期刊文献+
共找到34,215篇文章
< 1 2 250 >
每页显示 20 50 100
Soil colloids can significantly enhance spreading of polybromodiphenyl ethers in groundwater by serving as an effective carrier 被引量:1
1
作者 Lin Duan Min Li +1 位作者 Jiameng Liu Wei Chen 《Journal of Environmental Sciences》 2025年第1期93-100,共8页
Polybromodiphenyl ethers(PBDEs),the widely used flame retardants,are common contaminants in surface soils at e-waste recycling sites.The association of PBDEs with soil colloids has been observed,indicating the potenti... Polybromodiphenyl ethers(PBDEs),the widely used flame retardants,are common contaminants in surface soils at e-waste recycling sites.The association of PBDEs with soil colloids has been observed,indicating the potential risk to groundwater due to colloid-facilitated transport.However,the extent to which soil colloidsmay enhance the spreading of PBDEs in groundwater is largely unknown.Herein,we report the co-transport of decabromodiphenyl ester(BDE-209)and soil colloids in saturated porous media.The colloids released froma soil sample collected at an e-waste recycling site in Tianjin,China,contain high concentration of PBDEs,with BDE-209 being the most abundant conger(320±30 mg/kg).The colloids exhibit relatively high mobility in saturated sand columns,under conditions commonly observed in groundwater environments.Notably,under all the tested conditions(i.e.,varying flow velocity,pH,ionic species and ionic strength),the mass of eluted BDE-209 correlates linearly with that of eluted soil colloids,even though the mobility of the colloids varies markedly depending on the specific hydrodynamic and solution chemistry conditions involved.Additionally,the mass of BDE-209 retained in the columns also correlates strongly with themass of retained colloids.Apparently,the PBDEs remain bound to soil colloids during transport in porous media.Findings in this study indicate that soil colloidsmay significantly promote the transport of PBDEs in groundwater by serving as an effective carrier.This might be the reason why the highly insoluble and adsorptive PBDEs are found in groundwater at some PBDE-contaminated sites. 展开更多
关键词 polybromodiphenyl ethers Soil colloids E-waste recycling sites GROUNDWATER Facilitated transport
原文传递
Highly stable side-chain-type cardo poly(aryl ether ketone)s membranes for vanadium flow battery 被引量:1
2
作者 Ziming Zhao Qing Dai +6 位作者 Sihan Huang Wenjing Lu Yaohan Chen Jifu Zheng Suobo Zhang Shenghai Li Xianfeng Li 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第3期167-170,共4页
Vanadium flow batteries(VFBs)have drawn considerable attention as an emerging technology for largescale energy storage systems(ESSs).One of the pivotal challenges is the availability of eligible ion exchange membranes... Vanadium flow batteries(VFBs)have drawn considerable attention as an emerging technology for largescale energy storage systems(ESSs).One of the pivotal challenges is the availability of eligible ion exchange membranes(ICMs)that provide high ion selectivity,proton conductivity,and stability under rigorous condition.Herein,a‘side-chain-type’strategy has been employed to fabricate highly stable phenolphthalein-based cardo poly(arylene ether ketone)s(PAEKs)membrane with low area resistance(0.058Ωcm^(2)),in which flexible alkyl spacers effectively alleviated inductive withdrawing effect from terminal ion exchange groups thus enabling a stable backbone.The assembled VFBs based on PAEKs bearing pendent alkyl chain terminated with quaternary ammonium(Q-PPhEK)demonstrated an energy efficiency above 80%over 700 cycles at 160 mA/cm^(2).Such a remarkable results revealed that the side-chain-type strategy contributed to enhancing the ICMs stability in strong oxidizing environment,meanwhile,more interesting backbones would be woken with this design engaging in stable ICMs for VFBs. 展开更多
关键词 Vanadium flow battery Energy storage technology Ion exchange membrane Ion transport mechanism poly(arylene ether ketone)s(PAEKs)
原文传递
Molding of polyether ether ketone(PEEK)and its composites:a review 被引量:5
3
作者 Zhengchuan GUO Junjie HE +4 位作者 Ruoxiang GAO Yifeng PAN Chengqian ZHANG Jianzhong FU Peng ZHAO 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2024年第10期788-823,共36页
