期刊文献+
共找到39,036篇文章
< 1 2 250 >
每页显示 20 50 100
Functionally graded materials based on porous poly(ionic liquid)s:Design strategies and applications
1
作者 Xiao-Yu Han Si-Hua Liu +1 位作者 Su-Yun Zhang Jian-Ke Sun 《Chinese Journal of Structural Chemistry》 2025年第7期86-102,共17页
Functionally graded materials (FGMs) are innovative materials distinguished by gradual variations in composition and structure, offering exceptional properties for diverse applications. Poly(ionic liquid)s (PILs), mer... Functionally graded materials (FGMs) are innovative materials distinguished by gradual variations in composition and structure, offering exceptional properties for diverse applications. Poly(ionic liquid)s (PILs), merging the characteristics of polymers and ionic liquids, have emerged as viable options for the development of FGMs given their tunable skeleton, ionic conductivity, and compatibility with various functional materials. This review highlights the latest advancements in the design strategies of FGMs based on porous PILs, focusing on single and multi-gradient structures. Furthermore, we also highlight their emerging applications in molecular recognition, sensing, adsorption, separation, and catalysis. By exploring the interplay between porosity, ionic functionality, and gradient architecture, this review offers perspectives on the prospects of PIL-based FGMs for tackling global challenges in energy, environment, and healthcare. 展开更多
关键词 Functionally graded materials poly(ionic liquid)s Membranes Bio-inspired materials SENSING
原文传递
Facile construction of heterogeneous dual-ionic poly(ionic liquid)s for efficient and mild conversion of CO_(2)into cyclic carbonates
2
作者 Guanqun Xie Jiaxiang Qiu +5 位作者 Huadeng Li Hongbin Luo Shuo Li Yanbin Zeng Ke Zheng Xiaoxia Wang 《Journal of Environmental Sciences》 2025年第3期177-187,共11页
In the context of peaking carbon dioxide emissions and carbon neutrality,development of feasible methods for converting CO_(2)into high value-added chemicals stands out as a hot subject.In this study,P[D+COO^(−)][Br^(... In the context of peaking carbon dioxide emissions and carbon neutrality,development of feasible methods for converting CO_(2)into high value-added chemicals stands out as a hot subject.In this study,P[D+COO^(−)][Br^(−)][DBUH^(+)],a series of novel heterogeneous dual-ionic poly(ionic liquid)s(PILs)were synthesized readily from 2-(dimethylamino)ethyl methacrylate(DMAEMA),bromo-substituted aliphatic acids,organic bases and divinylbenzene(DVB).The structures,compositions and morphologies were characterized or determined by nuclear magnetic resonance(NMR),thermal gravimetric analysis(TGA),infrared spectroscopy(IR),scanning electron microscopes(SEM),and Brunauer-Emmett-Teller analysis(BET),etc.Application of the P[D+COO^(−)][Br^(−)][DBUH^(+)]series as catalysts in converting CO_(2)into cyclic carbonates showed that P[D+COO^(−)][Br^(−)][DBUH^(+)]-2/1/0.6was able to catalyze epiclorohydrin-CO_(2)cycloaddition the most efficiently.This afforded chloropropylene carbonate(CPC)in 98.4%yield with≥99%selectivity in 24 hr under solvent-and additive-free conditions at atmospheric pressure.Reusability experiments showed that recycling of the catalyst 6 times only resulted in a slight decline in the catalytic performance.In addition,it could be used for the synthesis of a variety of differently substituted cyclic carbonates in good to excellent yields.Finally,key catalytic active sites were probed,and a reasonable mechanism was proposed accordingly.In summary,this work poses an efficient strategy for heterogenization of dual-ionic PILs and provides amild and environmentally benign approach to the fixation and utilization of carbon dioxide. 展开更多
关键词 Dual-ionic poly(ionic liquid)s CO_(2)cycloaddition EPOXIDES Cyclic carbonates Heterogeneous catalysts
原文传递
NIR-light-induced plasmonic liquid metal/ionic liquid/MXene polyurethane films with excellent antifouling and self-healing capabilities
3
作者 Peng Wang Haohang Yuan +5 位作者 Baoluo He Ruisheng Guo Shujuan Liu Qian Ye Feng Zhou Weimin Liu 《Journal of Materials Science & Technology》 2025年第18期1-10,共10页
