Optical polarizers,which allow the transmission of specific polarization states,are essential components in modern optical systems.Here,we experimentally demonstrate integrated photonic polarizers incorporating reduce...Optical polarizers,which allow the transmission of specific polarization states,are essential components in modern optical systems.Here,we experimentally demonstrate integrated photonic polarizers incorporating reduced graphene oxide(rGO)films.2D graphene oxide(GO)films are integrated onto silicon waveguides and microring resonators(MRRs)with precise control over their thicknesses and sizes,followed by GO reduction via two different methods including uniform thermal reduction and localized photothermal reduction.We measure devices with various lengths,thicknesses,and reduction degrees of GO films.The results show that the devices with rGO exhibit better performance than those with GO,achieving a polarization-dependent loss of~47 dB and a polarization extinction ratio of~16 dB for the hybrid waveguides and MRRs with rGO,respectively.By fitting the experimental results with theory,it is found that rGO exhibits more significant anisotropy in loss,with an anisotropy ratio over 4 times that of GO.In addition,rGO shows higher thermal stability and greater robustness to photothermal reduction than GO.These results highlight the strong potential of rGO films for implementing high-performance polarization selective devices in integrated photonic platforms.展开更多
Polarimetric imaging enhances the ability to distinguish objects from a bright background by detecting their particular polarization status,which offers another degree of freedom in infrared remote sensing.However,to ...Polarimetric imaging enhances the ability to distinguish objects from a bright background by detecting their particular polarization status,which offers another degree of freedom in infrared remote sensing.However,to scale up by monolithically integrating grating-based polarizers onto a focal plane array(FPA)of infrared detectors,fundamental technical obstacles must be overcome,including reductions of the extinction ratio by the misalignment between the polarizer and the detector,grating line width fluctuations,the line edge roughness,etc.This paper reports the authors’latest achievements in overcoming those problems by solving key technical issues regarding the integration of large-scale polarizers onto the chips of FPAs with individual indium gallium arsenide/indium phosphide(In Ga As/In P)sensors as the basic building blocks.Polarimetric and photovoltaic chips with divisions of the focal plane of 540×4 pixels and 320×256 superpixels have been successfully manufactured.Polarimetric imaging with enhanced contrast has been demonstrated.The progress made in this work has opened up a broad avenue toward industrialization of high quality polarimetric imaging in infrared wavelengths.展开更多
This paper deals with a systematical analysis and an algorithm of attenuation characteristics of a light attenuator combined by n pieces of polarizers (n-LACP) whose extinction ratios are different from each other. ...This paper deals with a systematical analysis and an algorithm of attenuation characteristics of a light attenuator combined by n pieces of polarizers (n-LACP) whose extinction ratios are different from each other. The attenuation ratio expression of a two-LACP is deduced. We find that the monotonic attenuation interval depends on the first polarizer and that the attenuation range depends on the second one. For the three-LACP, a method for obtaining a monotonic attenuation interval is proposed. Moreover, the attenuation ratio expression is demonstrated. Analysis and experiment show that when the initial status of the three-LACP is at the maximum output, if the second or third polarizer rotates alone, the minimum attenuation ratios can reach K2^-1 and K3^-1, respectively, and if the first polarizer rotates, a minimum attenuation ratio of K2^-1K3^-1 can be obtained (K1, K2 and K3 represent the extinction ratios of the three polarizers in turn). Furthermore, the attenuation ratio expression of n-LACP and the relevant attenuation characteristics are proposed. The minimum attenuation ratio of an n-LACP is (K2K3 ... Kn)-1.展开更多