Over the last half-century,polyether ether ketone(PEEK)has emerged as a widely adopted thermoplastic polymer,primarily due to its lower density,exceptional mechanical properties,high-temperature and chemical resistanc... Over the last half-century,polyether ether ketone(PEEK)has emerged as a widely adopted thermoplastic polymer,primarily due to its lower density,exceptional mechanical properties,high-temperature and chemical resistance,and biocompatibility.PEEK and its composites have found extensive applications across various fields,including machinery,aerospace,military equipment,electronics,and biomedicine,positioning themselves as promising substitutes for traditional metal structures.Nevertheless,achieving optimal performance and functional molding of PEEK and its composites presents a formidable challenge,given their inherent characteristics,such as semi-crystallinity,high melting temperature,heightened viscosity,low dielectric coefficient,and hydrophobic properties.In this paper,we present a comprehensive review of the molding methods and processes of PEEK and its composites,including extrusion molding,hot compression molding,injection molding,and 3D printing.We also introduce typical innovative applications within the fields of mechanics,electricity,and biomedicine while elucidating methodologies that leverage the distinctive advantages of PEEK and its composites.Additionally,we summarize research findings related to manipulating the properties of PEEK and its composites through the optimization of machine parameters,process variables,and material structural adjustments.Finally,we contemplate the prevailing development trends and outline prospective avenues for further research in the advancement and molding of PEEK and its composites. 展开更多
关键词 polyether ether ketone(PEEK) COMPOSITES Extrusion molding Hot compression molding Injection molding 3D printing
原文传递
Investigating the Absorption and Desorption Behavior of Methylene Chloride in the Poly(aryl ether ketone) Film with Different Crystallinities
4
作者 Hong-Ru Yang Jin-Dong Zhang +3 位作者 Dong-Ting Gao Gang Liu Chun-Hai Chen Jia-Nan Yao 《Chinese Journal of Polymer Science》 SCIE EI CAS CSCD 2024年第2期239-246,I0009,共9页
Poly(aryl ether keton e)(PAEK) films with different crystallinities were obtained by controlling the cooling rate,which were subjected to the absorption and desorption of methylene chloride(CH_(2)Cl_(2)).We employed a... Poly(aryl ether keton e)(PAEK) films with different crystallinities were obtained by controlling the cooling rate,which were subjected to the absorption and desorption of methylene chloride(CH_(2)Cl_(2)).We employed attenuated total reflection Fourier transform infrared(ATR-FTIR)spectroscopy analyses to investigate the diffusion behavior of CH_(2)Cl_(2) in PAEK films with different crystallinities.According to the Fickian diffusion model,the calculated diffu sion coefficients of CH_(2)Cl_(2) in PAEK films were observed to decrease with increasing crystallinity.The effect of CH_(2)Cl_(2)absorption and desorption on the mechanical properties of PAEK films with different crystallinity was further analyzed using tensile tests.The tensile tests exhibited that CH_(2)Cl_(2) has two concurrent effects:plasticization and solvent-induced crystallization.Differential scanning calorimetry(DSC) and wide-angle X-ray diffraction(WXRD) techniques further confirmed solvent-induced crystallization behavior.The results would be beneficial to understand the solvent resistance of PAEK materials and consequently provide the practical application conditions of PAEK with a theoretical basis. 展开更多
关键词 poly(aryl ether ketone) Diffusion behavior Infrared spectra Solvent-induced crystallization Mechanical properties
原文传递
Sustainable compression-molded bamboo fibers/poly(lactic acid)green composites with excellent UV shielding performance 被引量:1
5
作者 Binqi Fei Haiyan Yang +8 位作者 Jing Yang Dawei Wang Hua Guo Hua Hou Saad Melhi Ben Bin Xu Hamdy Khamees Thabet Zhanhu Guo Zhengjun Shi 《Journal of Materials Science & Technology》 2025年第2期247-257,共11页
The increasing deployment of electronics in everyday life has generated great concerns regarding the effective disposal of waste from these components.Here,we focused on a facile sustainable and economical strategy to... The increasing deployment of electronics in everyday life has generated great concerns regarding the effective disposal of waste from these components.Here,we focused on a facile sustainable and economical strategy to provide ideas for this issue.This strategy relied on using appropriate mechanical treatment and sodium lignosulfonate coating to improve the dispersion and interfacial compatibility of bamboo fibers in poly(lactic acid).By optimising the particle