The potential of organic coatings in antifouling applications has been well-documented.Beyond their exceptional antifouling effects,these coatings should also possess good mechanical strength and self-healing capabili... The potential of organic coatings in antifouling applications has been well-documented.Beyond their exceptional antifouling effects,these coatings should also possess good mechanical strength and self-healing capabilities.Herein,a novel vinyl-based ionic liquid[VEMIM^(+)][Cl^(−)](IL)was in situ polymerized and then assembled onto the surface of liquid metal(GLM)nanodroplets to prepare GLM-IL.Subsequently,Ti_(3)C_(2)Tx(MXene)was modified with GLM-IL nanodroplets to obtain GLM-IL/MXene composite,which acts as an efficient photon captor and photothermal converters and can be further composited with PU film(GLM-IL/MXene/PU).Notably,the composite film significantly increases by∼117℃after exposure to 200 mW/cm2 light irradiation.This increase is attributed to the high photothermal conversion efficiency of MXene and the excellent plasma effect of GLM-IL.Compared with pure PU,the GLM-IL/MXene/PU film shows a 50%improvement in tensile strength and above 85.8%healing efficiency with a local temperature increase.Additionally,the as-prepared GLM-IL/MXene/PU film reveals satisfactory antifouling properties,achieving a 99.7%reduction in bacterial presence and an 80.3%reduction in microalgae.This work introduces a novel coating with antifouling and self-healing properties,offering a wide range of applications in the fields of marine antifouling and biomedicine. 展开更多
关键词 ionic liquid MXene Gallium-based liquid metal ANTIFOULING SELF-HEALING
原文传递
Performance Enhancement of Aquivion-based Ionic Polymer Metal Composites for Cylindrical Actuators
4
作者 Xiaojie Tong Min Yu +3 位作者 Guoxiao Yin Yuwei Wu Chengbo Tian Gengying Wang 《Journal of Bionic Engineering》 2025年第1期1-11,共11页
As a kind of ionic artificial muscle material,Ionic Polymer-Metal Composites(IPMCs)have the advantages of a low drive current,light weight,and significant flexibility.IPMCs are widely used in the fields of biomedicine... As a kind of ionic artificial muscle material,Ionic Polymer-Metal Composites(IPMCs)have the advantages of a low drive current,light weight,and significant flexibility.IPMCs are widely used in the fields of biomedicine,soft robots,etc.However,the displacement and blocking force of the traditional sheet-type Nafion-IPMC need to be improved,and it has the limitation of unidirectional actuation.In this paper,a new type of short side chain Aquivion material is used as the polymer in the IPMC.The cylindrical IPMC is prepared by extrusion technology to improve its actuation performance and realize multi-degree-of-freedom motion.In comparison to the traditional Nafion-IPMC,the ion exchange capacity,specific capacitance,and conductivity of Aquivion-IPMC are improved by 28%,27%,and 32%,respectively,and the displacement and blocking force are improved by 57%and 25%,respectively.The cylindrical actuators can be deflected in eight directions.This indicates that Aquivion,as a polymer membrane for IPMC,holds significant application potential.By designing a cylindrical IPMC electrode distribution,the multi-degree-of-freedom deflection of IPMC can be realized. 展开更多
关键词 ionic polymer-metal composite Equivalent weight Aquivion NAFION Actuation performance
在线阅读 下载PDF
Poly(ionic liquids-acrylic acid)-modified MIL-101(Cr)metal-organic frameworks:Preparation and efficient adsorption of europium
5
作者 Xiayu Liang Aylin M.Deliormanli Qingle Zeng 《Journal of Rare Earths》 2025年第8期1736-1745,I0006,共11页
A novel composite material,Poly(IL-AA)@MIL-101(Cr),combining metal-organic framework,polymeric ionic liquid and acrylic acid,was synthesized for the selective and efficient adsorption of rare earths europium(Ⅲ)(Eu3+)... A novel composite material,Poly(IL-AA)@MIL-101(Cr),combining metal-organic framework,polymeric ionic liquid and acrylic acid,was synthesized for the selective and efficient adsorption of rare earths europium(Ⅲ)(Eu3+).Characterization of the materials was carried out using techniques such as X-ray diffraction(XRD),Fourier transform infrared(FTIR),scanning electron microscopy-energy dispersive X-ray spectroscopy(SEM-EDS),thermogravimetric analysis(TGA)and Brunauer-Emmett-Teller(BET).The results demonstrate successful incorporation of the polymeric ionic liquid onto the material surface while preserving the crystal structure and mo rphology of MIL-101(Cr).Adsorption experiments were conducted to explore parameters including equilibrium pH,initial Eu3+concentration,and duration,with comprehensive analyses of adsorption kinetics,isotherms,and mechanisms.Findings reveal that Poly(IL1-AA)@MIL-101(Cr),Poly(IL3-AA)@MIL-101(Cr),and Poly(IL5-AA)@MIL-101(Cr)achieve adsorption equilibrium for Eu3+at approximately 9 h with an equilibrium pH of 6.2.The adso rption of Eu^(3+)predominantly follows a pseudo-second-order kinetic model and Langmuir isotherm adsorption model.Moreover,the prepared composite material exhibits superior adsorption selectivity for Eu^(3+)over other metal ions in the mixture(K^(+),Mg^(2+),Ni^(2+),Co^(2+),Zn^(2+),La^(3+),and Nd^(3+)).Even after five adsorption-desorption cycles,the composite material maintains satis factory adsorption performance. 展开更多