We report depolarizers made of a new kind of scattering depolarization material,named chalcedony,which can make the polarization directions of the photons in the linearly polarized incident light randomly distributed....We report depolarizers made of a new kind of scattering depolarization material,named chalcedony,which can make the polarization directions of the photons in the linearly polarized incident light randomly distributed.With a piece of the chalcedony to a thickness of 3mmf a total transmission higher than 50%and the linear polarization degree tending to zero can be easily obtained.展开更多
Ischemic stroke is a major cause of neurological deficits and high disability rate.As the primary immune cells of the central nervous system,microglia play dual roles in neuroinflammation and tissue repair following a...Ischemic stroke is a major cause of neurological deficits and high disability rate.As the primary immune cells of the central nervous system,microglia play dual roles in neuroinflammation and tissue repair following a stroke.Their dynamic activation and polarization states are key factors that influence the disease process and treatment outcomes.This review article investigates the role of microglia in ischemic stroke and explores potential intervention strategies.Microglia exhibit a dynamic functional state,transitioning between pro-inflammatory(M1)and anti-inflammatory(M2)phenotypes.This duality is crucial in ischemic stroke,as it maintains a balance between neuroinflammation and tissue repair.Activated microglia contribute to neuroinflammation through cytokine release and disruption of the blood-brain barrier,while simultaneously promoting tissue repair through anti-inflammatory responses and regeneration.Key pathways influencing microglial activation include Toll-like receptor 4/nuclear factor kappa B,mitogen-activated protein kinases,Janus kinase/signal transducer and activator of transcription,and phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin pathways.These pathways are targets for various experimental therapies aimed at promoting M2 polarization and mitigating damage.Potential therapeutic agents include natural compounds found in drugs such as minocycline,as well as traditional Chinese medicines.Drugs that target these regulatory mechanisms,such as small molecule inhibitors and components of traditional Chinese medicines,along with emerging technologies such as single-cell RNA sequencing and spatial transcriptomics,offer new therapeutic strategies and clinical translational potential for ischemic stroke.展开更多
In this study,polyacrylic acid(PAA)films were employed as a model system,and a series of PAA films with tunable water wettability was systematically prepared by varying molecular weight and curing temperature.Using at...In this study,polyacrylic acid(PAA)films were employed as a model system,and a series of PAA films with tunable water wettability was systematically prepared by varying molecular weight and curing temperature.Using attenuated total reflectance Fourier-transform infrared spectroscopy(ATR-FTIR),the molecular configurations of surface carboxyl groups(COOH),free carboxyl(COOH_(f))and hydrogen-bonded carboxyl(COOH_(HB),were directly correlated with the polar component of surface energy(γ^(s,p)).By decomposing theγ^(s,p)values of the PAA thin films as a sum of the contributions of COOH_(f)and COOH_(H B),the intrinsic polar component of surface energy of COOH_(H B)(γ_(H B)^(s,p*))was quantified for the first time as 8.34 mN/m,significantly lower than that of COOH_(f)(γ_(f)^(s,p*)=34 mN/m).This result highlights that hydrogen bonding markedly reduces theγ^(s,p),providing a rational explanation for the relatively large water contact angle observed on PAA thin films.Furthermore,it establishes a thermodynamic basis for estimating the fraction of surface COOH_(H B)groups(f H B)from wettability measurements.Further extension of the model to carboxyl-terminated self-assembled monolayers(COOH-SAMs)revealed that surface COOH density(ΣCOOH)critically regulates wetting behavior:whenΣCOOH ranges from 4.30 to 5.25 nm^(-2),COOH groups predominantly exist in a free state and facilitate effective hydration layers,thereby promoting superhydrophilicity.Overall,this study not only establishes a unified thermodynamic framework linking surface COOH configurations to macroscopic wettability,but also validates its universality by extending it to COOH-SAMs systems,thereby providing a unified theoretical framework for the controllable design of hydrophilicity in various COOH-functionalized surfaces.展开更多