size and concentration of sodium lignosulphonate,high value-added and green composites were prepared using sectional pressurization with a venting procedure.The treated composite displayed an ultra-smooth surface(roughness of 0.592 nm),impressive transient properties(disintegration and degradation behaviour after 30 d),and outstanding ultraviolet(UV)shielding properties(100%).These properties hold the promise of being an excellent substrate for electronic devices,especially for high-precision processing,transient electronics,and UV damage prevention.The satisfactory interfacial compatibility of the composites was confirmed by detailed characterisation regarding the related physicochemical properties.This investigation offers a sustainable approach for producing high value-added green composites from biomass and biomass-derived materials. 展开更多
关键词 Bamboo fibers poly(lactic acid) Interfacial compatibility Sodium lignosulfonate
原文传递
Peptide-mimicking poly(2-oxazoline)displaying potent antibacterial and antibiofilm activities against multidrug-resistant Gram-positive pathogenic bacteria 被引量:1
6
作者 Zihao Cong Zi Yan +7 位作者 Ximian Xiao Longqiang Liu Zhengjie Luo Jingcheng Zou Minzhang Chen Yueming Wu Min Zhou Runhui Liu 《Journal of Materials Science & Technology》 2025年第11期233-244,共12页
The rising prevalence of drug-resistant Gram-positive pathogens,particularly methicillin-resistant Staphy-lococcus aureus(MRSA)and vancomycin-resistant Enterococci(VRE),poses a substantial clinical challenge.Biofilm-a... The rising prevalence of drug-resistant Gram-positive pathogens,particularly methicillin-resistant Staphy-lococcus aureus(MRSA)and vancomycin-resistant Enterococci(VRE),poses a substantial clinical challenge.Biofilm-associated infections exacerbate this problem due to their inherent antibiotic resistance and complex structure.Current antibiotic treatments struggle to penetrate biofilms and eradicate persister cells,leading to prolonged antibiotic use and increased resistance.Host defense peptides(HDPs)have shown promise,but their clinical application is limited by factors such as enzymatic degradation and difficulty in largescale preparation.Synthetic HDP mimics,such as poly(2-oxazoline),have emerged as effective alter-natives.Herein,we found that the poly(2-oxazoline),Gly-POX_(20),demonstrated rapid and potent activity against clinically isolated multidrug-resistant Gram-positive strains.Gly-POX_(20) showed greater stability under physiological conditions compared to natural peptides,including resistance to protease degradation.Importantly,Gly-POX_(20) inhibited biofilm formation and eradicated mature biofilm and demonstrated superior in vivo therapeutic efficacy to vancomycin in a MRSA biofilm-associated mouse keratitis model,suggesting its potential as a novel antimicrobial agent against drug-resistant Gram-positive bacteria,especially biofilm-associated infections. 展开更多
关键词 poly(2-oxazoline)s Host defense peptide ANTIBIOFILM MRSA DRUG-RESISTANCE
原文传递
泛素化和磷酸化修饰介导poly(I:C)调控巨噬细胞脂质代谢
7
作者 夏宁 苏建国 《水产学报》 北大核心 2025年第11期102-113,共12页
【目标】确定泛素化、磷酸化以及N/O-糖基化修饰是否参与dsRNA病毒诱导的脂质代谢过程。【方法】通过percoll密度梯度离心的方式分离出草鱼头肾原代巨噬细胞,使用poly(I:C)刺激模拟dsRNA病毒的感染;利用蛋白质谱与修饰组学技术对刺激前... 【目标】确定泛素化、磷酸化以及N/O-糖基化修饰是否参与dsRNA病毒诱导的脂质代谢过程。【方法】通过percoll密度梯度离心的方式分离出草鱼头肾原代巨噬细胞,使用poly(I:C)刺激模拟dsRNA病毒的感染;利用蛋白质谱与修饰组学技术对刺激前后差异蛋白进行鉴定、GO功能与KEGG通路富集分析。【结果】脂质代谢相关通路中,泛素化修饰差异蛋白中共计15个蛋白,富集到8个脂质代谢相关通路;磷酸化修饰差异蛋白共计1个蛋白,即cPLA2,富集到1条脂质代谢通路;N/O-糖基化修饰差异蛋白中未检测到主要的脂质代谢通路。进一步对16个差异蛋白表达水平进行分析发现,poly(I:C)刺激后,泛素化修饰水平下调最为显著的蛋白为巨噬细胞ACOX1与HADHA,上调最为显著的蛋白为DAGLα、ABCA1和PLD1,表明ACOX1、HADHA、DAGLα、ABCA1、PLD1及cPLA2可能是poly(I:C)通过蛋白修饰调控脂质代谢的关键蛋白。【结论】本研究揭示了泛素化与磷酸化修饰是病毒的dsRNA调控脂质代谢与脂滴合成的重要手段,强调了脂质代谢相关蛋白修饰在病毒dsRNA调控感染中的重要作用。 展开更多
关键词 草鱼头肾巨噬细胞 脂质代谢 脂滴 poly(I:C) 泛素化 磷酸化 糖基化
原文传递
The synthesis of alcohol ether esters through the catalytic hydrogenation of diethyl oxalate in the Cu-Al systems induced by Al_(2)O_(3) properties
8
作者 Peng Wu Lina Ma +3 位作者 Yu Zheng Li Luo Lihong Su Juntian Li 《日用化学工业(中英文)》 北大核心 2025年第9期1100-1111,共12页