关键词 Metal-organic framework ionic liquid Acrylic acid Rare earths EUROPIUM ADSORPTION
原文传递
Ionic Electroactive Polymers as Renewable Materials and Their Actuators:A Review
6
作者 Tarek Dayyoub Mikhail Zadorozhnyy +6 位作者 Dmitriy G.Ladokhin Emil Askerov Ksenia V.Filippova Lidiia D.Iudina Elizaveta Iushina Dmitry V.Telyshev Aleksey Maksimkin 《Journal of Renewable Materials》 2025年第7期1267-1292,共26页
The development of actuators based on ionic polymers as soft robotics,artificial muscles,and sensors is currently considered one of the most urgent topics.They are lightweight materials,in addition to their high effic... The development of actuators based on ionic polymers as soft robotics,artificial muscles,and sensors is currently considered one of the most urgent topics.They are lightweight materials,in addition to their high efficiency,and they can be controlled by a low power source.Nevertheless,the most popular ionic polymers are derived from fossil-based resources.Hence,it is now deemed crucial to produce these actuators using sustainable materials.In this review,the use of ionic polymeric materials as actuators is reviewed through the emphasis on their role in the domain of renewablematerials.The reviewencompasses recent advancements inmaterial formulation and performance enhancement,alongside a comparative analysis with conventional actuator systems.It was found that renewable polymeric actuators based on ionic gels and conductive polymers are easier to prepare compared to ionic polymermetal composites.In addition,the proportion of actuator manufacturing utilizing renewable materials rose to 90%,particularly for ion gel actuators,which was related to the possibility of using renewable polymers as ionic or conductive substances.Moreover,the possible improvements in biopolymeric actuators will experience an annual rise of at least 10%over the next decade,correlating with the growth of their market,which aligns with the worldwide goal of reducing global warming.Additionally,compared to fossil-derived polymers,the decomposition rate of renewable materials reaches 100%,while biodegradable fossil-based substances can exceed 60%within several weeks.Ultimately,this review aims to elucidate the potential of ionic polymeric materials as a viable and sustainable solution for future actuator technologies. 展开更多
关键词 Electroactive polymers renewable materials actuators artificial muscles HYDROGELS ionic polymermetal composites
暂未订购
Impregnation of ionic liquid into porous Fe-N-C electrocatalyst to improve electrode kinetics and mass transport for polymer electrolyte fuel cells
7
作者 Siming Li Enyang Sun +8 位作者 Pengfei Wei Wei Zhao Suizhu Pei Ying Chen Jie Yang Huili Chen Xi Yin Min Wang Yawei Li 《Chinese Journal of Catalysis》 2025年第5期277-288,共12页
Developing efficient and stable non-precious metal catalysts is essential for replacing platinum-based catalysts in polymer electrolyte membrane fuel cells(PEMFCs).The transition metal and nitrogen co-doped carbon ele... Developing efficient and stable non-precious metal catalysts is essential for replacing platinum-based catalysts in polymer electrolyte membrane fuel cells(PEMFCs).The transition metal and nitrogen co-doped carbon electrocatalyst(M-N-C)is considered an effective alternative to precious metal catalysts.However,its relatively poor performance in acidic environments has always been a problem plaguing its practical application in PEMFCs.This study presents a sequential deposition methodology for constructing a composite catalytic system of Fe-N-C and ionic liquid(IL),which exhibits improved performance at both half-cell and membrane electrode assembly scales.The presence of IL significantly inhibits H_(2)O_(2)production,preferentially promoting the 4e–O_(2)reduction reaction,resulting in improved electrocatalytic activity and stability.Additionally,the enhanced PEMFC performance of IL containing electrodes is a direct result of the improved ionic and reactant accessibility of the pore confined Fe-N-C catalysts where the IL minimizes local resistive transport losses.This study establishes a strategic foundation for the practical utilization of non-precious metal catalysts in PEMFCs and other energy converting technologies. 展开更多