Hyperpolarization of nuclear spins is crucial for advancing nuclear magnetic resonance and quantum information technologies,as nuclear spins typically exhibit extremely low polarization at room temperature due to thei...Hyperpolarization of nuclear spins is crucial for advancing nuclear magnetic resonance and quantum information technologies,as nuclear spins typically exhibit extremely low polarization at room temperature due to their small gyromagnetic ratios.A promising approach to achieving high nuclear spin polarization is transferring the polarization of electrons to nuclear spins.The nitrogen-vacancy(NV)center in diamond has emerged as a highly effective medium for this purpose,and various hyperpolarization protocols have been developed.Among these,the pulsed polarization(PulsePol)method has been extensively studied due to its robustness against static energy shifts of the electron spin.In this work,we present a novel polarization protocol and uncover a family of magic sequences for hyperpolarizing nuclear spins,with PulsePol emerging as a special case of our general approach.Notably,we demonstrate that some of these magic sequences exhibit significantly greater robustness compared to the PulsePol protocol in the presence of finite half𝜋pulse duration of the protocol,Rabi and detuning errors.This enhanced robustness positions our protocol as a more suitable candidate for hyper-polarizing nuclear spins species with large gyromagnetic ratios and also ensures better compatibility with high-efficiency readout techniques at high magnetic fields.Additionally,the generality of our protocol allows for its direct application to other solid-state quantum systems beyond the NV center.展开更多
Background:The medicinal material known as Os Draconis(Longgu)originates from fossilized remains of ancient mammals and is widely used in treating emotional and mental conditions.However,fossil resources are nonrenewa...Background:The medicinal material known as Os Draconis(Longgu)originates from fossilized remains of ancient mammals and is widely used in treating emotional and mental conditions.However,fossil resources are nonrenewable,and clinical demand is increasingly difficult to meet,leading to a proliferation of counterfeit products.During prolonged geological burial,static pressure from the surrounding strata severely compromises the microstructural integrity of osteons in Os Draconis,but Os Draconis still largely retains the structural features of mammalian bone.Methods:Using verified authentic Os Draconis samples over 10,000 years old as a baseline,this study summarizes the ultrastructural characteristics of genuine Os Draconis.Employing electron probe microanalysis and optical polarized light microscopy,we examined 28 batches of authentic Os Draconis and 31 batches of counterfeits to identify their ultrastructural differences.Key points for ultrastructural identification of Os Draconis were compiled,and a new identification approach was proposed based on these differences.Results:Authentic Os Draconis exhibited distinct ultrastructural markers:irregularly shaped osteons with traversing fissures,deformed/displaced Haversian canals,and secondary mineral infill(predominantly calcium carbonate).Counterfeits showed regular osteon arrangements,absent traversal fissures,and homogeneous hydroxyapatite composition.Lab-simulated samples lacked structural degradation features.EPMA confirmed calcium carbonate infill in fossilized Haversian canals,while elemental profiles differentiated lacunae types(void vs.mineral-packed).Conclusion:The study established ultrastructural criteria for authentic Os Draconis identification:osteon deformation,geological fissures penetrating bone units,and heterogenous mineral deposition.These features,unattainable in counterfeits or modern processed bones,provide a cost-effective,accurate identification method.This approach bridges gaps in TCM material standardization and supports quality control for clinical applications.展开更多
Auroral kilometric radiation(AKR),a fundamental plasma emission in Earth's magnetosphere,exhibits three characteristic modes:the right-handed extraordinary(R-X),left-handed ordinary(L-O)and left-handed extraordina...Auroral kilometric radiation(AKR),a fundamental plasma emission in Earth's magnetosphere,exhibits three characteristic modes:the right-handed extraordinary(R-X),left-handed ordinary(L-O)and left-handed extraordinary(L-X)modes.The role of AKR in magnetosphere−ionosphere−atmosphere coupling depends sensitively on its wave mode.While previous studies have primarily focused on the dominant R-X mode,we present the first systematic identification of all three modes using a practical polarization analysis method based on Arase satellite observations.This method employs a spin-axis-relative Ratio:when the satellite's spin axis aligns with the background magnetic field,a positive(negative)Ratio indicates the right-handed(left-handed)polarization,with reversal under anti-parallel conditions.Combined polarization-frequency analysis reveals that R-X,L-O,and L-X modes can exist in both dayside and nightside regions,with power spectral densities up to 10^(-6)mV^(2)m^(-2)Hz^(-1).This study resolves long-standing ambiguities in AKR mode classification and has implications for understanding AKR-induced electron dynamics.展开更多