The structure-performance relationship of Cu/Al_(2)O_(3) catalysts in the hydrogenation of diethyl oxalate(DEO)for the synthesis of alcohol ether esters has been investigated by various characterization techniques inc... The structure-performance relationship of Cu/Al_(2)O_(3) catalysts in the hydrogenation of diethyl oxalate(DEO)for the synthesis of alcohol ether esters has been investigated by various characterization techniques including XRD,XPS,N2O titration,and 27Al MAS-NMR.The results showed that when the crystal configurations of Al_(2)O_(3) were the same,increasing the specific surface area could effectively refine the size of copper nanoparticles(Cu NPs),and ultimately improve the conversion of DEO.Meanwhile,the smaller size ofγ-Al_(2)O_(3)(HSAl and SBAl)loaded Cu NPs promotes the reaction towards the deep hydrogenation to produce ethanol(EtOH)and ethylene glycol(EG).Besides,the larger size of Cu NPs on the surface of amorphous Al_(2)O_(3)(HTAl and SolAl)resulted in a lower conversion rate,where ethyl glycolate(Egly)is the main product.Despite there are differences in Al^(3+)ionic coordination in Al_(2)O_(3) with different crystal structures,the experimental data showed that the differences in Al^(3+)ionic coordination did not significantly affect the catalytic performance in the hydrogenation reaction.The formation of alcohol-ether ester chemicals is critically dependent on the interactions between Cu sites and acidic sites.Among them,EG and EtOH were dehydrated to form 2-ethoxyethanol via the SN2 mechanism,while Egly and EtOH were reacted to form ethyl ethoxyacetate(EEA)via the SN2 mechanism.This study provides a theoretical basis for the optimization of the coal-based glycol processes to achieve a diversified product portfolio. 展开更多
关键词 oxalate hydrogenation alcohol ether esters Cu-Al catalyst SN2 mechanism
在线阅读 下载PDF
Ni-Catalyzed Reductive Alkylation of Polyfluoroarenes with Alkyl Halides
9
作者 Xie Shentong Li Wenjing +2 位作者 Liu Yu Lu Xi Shi Renyi 《有机化学》 北大核心 2025年第6期2121-2127,共7页
Polyfluoroarenes represent an essential group of compounds in the fields of medical and material chemistry.It is still a challenge to synthesize alkylated polyfluoroarenes.Herein,a Ni-catalyzed reductive alkylation of... Polyfluoroarenes represent an essential group of compounds in the fields of medical and material chemistry.It is still a challenge to synthesize alkylated polyfluoroarenes.Herein,a Ni-catalyzed reductive alkylation of polyfluoroarenes with alkyl halides under mild conditions is reported.Polyfluoroarenes(3~6 F)can reacted smoothly with a diverse range of alkyl halides,such as primary,secondary,and tertiary alkyl iodides.The efficient formation of C(sp2)—C(sp3)can be achieved through the combination of Ni catalysis and(Bpin)2/K2CO3 as terminal reductant. 展开更多
关键词 nickel catalysis polyfluoroarenes alkyl halides reductive cross-coupling
原文传递
Study on Gold Self-Relay Catalytic Annulation/Nucleophilic Substitu-tion of 1,3-Enyne Acetates with Cyclic Ether Acetals
10
作者 Zhang Congyu Chen Xiaoqi +3 位作者 Meng Fantao Wang Haiying Hao Wen-Juan Jiang Bo 《有机化学》 北大核心 2025年第6期2199-2207,共9页
A new gold self-relay catalytic annulation/nucleophilic substitution cascade of 1,3-enyne acetates with cyclic ether acetals is reported,enabling highly diastereoselective access to cyclic etherified cyclopentenones w... A new gold self-relay catalytic annulation/nucleophilic substitution cascade of 1,3-enyne acetates with cyclic ether acetals is reported,enabling highly diastereoselective access to cyclic etherified cyclopentenones with cyclic quaternary centers in moderate to good yields and>19∶1 dr.This catalysis enables the direct construction of two types of carboncyclic skeletons by adjusting the olefin types of 1,3-enyne acetates.When 1,3-enyne acetates bearing a cyclic alkene unit were used,5~6 fused bicarbocyclic products were diastereoselectively synthesized,whereas the reaction of acyclic 1,3-enyne acetates resulted in five-memebered carbocyclic framework.Notably,cyclic ether acetals are commonly used as protecting groups in traditional multistep organic syntheses,and in this reaction,such reagents serve as electrophilic cyclic ether precursors,achieving new uses for old reagents.The current method demonstrates good functional group compatibility,a broad substrate scope and high diastereoselectivity,providing a new synthetic strategy toward functionalized cyclopentenones. 展开更多
关键词 gold self-relay catalysis Nazarov cyclization nucleophilic substitution 1 3-enyne acetates cyclic ether acetals
原文传递
Poly(C)-结合蛋白1在铁死亡中的研究进展
11
作者 刘甜娜 李阳 +1 位作者 邓雨笛 吴富菊 《基础医学与临床》 2025年第11期1501-1505,共5页
Poly(C)-结合蛋白1(PCBP1)是一种多功能RNA结合蛋白,参与基因转录,选择性修饰、翻译及铁代谢调节等过程。本文通过对PCBP1相关疾病如膀胱癌、头颈癌等的研究报道,探讨PCBP1抑制铁死亡的途径。PCBP1可以减少细胞内亚铁含量抑制铁死亡,包... Poly(C)-结合蛋白1(PCBP1)是一种多功能RNA结合蛋白,参与基因转录,选择性修饰、翻译及铁代谢调节等过程。本文通过对PCBP1相关疾病如膀胱癌、头颈癌等的研究报道,探讨PCBP1抑制铁死亡的途径。PCBP1可以减少细胞内亚铁含量抑制铁死亡,包括抑制铁蛋白自噬,促进铁离子向铁蛋白或铁依赖性酶转移,稳定细胞内不稳定铁池及促进[2Fe-2S]簇生成;PCBP1还可以减少脂质过氧化物的生成,提高细胞对氧化应激的抵抗力来降低细胞内活性氧水平,从而抑制铁死亡。 展开更多