关键词 Fuel cell ELECTROCATALYSIS Oxygen reduction reaction ionic liquid Non-platinum group metal
在线阅读 下载PDF
Polyamide Composite Membranes on Electrospun Nanofibers for Osmotic Enrichment of Ionic Liquids from Aqueous Solutions
8
作者 Yu-Jie Shang Bian-Bian Guo +2 位作者 Hao-Nan Li Yong-Jin Li Jing Yang 《Chinese Journal of Polymer Science》 2025年第5期819-827,共9页
The recovery of ionic liquids(ILs)has attracted growing attention as an indispensable process in“green”industrial applications.Forward osmosis(FO)has proven to be a sustainable method for concentrating the very dilu... The recovery of ionic liquids(ILs)has attracted growing attention as an indispensable process in“green”industrial applications.Forward osmosis(FO)has proven to be a sustainable method for concentrating the very dilute aqueous solutions of ILs at ambient temperature,in which semi-permeable membranes play a vital role in determining the recovery efficiency.Herein,we use interfacial polymerization method to prepare thin-film composite membranes consisting of polyamide skin layer and electrospun nanofibrous substrate with tunable water permeability and IL selectivity for osmotic enrichment of imidazolium ILs from their dilute aqueous solutions through FO process.The resulting FO membrane shows a compact polyamide layer with a thickness of 30-200 nm,guranteeing a high selectivity to ILs and water.Meanwhile,the nanofibrous substrate with large and interconnect pores as well as low tortuosity,providing mechanical and permeable support for the composite membranes.IL structure influences the osmotic pressure difference as well as the interactions with polyamide layer of the membrane and thus determines the whole concentration process.First,the alkyl chain growth augments the osmosis pressure difference between the ILs solution and draw solution,resulting in an enhancement in driving force of water osmosis and IL enrichment.Moreover,alkyl length aggravates external concentration polarization caused by the enhanced adsorption of ILs onto the skin layer via electrostatic and alkyl-πinteractions.Meanwhile,such adsorbed ILs further enhance the IL retention but decrease the reverse salt diffusion.Therefore,imidazolium ILs with varied alkyl lengths are ultimately enriched with a 100-fold increase in concentration from their dilute aqueous solutions with high IL/NaCl rejection and low IL loss.Remarkably,the final concentration of IL with longest alkyl length reaches the highest(6.4 mol·L^(-1)).This work provides the insights in respect to material preparation and process amelioration for IL recovery with high scalability at mild conditions. 展开更多
关键词 Thin-film composite membrane Forward osmosis ionic liquids Interfacial polymerization Electrospun nanofiber
原文传递
Organic Radical-Boosted Ionic Conductivity in Redox Polymer Electrolyte for Advanced Fiber-Shaped Energy Storage Devices
9
作者 Jeong-Gil Kim Jaehyoung Ko +8 位作者 Hyung-Kyu Lim Yerin Jo Hayoung Yu Min Woo Kim Min Ji Kim Hyeon Su Jeong Jinwoo Lee Yongho Joo Nam Dong Kim 《Nano-Micro Letters》 2025年第8期202-218,共17页
Fiber-shaped energy storage devices(FSESDs)with exceptional flexibility for wearable power sources should be applied with solid electrolytes over liquid electrolytes due to short circuits and leakage issue during defo... Fiber-shaped energy storage devices(FSESDs)with exceptional flexibility for wearable power sources should be applied with solid electrolytes over liquid electrolytes due to short circuits and leakage issue during deformation.Among the solid options,polymer electrolytes are particularly preferred due to their robustness and flexibility,although their low ionic conductivity remains a significant challenge.Here,we present a redox polymer electrolyte(HT_RPE)with 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl(HT)as a multi-functional additive.HT acts as a plasticizer that transforms the glassy state into the rubbery state for improved chain mobility and provides distinctive ion conduction pathway by the self-exchange reaction between radical and oxidized species.These synergetic effects lead to high ionic conductivity(73.5 mS cm−1)based on a lower activation energy of 0.13 eV than other redox additives.Moreover,HT_RPE with a pseudocapacitive characteristic by HT enables an outstanding electrochemical performance of the symmetric FSESDs using carbon-based fiber electrodes(energy density of 25.4 W h kg^(−1) at a power density of 25,000 W kg^(−1))without typical active materials,along with excellent stability(capacitance retention of 91.2%after 8,000 bending cycles).This work highlights a versatile HT_RPE that utilizes the unique functionality of HT for both the high ionic conductivity and improved energy storage capability,providing a promising pathway for next-generation flexible energy storage devices. 展开更多