Peripheral nerve injury causes severe neuroinflammation and has become a global medical challenge.Previous research has demonstrated that porcine decellularized nerve matrix hydrogel exhibits excellent biological prop...Peripheral nerve injury causes severe neuroinflammation and has become a global medical challenge.Previous research has demonstrated that porcine decellularized nerve matrix hydrogel exhibits excellent biological properties and tissue specificity,highlighting its potential as a biomedical material for the repair of severe peripheral nerve injury;however,its role in modulating neuroinflammation post-peripheral nerve injury remains unknown.Here,we aimed to characterize the anti-inflammatory properties of porcine decellularized nerve matrix hydrogel and their underlying molecular mechanisms.Using peripheral nerve injury model rats treated with porcine decellularized nerve matrix hydrogel,we evaluated structural and functional recovery,macrophage phenotype alteration,specific cytokine expression,and changes in related signaling molecules in vivo.Similar parameters were evaluated in vitro using monocyte/macrophage cell lines stimulated with lipopolysaccharide and cultured on porcine decellularized nerve matrix hydrogel-coated plates in complete medium.These comprehensive analyses revealed that porcine decellularized nerve matrix hydrogel attenuated the activation of excessive inflammation at the early stage of peripheral nerve injury and increased the proportion of the M2 subtype in monocytes/macrophages.Additionally,porcine decellularized nerve matrix hydrogel negatively regulated the Toll-like receptor 4/myeloid differentiation factor 88/nuclear factor-κB axis both in vivo and in vitro.Our findings suggest that the efficacious anti-inflammatory properties of porcine decellularized nerve matrix hydrogel induce M2 macrophage polarization via suppression of the Toll-like receptor 4/myeloid differentiation factor 88/nuclear factor-κB pathway,providing new insights into the therapeutic mechanism of porcine decellularized nerve matrix hydrogel in peripheral nerve injury.展开更多
Floquet engineering provides a powerful and flexible method for modifying the band structures of quantum materials.While circularly polarized light has been shown to convert curved nodal lines in three-dimensional sem...Floquet engineering provides a powerful and flexible method for modifying the band structures of quantum materials.While circularly polarized light has been shown to convert curved nodal lines in three-dimensional semimetals into Weyl points,such a transformation is forbidden for an isolated straight nodal line.In this work,we uncover a dramatic shift in this paradigm when multiple straight nodal lines intersect.We observe that circularly polarized light not only gaps them into Weyl points but also induces unprecedented surface-state Fermi arcs that extend across the entire surface Brillouin zone and form a linked topological structure.These findings advance our fundamental understanding of light-driven transitions in topological semimetals and unveil a unique Weyl semimetal phase defined by linked Fermi arcs.We discuss potential exotic phenomena arising from this phase,applications of our predictions to spin-split antiferromagnets,and the extension of this Weyl semimetal phase to classical systems.展开更多
The intrinsic pressure framework,which treats self-propelling force as an external force,provides a convenient and consistent description of mechanical equilibrium in active matter.However,direct experimental evidence...The intrinsic pressure framework,which treats self-propelling force as an external force,provides a convenient and consistent description of mechanical equilibrium in active matter.However,direct experimental evidence is still lacking.To validate this framework,here we employ a programmable robotic platform,where a single light-controlled wheeled robot travels in an activity landscape.Our experiments quantitatively demonstrate that the intrinsic pressure difference across the activity interface is balanced by the emerged polarization force.This result unambiguously confirms the theoretical predictions,thus validating the intrinsic pressure framework and laying the experimental foundation for the intrinsic pressure-based mechanical description of dry active matter.展开更多