关键词 poly(C)-结合蛋白1(PCBP1) 铁死亡 铁蛋白 脂质过氧化
暂未订购
Research progress on lithium isotopes separation by chemical exchange with crown ethers decorated materials
12
作者 Yi Fang Rui Ha +3 位作者 Jun Sun Xue Liu Xiang Dong Ding Wei Qun Shi 《Green Energy & Environment》 2025年第3期441-451,共11页
The separation of lithium isotopes (^(6)Li and ^(7)Li) is of great importance for the nuclear industry.The lithium amalgam method is the only lithium isotopes separation process in industry,and the extensive use of me... The separation of lithium isotopes (^(6)Li and ^(7)Li) is of great importance for the nuclear industry.The lithium amalgam method is the only lithium isotopes separation process in industry,and the extensive use of mercury has raised concerns about its potential environmental hazards,which have prompted the search for more efficient and environmentally friendly alternatives.Crown ethers can bind lithium ions highly selectively and separate lithium isotopes effectively.A chemical exchange-based lithium isotopes separation method using crown ether decorated materials could be a viable and cost-effective alternative to the lithium amalgam method.In this review,we provide a systematic summary of the recent advances in lithium isotopes separation using crown ethers decorated materials. 展开更多
关键词 Lithium isotopes SEPARATION Crown ether Chemical exchange
在线阅读 下载PDF
Theoretical calculation on degradation mechanism of novel copolyesters under CALB enzyme
13
作者 Yuanyang Ren Zhiwen Cheng +4 位作者 Luwei Cheng Yawei Liu Mingyue Li Tao Yuan Zhemin Shen 《Journal of Environmental Sciences》 2025年第3期242-253,共12页
Poly(butylene succinate-co-furandicarboxylate)(PBSF)and poly(butylene adipateco-furandicarboxylate)(PBAF)are novel furandicarboxylic acid-based biodegradable copolyesters with great potential to replace fossil-derived... Poly(butylene succinate-co-furandicarboxylate)(PBSF)and poly(butylene adipateco-furandicarboxylate)(PBAF)are novel furandicarboxylic acid-based biodegradable copolyesters with great potential to replace fossil-derived terephthalic acid-based copolyesters such as poly(butylene succinate-co-terephthalate)(PBST)and poly(butylene adipate-co-terephthalate)(PBAT).In this study,quantum chemistry techniques after molecular dynamics simulations are employed to investigate the degradationmechanism of PBSF and PBAF catalyzed by Candida antarctica lipase B(CALB).Computational analysis indicates that the catalytic reaction follows a four-step mechanism resembling the ping-pong bibi mechanism,with the initial two steps being acylation reactions and the subsequent two being hydrolysis reactions.Notably,the first step of the hydrolysis is identified as the rate-determining step.Moreover,by introducing single-point mutations to expand the substrate entrance tunnel,the catalytic distance of the first acylation step decreases.Additionally,energy barrier of the rate-determining step is decreased in the PBSF system by site-directed mutations on key residues increasing hydrophobicity of the enzyme’s active site.This study unprecedently show the substrate binding pocket and hydrophobicity of the enzyme’s active site have the potential to be engineered to enhance the degradation of copolyesters catalyzed by CALB. 展开更多
关键词 poly(butylene succinate-co-furandicarboxylate) poly(butylene adipate-co-furandicarboxylate) Candida antarctica lipase B Degradation mechanism Site-directed mutations
原文传递
Enhanced selective oxidation of dimethyl ether to formaldehyde by MoO_(3)-Fe_(2)(MoO_(4))_(3) interaction over iron-molybdate catalysts
14
作者 Yafei Liang Yuji Qi +6 位作者 Mingli Bi Zhen Shi Junju Mu Shushuang Li Jian Zhang Yehong Wang Feng Wang 《Journal of Energy Chemistry》 2025年第7期832-841,共10页
The efficient catalytic conversion of fossil-based low-carbon small molecules to oxygen-containing chemicals is an attractive research topic in the fields of energy and chemical engineering.The selective oxidation of ... The efficient catalytic conversion of fossil-based low-carbon small molecules to oxygen-containing chemicals is an attractive research topic in the fields of energy and chemical engineering.The selective oxidation of dimethyl ether(DME),which is derived from fossil resources,represents a promising approach to producing high-concentration formaldehyde with low energy consumption.However,there is still a lack of catalysts achieving satisfactory conversion of DME with high selectivity for formaldehyde under mild