关键词 Redox polymer electrolyte Hydroxy-TEMPO ionic conductivity Self-exchange reaction Fiber-shaped energy storage devices
在线阅读 下载PDF
Polymerized-ionic-liquid-based solid polymer electrolyte for ultra-stable lithium metal batteries enabled by structural design of monomer and crosslinked 3D network
10
作者 Lingwang Liu Jiangyan Xue +14 位作者 Yiwen Gao Shiqi Zhang Haiyang Zhang Keyang Peng Xin Zhang Suwan Lu Shixiao Weng Haifeng Tu Yang Liu Zhicheng Wang Fengrui Zhang Daosong Fu Jingjing Xu Qun Luo Xiaodong Wu 《Materials Reports(Energy)》 2025年第1期61-69,共9页
Solid polymer electrolytes(SPEs)have attracted much attention for their safety,ease of packaging,costeffectiveness,excellent flexibility and stability.Poly-dioxolane(PDOL)is one of the most promising matrix materials ... Solid polymer electrolytes(SPEs)have attracted much attention for their safety,ease of packaging,costeffectiveness,excellent flexibility and stability.Poly-dioxolane(PDOL)is one of the most promising matrix materials of SPEs due to its remarkable compatibility with lithium metal anodes(LMAs)and suitability for in-situ polymerization.However,poor thermal stability,insufficient ionic conductivity and narrow electrochemical stability window(ESW)hinder its further application in lithium metal batteries(LMBs).To ameliorate these problems,we have successfully synthesized a polymerized-ionic-liquid(PIL)monomer named DIMTFSI by modifying DOL with imidazolium cation coupled with TFSI^(-)anion,which simultaneously inherits the lipophilicity of DOL,high ionic conductivity of imidazole,and excellent stability of PILs.Then the tridentate crosslinker trimethylolpropane tris[3-(2-methyl-1-aziridine)propionate](TTMAP)was introduced to regulate the excessive Li^(+)-O coordination and prepare a flame-retardant SPE(DT-SPE)with prominent thermal stability,wide ESW,high ionic conductivity and abundant Lit transference numbers(t_(Li+)).As a result,the LiFePO_(4)|DT-SPE|Li cell exhibits a high initial discharge specific capacity of 149.60 mAh g^(-1)at 0.2C and 30℃with a capacity retention rate of 98.68%after 500 cycles.This work provides new insights into the structural design of PIL-based electrolytes for long-cycling LMBs with high safety and stability. 展开更多
关键词 polymerized ionic liquid Solid polymer electrolyte Structural design Crosslinked 3D network Lithium metal battery
在线阅读 下载PDF
The study of antibacterial activity of cationic poly(β-amino ester)regulating by amphiphilic balance
11
作者 Chong Liu Ling Li +7 位作者 Jiahui Gao Yanwei Li Nazhen Zhang Jing Zang Cong Liu Zhaopei Guo Yanhui Li Huayu Tian 《Chinese Chemical Letters》 2025年第2期304-308,共5页
It is well known that cationic polymers have excellent antimicrobial capacity accompanied with high biotoxicity,to reduce biotoxicity needs to decrease the number of cationic groups on polymers,which will influence an... It is well known that cationic polymers have excellent antimicrobial capacity accompanied with high biotoxicity,to reduce biotoxicity needs to decrease the number of cationic groups on polymers,which will influence antimicrobial activity.It is necessary to design a cationic polymer mimic natural antimicrobial peptide with excellent antibacterial activity and low toxicity to solve the above dilemma.Here,we designed and prepared a series of cationic poly(β-amino ester)s(PBAEs)with different cationic contents,and introducing hydrophobic alkyl chain to adjust the balance between antimicrobial activity and biotoxicity to obtain an ideal antimicrobial polymer.The optimum one of synthesized PBAE(hydrophilic cationic monomer:hydrophobic monomer=5:5)was screened by testing cytotoxicity and minimum inhibitory concentration(MIC),which can effectively kill S.aureus and E.coli with PBAE concentration of15μg/m L by a spread plate bacteriostatic method and dead and alive staining test.The way of PBAE killing bacterial was destroying the membrane like natural antimicrobial peptide observed by scanning electron microscopy(SEM).In addition,PBAE did not exhibit hemolysis and cytotoxicity.In particular,from the result of animal tests,the PBAE was able to promote healing of infected wounds from removing mature S.aureus and E.coli on the surface of infected wound.As a result,our work offers a viable approach for designing antimicrobial materials,highlighting the significant potential of PBAE polymers in the field of biomedical materials. 展开更多