In conventional higher-order topological insulators(HOTIs),the emergence of topological states can be explained by using the nonzero bulk polarization index.However,corner states emerge in HOTIs with incomplete bounda...In conventional higher-order topological insulators(HOTIs),the emergence of topological states can be explained by using the nonzero bulk polarization index.However,corner states emerge in HOTIs with incomplete boundary unit cells(i.e.,boundary defects)even though the bulk polarization is zero,which challenges the conventional understanding of HOTIs.Here,based on a Kekul´e-distorted honeycomb lattice with incomplete unit cells,we reveal that incomplete unit cells exhibit fractional charges through the analysis of Wannier centers by developing a compensation method and creating the concept of Wannier center domain(WCD)which is the smallest region that one Wannier center occupies.This method compensates for the missing parts of these boundary incomplete unit cells with additional WCDs to make them complete.The compensated WCDs automatically carry the corresponding charge,and this charge together with that of the incomplete unit cell constitutes the total charge of the complete unit cell after compensation.We conclude that the emergence of corner states is attributed to the filling anomaly,which is a fundamental mechanism.Our results refresh the understanding of HOTIs,especially those with structural discontinuities,and provide a novel design for topological states which have application value in producing optical functional devices.展开更多
As a potential adsorption material,it is still a challenge for activated carbon fiber(ACF)in efficient adsorption of ethanol due to its nonpolar surface,which is mainly emitted from the grain drying industry.This stud...As a potential adsorption material,it is still a challenge for activated carbon fiber(ACF)in efficient adsorption of ethanol due to its nonpolar surface,which is mainly emitted from the grain drying industry.This study prepared surface polarity-modified ACF using the heteroatom doping method.The modified ACF possessed a richer array of strongly polar oxygen/nitrogen-containing functional groups(primarily phenolic hydroxyl and lactone groups),a larger specific surface are1,and a more developed micropore structure.The adsorption capacities of ethanol for O-ACF and N-ACF were 4.110 mmol/g and 1.698 mmol/g,respectively,which were 11.3 times and 4.7 times those of unmodified ACF.This was a significant improvement over our previous work(0.363 mmol/g).The improvement of adsorption capacity for the N-ACF was mainly due to the higher specific surface are1,greater number of micropores(more adsorption sites)and abundant existence of defects,whereas,for O-ACF,the improvement mainly relied on the abundant presence of oxygen-containing functional groups on the surface.However,water had a negative effect on the adsorption of ethanol for the modified ACF due to competitive adsorption and the disappearance of capillary condensation.It was further revealed that the adsorption process of ethanol and water was quite different.It obeyed the linear driving force(LDF)model for ethanol adsorption,however,the intraparticle diffusion(IPD)model for water adsorption.展开更多
Parkinson’s disease is characterized by synucleinopathy-associated neurodegeneration.Previous studies have shown that glucagon-like peptide-1(GLP-1)has beneficial effects in a mouse model of Parkinson’s disease indu...Parkinson’s disease is characterized by synucleinopathy-associated neurodegeneration.Previous studies have shown that glucagon-like peptide-1(GLP-1)has beneficial effects in a mouse model of Parkinson’s disease induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine.However,the effect of GLP-1 on intrinsic synuclein malfunction remains unclear.In this study,we investigated the effect of Lactococcus lactis MG1363-pMG36e-GLP-1 on parkinsonism in SncaA53T transgenic mice and explored the underlying mechanisms.Our data showed that Lactococcus lactis MG1363-pMG36e-GLP-1 inhibited dopaminergic neuronal death,reduced pathological aggregation ofα-synuclein,and