conditions.In this work,an efficient iron-molybdate(FeMo)catalyst was developed for the selective oxidation of DME to formaldehyde.The DME conversion of 84% was achieved with a superior formaldehyde selectivity(77%)at 300℃,a performance that is superior to all previously reported results.In an approximately 550 h continuous reaction,the catalyst maintained a conversion of 64% and a formaldehyde selectivity of 79%.Combined X-ray diffraction(XRD),Transmission electron microscope(TEM),Ultraviolet-visible spectroscopy(UV-Vis),Hydrogen temperature-programmed reduction(H_(2)-TPR),Fourier transform infrared(FT-IR)analyses,along with density functional theory(DFT)calculations,demonstrated that the excellent FeMo catalyst was composed of active Fe_(2)(MoO_(4))_(3)and MoO_(3)phases,and there was an interaction between them,which contributed to the efficient DME dissociation and smooth hydrogen spillover,leading to a superior DME conversion.With the support of DME/O_(2)pulse experiments,in-situ Raman,in-situ Dimethyl ether infrared spectroscopy(DME-IR)and DFT calculation results,a Mars-van Krevelen(MvK)reaction mechanism was proposed:DME was dissociated on the interface between Fe_(2)(MoO_(4))_(3)and MoO_(3)phases to form active methoxy species firstly,and it dehydrogenated to give hydrogen species;the generated hydrogen species smoothly spilled over from Fe_(2)(MoO_(4))_(3)to MoO_(3)enhanced by the interaction between Fe_(2)(MoO_(4))_(3)and MoO_(3);then the hydrogen species was consumed by MoO_(3),leading to a reduction of MoO_(3),and finally,the reduced MoO_(3)was re-oxidized by O_(2),returning to the initial state.These findings offer valuable insights not only for the development of efficient FeMo catalysts but also for elucidating the reaction mechanism involved in the oxidation of DME to formaldehyde,contributing to the optimized utilization of DME derived from fossil resources. 展开更多
关键词 Dimethyl ether Selective oxidation FeMo catalyst FORMALDEHYDE INTERACTION
暂未订购
Improving enzymatic degradation of unpretreated poly(ethylene terephthalate)
15
作者 Yufeng Cao La Xiang +4 位作者 Jasmina Nikodinovic-Runic Veselin Maslak Jian-Ming Jin Chaoning Liang Shuang-Yan Tang 《Chinese Journal of Catalysis》 2025年第4期375-389,共15页
Although the efficiency of poly(ethylene terephthalate)(PET)degradation has been successfully improved by depolymerase engineering,mostly by using Goodfellow-PET(gf-PET)as a substrate,efforts to degrade unpretreated P... Although the efficiency of poly(ethylene terephthalate)(PET)degradation has been successfully improved by depolymerase engineering,mostly by using Goodfellow-PET(gf-PET)as a substrate,efforts to degrade unpretreated PET materials with high crystallinity remain insufficient.Here,we endeavored to improve the degradation capability of a WCCG mutant of leaf-branch compost cutinase(LCC)on a unpretreated PET substrate(crystallinity>40%)by employing iterative saturation mutagenesis.Using this method,we developed a high-throughput screening strategy appropriate for unpretreated substrates.Through extensive screening of residues around the substrate-binding groove,two variants,WCCG-sup1 and WCCG-sup2,showed good depolymerization capabilities with both high-(42%)and low-crystallinity(9%)substrates.The WCCG-sup1 variant completely depolymerized a commercial unpretreated PET product in 36 h at 72℃.In addition to enzyme thermostability and catalytic efficiency,the adsorption of enzymes onto substrates plays an important role in PET degradation.This study provides valuable insights into the structure-function relationship of LCC. 展开更多
关键词 Iterative saturation mutagenesis poly(ethylene terephthalate) depolymerization efficiency Substrate adsorption Leaf-branch compost cutinase Unpretreated poly(ethylene terephthalate)
在线阅读 下载PDF
Metal/H^(+)sites modulation in the decatungstate+Pd/C catalytic system for photocatalytic generation of furfuryl ethyl ether
16
作者 Zheng Li Ying Zeng +2 位作者 Yuanyuan Dong Hongjin Lv Guo-Yu Yang 《Chinese Journal of Catalysis》 2025年第8期137-146,共10页