关键词 Antimicrobial Cationic polymers poly(β-amino ester)s Michael addition polymerization Amphiphilic balance
原文传递
Electrochemical Properties of PP13TFSI-LiTFSI-P(VdF-HFP) Ionic Liquid Gel Polymer Electrolytes 被引量:1
12
作者 杨培霞 刘磊 +1 位作者 侯俊 张锦秋 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2013年第4期439-444,J0002,共7页
N-Methyl-N-propylpiperidiniumbis(trifluoromethanesulfonyl)imide (PP13TFSI), bis(triflu- oromethanesulfonyl)imide lithium salt (LiTFSI), and poly(vinylidene difluoride-co- hexafluoropropylene) (P(VdF-HFP)... N-Methyl-N-propylpiperidiniumbis(trifluoromethanesulfonyl)imide (PP13TFSI), bis(triflu- oromethanesulfonyl)imide lithium salt (LiTFSI), and poly(vinylidene difluoride-co- hexafluoropropylene) (P(VdF-HFP)) were mixed and made into ionic liquid gel polymer electrolytes (ILGPEs) by solution casting. The morphology of ILGPEs was observed by scanning electron microscopy. It was found that the ILGPE had a loosened structure with liquid phase uniformly distributed. The ionic conductivity, lithium ion transference num- bet and electrochemical window were measured by electrochemical impedance spectroscopy, chronoamperometric and linear sweep voltammetry. The ionic conductivity and lithium ion transference number of this ILGPE reached 0.79 mS/cm and 0.71 at room temperature, and the electrochemical window was 0 to 5.1 V vs. Li+/Li. Battery tests indicated that the ILGPE is stable when being operated in Li/LiFePO4 batteries. The discharge capacity maintained at about 135, 117, and 100 mAh/g at 30, 75, and 150 mA/g rates, respectively. The capacity retentions were almost 100% after 100 cycles without little capacity fading. 展开更多
关键词 Lithium ion battery ionic liquid polymer electrolyte N-Methyl-N-propylpiperidiniumbis(trifluoromethanesulfonyl)imide poly(vinylidene difluoride-co-hexafluoropropylene)
在线阅读 下载PDF
Synthesis of Star Polymeric Ionic Liquids and Use as the Stabilizers for High Internal Phase Emulsions 被引量:1
13
作者 qi-jing chen 安泽胜 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2017年第1期54-65,共12页
A series of well-defined core cross-linked star (CCS) polymeric ionic liquids (PILs) were synthesized via a three- step approach. First, the styrenic imidazole-based CCS polymer (S-PVBnIm) was prepared by the RA... A series of well-defined core cross-linked star (CCS) polymeric ionic liquids (PILs) were synthesized via a three- step approach. First, the styrenic imidazole-based CCS polymer (S-PVBnIm) was prepared by the RAFT-mediated heterogeneous polymerization in a water/ethanol solution, followed by the quaternization of S-PVBnIm with bromoalkanes and anion exchange. The CCS polymers were characterized by gel permeation chromatography (GPC), nuclear magnetic resonance (NMR) spectroscopy, Fourier transform infrared spectroscopy (FTIR), thermal gravimetric analysis (TGA), and differential scanning calorimetry (DSC). The obtained CCS polymers were used as the effective emulsifiers for oil-in-water high internal phase emulsions (HIPEs). Multiple oils with different polarity including n-dodecane, undecanol, toluene and octanol were emulsified using 0.5 wt% S-PVBnIm aqueous solution under the acidic condition to form HIPEs with long-term stabilities. The excellent emulsification properties of CCS PILs were demonstrated by HIPE formation for a variety of oils. The properties of HIPEs in terms of emulsion type and oil droplet size were characterized by the confocal laser scanning microscopy (CLSM). The intriguing capability of CCS PILs to stabilize HIPEs of various oils holds great potentials for the practical applications. 展开更多
关键词 Star polymers poly(ionic liquids) Emulsions
原文传递
Nano-porous Composites Based on Liquid: Synthesis, Characterization, Esterification Heteropolyacid Functionalized Ionic and Catalytic Performance in 被引量:1
14
作者 周夫东 储伟 +1 位作者 戴晓雁 罗仕忠 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2010年第4期473-478,I0002,共7页
