. Mechanical properties, including compressive, flexural, and diametral tensile strength were studied at different setting times. The compressive strength (CS) was improved with hydroxyapatite addition and prolonged setting time while diametral tensile strength (DTS) did not follow any specific trend. The flexural strength (FS) of the composite cement was increased with increasing setting time regardless of the particle size of hydroxyapatite. The FTIR spectra of hydroxyapatite of particle sizes 15 μm and 30 μm are similar but for HA-GIC composites, the FTIR spectra, the peak around 1460 cm−1 are due to C-H and the peak at 1553 cm−1 is due to calcium carboxylate with calcium in a bridging mode which would be an excellent material that chemically bonds to the tooth structure, making it effective for both restorative procedures and cavity fillings. Scanning electron microscopy (SEM) microstructural study revealed that the glass particles were wrenched out, which was a cohesive fracture. The X-ray diffraction (XRD) pattern showed that the hydroxyapatite has a crystalline single-phase, hexagonal structure. The sharp peaks between the 2-theta range of 30 - 40 degrees are the same as in enamel powder. The spectra indicate the pure set cement as amorphous since there is no prominent peak, but with the addition of hydroxyapatite filler, the peak in the 2-theta range of 20 - 35 degrees is ascribed to crystalline apatite structure. The results indicate that incorporating hydroxyapatite into GIC significantly enhances its mechanical properties and structural integrity, suggesting its potential as an improved material for dental and restorative applications. 展开更多
关键词 FTIR SEM EDX XRD Hydroxyapatite (HA) poly-acrylic Acid (PAA) RBCS Biomaterials CS DTS FS
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部