Furfuryl ethyl ether(FEE)is considered as one of the most important candidates for biofuels due to its high-octane number.However,it is still challenging to produce FEE via the biomass-based route under mild condition... Furfuryl ethyl ether(FEE)is considered as one of the most important candidates for biofuels due to its high-octane number.However,it is still challenging to produce FEE via the biomass-based route under mild conditions.Here,we developed a photoinduced catalytic transfer hydrogenation(CTH)process for the efficient production of FEE through the reduction etherification of furfural(FF)using Na_(4)W_(10)O_(32)(NaDT),Pd/C,and ethanol as the hydrogen atom transfer(HAT)catalyst,hydrogenation catalyst,and the H donor,respectively.Notably,the introduction of brominated benzene(PhBr)as an additive significantly promoted the yield of FEE to 92.7%.A series of experiments and characterization results indicated that the attachment and detachment of Br atoms on Pd/C catalyst surface effectively regulate the balance between H^(+)sites and Pd sites in the NaDT+Pd/C catalytic system.The balance facilitates the preferential acetalization of FF catalyzed by H^(+)sites,followed by hydrogenation to efficiently produce FEE catalyzed by Pd sites.This photoinduced CTH process exhibits good stability and recyclability as well as universality for the transformation of various organic substrates under mild conditions. 展开更多
关键词 Furfuryl ether DECATUNGSTATE Photocatalysis Catalytic transfer hydrogenation Biomass valorization
在线阅读 下载PDF
Recyclable and Degradable Poly(p-dioxanone)-based Copolymer with Enhanced Mechanical Properties by Microphase-separated Interface Crystallization
17
作者 Li Huang Jie Zhang +2 位作者 Si-Chong Chen Gang Wu Yu-Zhong Wang 《Chinese Journal of Polymer Science》 2025年第6期933-945,I0007,共14页
The development of degradable and chemically recyclable polymers is a promising strategy to address pressing environmental and resource-related challenges.Despite significant progress,there is a need for continuous de... The development of degradable and chemically recyclable polymers is a promising strategy to address pressing environmental and resource-related challenges.Despite significant progress,there is a need for continuous development of such recyclable polymers.Herein,PPDOPLLA-PU copolymers were synthesized from poly(p-dioxanone)-diol(PPDO-diol)and poly(L-lactide)-diol(PLLA-diol)by chain extension reaction.The chemical structures and microphase structures of PPDO-PLLA-PU were characterized,and their crystalline properties,mechanical properties,and degradation behaviors were further investigated.Significantly,the distribution of PLLA phase in the copolymer matrix showed a rod-like microstructure with a slight orientation,despite the thermodynamic incompatibility of PPDO and PLLA segments.Moreover,on the basis of this microphase separation,PPDO spherulites can crystallize using the interface of the two phases as nucleation sites.Accordingly,the combined effect of above two contributes to the enhanced mechanical properties.In addition,PPDO-PLLA-PU copolymers have good processability and recyclability,making them valuable for a wide range of applications. 展开更多
关键词 RECYCLABLE DEGRADABLE poly(p-dioxanone) Microphase separation
原文传递
Regulating electric double layer in non-fluorinated ether electrolyte enables high-voltage and low-temperature lithium metal batteries
18
作者 Renfei Zhao Yuanhang Gao +7 位作者 Zuosu Qin Yuelin Li Tao Zhang Anqiang Pan Ning Zhang Renzhi Ma Xiaohe Liu Gen Chen 《Advanced Powder Materials》 2025年第3期110-119,共10页
The poor oxidation stability of ether-based solvents has long been a major challenge limiting their practical application.To enhance the oxidative stability of ether-based electrolytes,the physicochemical properties o... The poor oxidation stability of ether-based solvents has long been a major challenge limiting their practical application.To enhance the oxidative stability of ether-based electrolytes,the physicochemical properties of various glycol dimethyl ethers are screened,and diglyme(G2)is selected as the sole solvent for the electrolyte.Lithium bis(fluorosulfonyl)imide(LiFSI),a highly dissociative salt,is used as the primary salt;while lithium nitrate(LiNO_(3))and lithium difluorophosphate(LiDFP),which have small ionic sizes and strong binding energies,are added as secondary salts.The resulting electrolyte can modulate the electric double layer structure by NO_(3)^(-) and DFP^(-) on the cathode side,leading to an increased Liþconcentration that is originally repelled by the cathode.Additionally,the oxidation stability of the electrolyte is improved and the formed electrode-electrolyte interphase is more uniform and stable,thereby enhancing the electrochemical performance of the cells.As a result,cells assembled with a total of 1 M ternary lithium salts in G2 solvent can operate at high voltage of 4.4 V.The LijjNCM811 cells maintain 80.2%capacity retention after 270 cycles at room temperature,with an average Coulombic efficiency of 99.5%,and exhibit 88.4%capacity retention after 200 cycles at -30℃. 展开更多