Fhnctionalized ionic liquid samples (bmim-PW12) were synthesized by 1-butyl-3-methyl- imidazolium bromide (bmimBr) and 12-phosphotungstic heteropolyacid (PW12). The samples were annealed at 100-450 ℃ and were c... Fhnctionalized ionic liquid samples (bmim-PW12) were synthesized by 1-butyl-3-methyl- imidazolium bromide (bmimBr) and 12-phosphotungstic heteropolyacid (PW12). The samples were annealed at 100-450 ℃ and were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscope, thermal gravity-DTG, brunauer emmett teller, and NHa-temperature programmed desorption. The results showed that the bmim-PW12 samples were crystal and maintained intact Keggin structure. The organic parts of those samples were partly decomposed at a temperature more than 350 ℃. The sample annealed at 400 ℃ exhibited nano-porous structure, strong acidity, and excellent catalytic activity on the esterification of n-butanol with acetic acid. The higher ester yield was obtained when the mass ratio of catalyst over the reactants amount was 5% for bmim-PW12 catalyst annealed at 400 ℃. 展开更多
关键词 ionic liquid 1-Butyl-3-methyl-imidazolium bromide Phosphotungstic heteropolyacid Annealing treatment ESTERIFICATION
在线阅读 下载PDF
Wet-spun poly(ionic liquid)-graphene hybrid fibers for high performance all-solid-state flexible supercapacitors 被引量:6
15
作者 Karthikeyan Gopalsamy Qiuyan Yang +3 位作者 Shengying Cai Tieqi Huang Zhengguo Gao Chao Gao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第7期104-110,共7页
It is crucial to develop flexible and wearable electronic devices that have attracted tremendous interest due to their merits on compactness,flexibility and high capacitive properties.Herein we report the continuously... It is crucial to develop flexible and wearable electronic devices that have attracted tremendous interest due to their merits on compactness,flexibility and high capacitive properties.Herein we report the continuously ordered macroscopic poly(ionic liquid)-graphene fibers by wet spinning method via liquid crystal assembly for supercapacitor application.The fabricated all-solid-state supercapacitors exhibited a high areal capacitance(268.2 mF cm 2)and volumetric capacitance(204.6 F cm 3)with an outstanding areal energy density(9.31μWh cm-2)and volumetric energy density(8.28 mWh cm-3).The fiber supercapacitors demonstrated exceptional cycle life for straight electrodes of about 10,000 cycles(94.2%capacitance retention)and flexibility at different angles(0°,45°,90°,180°)along with a good flexible cycling stability after 6000 cycles(92.7%capacitance retention).To date,such a novel poly(ionic liquid)-graphene fiber supercapacitors would be a new platform in real-time flexible electronics. 展开更多
关键词 GRAPHENE fiber poly(ionic liquid) WET spinning SUPERCAPACITORS Flexibility
在线阅读 下载PDF
Ionic Liquid/Poly(ionic liquid)-based Semi-solid State Electrolytes for Lithium-ion Batteries 被引量:8
16
作者 Deng-Zhou Zhang Yong-Yuan Ren +2 位作者 Yin Hu Liang Li Feng Yan 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2020年第5期506-513,I0006,共9页
Ionic liquids(ILs)have appeared as the most promising electrolytes for lithium-ion batteries,owing to their unique high ionic conductivity,chemical stability and thermal stability properties.Poly(ionic liquid)s(PILs)w... Ionic liquids(ILs)have appeared as the most promising electrolytes for lithium-ion batteries,owing to their unique high ionic conductivity,chemical stability and thermal stability properties.Poly(ionic liquid)s(PILs)with both IL-like characteristic and polymer structure are emerging as an alternative of traditional electrolyte.In this review,recent progresses on the applications of IL/PIL-based semi-solid state electrolytes,including gel electrolytes,ionic plastic crystal electrolytes,hybrid electrolytes and single-ion conducting electrolytes for lithium-ion batteries are discussed. 展开更多
关键词 ionic liquids poly(ionic liquid)s Semi-solid state electrolytes Lithium-ion batteries
原文传递
Polystyrene-supported chloroaluminate ionic liquid as a new heterogeneous Lewis acid catalyst for Knoevenagel condensation 被引量:5
17
作者 Kaveh Parvanak Boroujeni Mina Jafarinasab 《Chinese Chemical Letters》 SCIE CAS CSCD 2012年第9期1067-1070,共4页
Non-hygroscopic polystyrene-supported chloroaluminate ionic liquid was prepared from the reaction of Merrifield resin with 1- methylimidazole followed by reaction with aluminum chloride. This Lewis acidic ionic liquid... Non-hygroscopic polystyrene-supported chloroaluminate ionic liquid was prepared from the reaction of Merrifield resin with 1- methylimidazole followed by reaction with aluminum chloride. This Lewis acidic ionic liquid is environmentally friendly heterogeneous catalyst for the Knoevenagel condensation of aromatic and aliphatic aldehydes with ethyl cyanoacetate. The catalyst is sta^le (as a bench top catalyst) and reusable. 展开更多