decreased movement disorders in SncaA53T transgenic mice.Furthermore,Lactococcus lactis MG1363-pMG36e-GLP-1 downregulated lipopolysaccharide-related inflammation,reduced cerebral activation of microglia and astrocytes,and promoted cell survival via the GLP-1 receptor/PI3K/Akt pathway in the substantia nigra.Additionally,Lactococcus lactis MG1363-pMG36e-GLP-1 decreased serum levels of pro-inflammatory molecules including lipopolysaccharide,lipopolysaccharide binding protein,interleukin-1β,and interleukin-6.Gut histopathology and western blotting further revealed that Lactococcus lactis MG1363-pMG36e-GLP-1 increased the expression of gut integrity-related proteins and reduced lipopolysaccharide-related inflammation by reversing gut dysbiosis in SncaA53T transgenic mice.Our findings showed that the beneficial effect of Lactococcus lactis MG1363-pMG36e-GLP-1 on parkinsonism traits in SncaA53T transgenic mice is mediated by microglial polarization and the reversal of dysbiosis.Collectively,our findings suggest that Lactococcus lactis MG1363-pMG36e-GLP-1 is a promising therapeutic agent for the treatment of Parkinson’s disease.展开更多
Polarizers have always been an important optical component for optical engineering and have played an indispensable part of polarization imaging systems.Metasurface polarizers provide an excellent platform to achieve ...Polarizers have always been an important optical component for optical engineering and have played an indispensable part of polarization imaging systems.Metasurface polarizers provide an excellent platform to achieve miniaturization,high resolution,and low cost of polarization imaging systems.Here,we proposed freeform metasurface polarizers derived by adjoint-based inverse design of a full-Jones matrix with gradient-descent optimization.We designed multiple freeform polarizers with different filtered states of polarization(SOPs),including circular polarizers,elliptical polarizers,and linear polarizers that could cover the full Poincarésphere.Note that near-unitary polarization dichroism and the ultrahigh polarization extinction ratio(ER)reaching 50 d B were achieved for optimized circular polarizers.The multiple freeform polarizers with filtered polarization state locating at four vertices of an inscribed regular tetrahedron of the Poincarésphere are designed to form a full-Stokes parameters micropolarizer array.Our work provides a novel approach,we believe,for the design of meta-polarizers that may have potential applications in polarization imaging,polarization detection,and communication.展开更多
Ischemic stroke is a cerebrovascular disease associated with high mortality and disability rates. Since the inflammation and immune response play a central role in driving ischemic damage, it becomes essential to modu...Ischemic stroke is a cerebrovascular disease associated with high mortality and disability rates. Since the inflammation and immune response play a central role in driving ischemic damage, it becomes essential to modulate excessive inflammatory reactions to promote cell survival and facilitate tissue repair around the injury site. Various cell types are involved in the inflammatory response, including microglia, astrocytes, and neutrophils, each exhibiting distinct phenotypic profiles upon stimulation. They display either proinflammatory or anti-inflammatory states, a phenomenon known as ‘cell polarization.’ There are two cell polarization therapy strategies. The first involves inducing cells into a neuroprotective phenotype in vitro, then reintroducing them autologously. The second approach utilizes small molecular substances to directly affect cells in vivo. In this review, we elucidate the polarization dynamics of the three reactive cell populations(microglia, astrocytes, and neutrophils) in the context of ischemic stroke, and provide a comprehensive summary of the molecular mechanisms involved in their phenotypic switching. By unraveling the complexity of cell polarization, we hope to offer insights for future research on neuroinflammation and novel therapeutic strategies for ischemic stroke.展开更多