关键词 Lithium metal battery ether electrolyte Electric double layer High voltage LOW-TEMPERATURE
在线阅读 下载PDF
Transition-Metal-Free Multicomponent Polyannulations of Dimethyl Sulfoxide,Amines,and Aldehydes toward Poly(phenylquinoline)s
19
作者 Tian-Yu Cheng Jun-Guo Fang +2 位作者 Zhao-Liang Wang Jian-Qing Ding Die Huang 《Chinese Journal of Polymer Science》 2025年第7期1200-1207,共8页
Dimethyl sulfoxide(DMSO)possessing strong solvency and high boiling point is a very important aprotic polar solvent in organic and polymer synthesis.Notably,it is also a useful synthon in organic chemistry.However,the... Dimethyl sulfoxide(DMSO)possessing strong solvency and high boiling point is a very important aprotic polar solvent in organic and polymer synthesis.Notably,it is also a useful synthon in organic chemistry.However,the direct incorporation of DMSO in polymer synthesis remains challenging.In this work,DMSO was successfully converted to nitrogen-containing heterocyclic polymers as a monomer via multicomponent polymerizations(MCPs)with dialdehydes and diamines in the presence of K_(2)S_(2)O_(8)/t-BuOK at 120℃in 6 h.A series of poly(phenylquinoline)s with high M_(w)values(up to 5.11×10^(4))were obtained in satisfactory yields(up to 82%),performing good solubility,good thermal and morphological stability as well as excellent film-forming ability.The thin films of poly(phenylquinoline)s exhibit high refractive index value in a wide wavelength range of 400–1700 nm.Thus,this work not only enriches the family of MCPs but also provides an efficient strategy for the conversion of DMSO into functional polymeric materials that are potentially applicable in diverse areas. 展开更多
关键词 Transition-Metal-Free Multicomponent polymerization poly(phenylquinoline)s
原文传递
Fluorescent Polyurea-Carbon Dots:Preparation,Characterization and Use as Sensor for Doxycycline Detection
20
作者 Xiao-Xia Zhou Yi-Ting Yin +4 位作者 Xiao-Yi Zhang Shu-Sheng Li Xu-Bao Jiang Xiao-Li Zhu Xiang-Zheng Kong 《Chinese Journal of Polymer Science》 2025年第10期1792-1803,共12页
Fluorescent polyurea-carbon dots(PU-CD) were successfully achieved through a co-pyrolysis technique, combining polyurea(PU) with carboxyl-containing carbon dots(PCD) at a temperature of 220 ℃. The PU was fabricated v... Fluorescent polyurea-carbon dots(PU-CD) were successfully achieved through a co-pyrolysis technique, combining polyurea(PU) with carboxyl-containing carbon dots(PCD) at a temperature of 220 ℃. The PU was fabricated via a simple precipitation polymerization process using toluene disocyanate in a water/acetone binary solvent system. PCD was generated by thermal treatment of poly(ethylene glycol)(PEG) at the same elevated temperature. To elucidate the structural characteristics of PU-CD, as well as its precursor components PU and PCD, a comprehensive suite of analytical techniques was employed, including transmission electron microscopy(TEM), Fourier transform infrared spectroscopy(FTIR), nuclear magnetic resonance(NMR), dynamic light scattering(DLS) and X-ray photoelectron spectroscopy(XPS). These analyses confirmed the formation of amide bonds resulting from the reaction between the terminal amines of PU and the carboxyl groups of PCD. An in-depth comparison of the fluorescence properties of PU-CD revealed marked enhancements in fluorescence intensity when contrasted with PU, PEG, and the individual PCD. The research explored the impact of various factors such as concentration, pH in aqueous solutions, and solvent type on the fluorescence emission of these materials, providing valuable insights into their emission mechanisms. It was particularly noteworthy that both PCD and PU-CD exhibited a confined-domain crosslink-enhanced emission effect. Utilizing the aqueous dispersion of PU-CD as a fluorescent probe,the detection of doxycycline(DOX), a long-acting, broad-spectrum, semi-synthetic tetracycline antibiotic, was achieved with a detection limit of 2.9×10^(-7)mol/L. This study introduces a simple, green, and cost-effective fluorescent probe for the detection of DOX, which has significant potential for application in the realms of analytical chemistry and food safety monitoring in the future. 展开更多
关键词 polyUREA poly(ethylene glycol) Carbon dots Doxycycline detection
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部