关键词 ionic liquids Imidazolium chloroaluminate salts polymer-supported ionic liquids Knoevenagel condensation
原文传递
Depolymerization of polyamide 6 in hydrophilic ionic liquids 被引量:7
18
作者 Akio Kamimura Yuto Shiramatsu Takuji Kawamoto 《Green Energy & Environment》 SCIE CSCD 2019年第2期166-170,共5页
Polyamide 6 underwent an efficient depolymerization in hydrophilic ionic liquids under microwave irradiation at 300C. The depolymerization completed within 60 min. Caprolactam was readily separated by simple extractio... Polyamide 6 underwent an efficient depolymerization in hydrophilic ionic liquids under microwave irradiation at 300C. The depolymerization completed within 60 min. Caprolactam was readily separated by simple extraction procedure and the ionic liquids were recovered and reused for several times. Addition of catalytic amounts of DMAP(N,N-dimethylaminopyridine) promoted the depolymerization effectively.The present improved procedure provides a method to avoid direct distillation procedure, which consumes energy for the separation of caprolactam from ionic liquids. Although some contamination of ionic liquids was observed, the present procedure provides a new possibility for the use of ionic liquids for plastic chemical recycling from the viewpoint of development of an energy-saving methodology. Use of solubility switchable ionic liquids is also examined to explore a possibility for better separation although depolymerization did not work well. 展开更多
关键词 CHEMICAL RECYCLING polyamides CHEMICAL conversion ionic liquids
在线阅读 下载PDF
Swelling acidic poly(ionic liquid)s as efficient catalysts for the esterification of cyclohexene and formic acid 被引量:7
19
作者 Xin Wang Sanguan Ma +3 位作者 Bihua Chen Jingshun Zhang Yongya Zhang Guohua Gao 《Green Energy & Environment》 SCIE CSCD 2020年第2期138-146,共9页
Acidic poly(ionic liquid)s(PILs)with swelling ability were synthesized by free radical copolymerization of N-vinylimidazolium ionic liquids,divinylbenzene(DVB)and sodium acrylate(NaAA),and further acidification by sul... Acidic poly(ionic liquid)s(PILs)with swelling ability were synthesized by free radical copolymerization of N-vinylimidazolium ionic liquids,divinylbenzene(DVB)and sodium acrylate(NaAA),and further acidification by sulfuric acid.The swelling ability of acidic PILs was greatly affected by cross-linker content and chain length of 3-alkyl-substituents on imidazolium.Cross-linked network structures could be observed from the cryogenic scanning electron microscopy(cryo-SEM)images of the swollen acidic PILs in formic acid.Acidic PILs with network structures in swollen state exhibited excellent activities in the esterification of cyclohexene and formic acid,and the catalytic activities were in positive correlation with their swelling abilities.Acidic PIL with 3-octyl-substituent and 2.5 mol%DVB(PIL-C8-2.5DVB-HSO4)had the highest swelling ability in formic acid and exhibited comparable catalytic activities with homogeneous catalysts such as sulfuric acid and p-toluenesulfonic acid. 展开更多
关键词 Acidic poly(ionic liquid)s SWELLING ESTERIFICATION CYCLOHEXENE
在线阅读 下载PDF
Application of ionic liquids as a catalyst in the synthesis of polyvinyl butyral(PVB) polymer 被引量:6
20
作者 Xi-Xi Qin Zhi-Lin Cheng 《Chinese Chemical Letters》 SCIE CAS CSCD 2016年第1期145-148,共4页
Polyvinyl butyral(PVB) polymer was successfully synthesized using ionic liquid(IL) catalyst. The synthesis of PVB was achieved by acetalization of polyvinyl alcohol(PVA) and butyraldehyde(BA) in the presence o... Polyvinyl butyral(PVB) polymer was successfully synthesized using ionic liquid(IL) catalyst. The synthesis of PVB was achieved by acetalization of polyvinyl alcohol(PVA) and butyraldehyde(BA) in the presence of [HMIM]~+HSO_4^-IL catalyst. The FT-IR,~1H NMR, DSC, GPC and SEM characterizations were used to analyze the structure and properties of PVB. The effects of the concentration of PVA in water and the number of reuse cycles on the acetalization degree were investigated. The results indicated that the maximum acetalization degree of PVB obtained using [HMIM]~+HSO_4^-IL catalyst was up to 72%. The comparison of the commercial PVB and the PVB obtained using [HMIM]~+HSO_4^-IL catalyst showed that the self-made PVB has a larger molecular weight, higher viscosity, and higher acetalization degree than the commercial PVB. 展开更多
关键词 ionic liquids CATALYST PVB Acetalization degree
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部