Neurotoxic astrocytes are a promising therapeutic target for the attenuation of cerebral ischemia/reperfusion injury.Low-density lipoprotein receptor,a classic cholesterol regulatory receptor,has been found to inhibit...Neurotoxic astrocytes are a promising therapeutic target for the attenuation of cerebral ischemia/reperfusion injury.Low-density lipoprotein receptor,a classic cholesterol regulatory receptor,has been found to inhibit NLR family pyrin domain containing protein 3(NLRP3)inflammasome activation in neurons following ischemic stroke and to suppress the activation of microglia and astrocytes in individuals with Alzheimer’s disease.However,little is known about the effects of low-density lipoprotein receptor on astrocytic activation in ischemic stroke.To address this issue in the present study,we examined the mechanisms by which low-density lipoprotein receptor regulates astrocytic polarization in ischemic stroke models.First,we examined low-density lipoprotein receptor expression in astrocytes via immunofluorescence staining and western blotting analysis.We observed significant downregulation of low-density lipoprotein receptor following middle cerebral artery occlusion reperfusion and oxygen-glucose deprivation/reoxygenation.Second,we induced the astrocyte-specific overexpression of low-density lipoprotein receptor using astrocyte-specific adeno-associated virus.Low-density lipoprotein receptor overexpression in astrocytes improved neurological outcomes in middle cerebral artery occlusion mice and reversed neurotoxic astrocytes to create a neuroprotective phenotype.Finally,we found that the overexpression of low-density lipoprotein receptor inhibited NLRP3 inflammasome activation in oxygen-glucose deprivation/reoxygenation injured astrocytes and that the addition of nigericin,an NLRP3 agonist,restored the neurotoxic astrocyte phenotype.These findings suggest that low-density lipoprotein receptor could inhibit the NLRP3-meidiated neurotoxic polarization of astrocytes and that increasing low-density lipoprotein receptor in astrocytes might represent a novel strategy for treating cerebral ischemic stroke.展开更多
Defects-rich heterointerfaces integrated with adjustable crystalline phases and atom vacancies,as well as veiled dielectric-responsive character,are instrumental in electromagnetic dissipation.Conventional methods,how...Defects-rich heterointerfaces integrated with adjustable crystalline phases and atom vacancies,as well as veiled dielectric-responsive character,are instrumental in electromagnetic dissipation.Conventional methods,however,constrain their delicate constructions.Herein,an innovative alternative is proposed:carrageenan-assistant cations-regulated(CACR)strategy,which induces a series of sulfides nanoparticles rooted in situ on the surface of carbon matrix.This unique configuration originates from strategic vacancy formation energy of sulfides and strong sulfides-carbon support interaction,benefiting the delicate construction of defects-rich heterostructures in M_(x)S_(y)/carbon composites(M-CAs).Impressively,these generated sulfur vacancies are firstly found to strengthen electron accumulation/consumption ability at heterointerfaces and,simultaneously,induct local asymmetry of electronic structure to evoke large dipole moment,ultimately leading to polarization coupling,i.e.,defect-type interfacial polarization.Such“Janus effect”(Janus effect means versatility,as in the Greek two-headed Janus)of interfacial sulfur vacancies is intuitively confirmed by both theoretical and experimental investigations for the first time.Consequently,the sulfur vacancies-rich heterostructured Co/Ni-CAs displays broad absorption bandwidth of 6.76 GHz at only 1.8 mm,compared to sulfur vacancies-free CAs without any dielectric response.Harnessing defects-rich heterostructures,this one-pot CACR strategy may steer the design and development of advanced nanomaterials,boosting functionality across diverse application domains beyond electromagnetic response.展开更多
基金supported by the Australian Research Council Centre of Excellence Project in Optical Microcombs for Breakthrough Science(No.CE230100006)the Australian Research Council Discovery Projects Programs(Nos.P190103186 and FT210100806)+4 种基金Linkage Program(Nos.LP210200345 and LP210100467)the Swinburne ECR-SUPRA program,the Industrial Transformation Training Centres scheme(No.IC180100005)the National Natural Science Foundation of China(No.12404375)the Beijing Natural Science Foundation(No.Z180007)the Innovation Program for Quantum Science and Technology(No.2021ZD0300703).
文摘Optical polarizers,which allow the transmission of specific polarization states,are essential components in modern optical systems.Here,we experimentally demonstrate integrated photonic polarizers incorporating reduced graphene oxide(rGO)films.2D graphene oxide(GO)films are integrated onto silicon waveguides and microring resonators(MRRs)with precise control over their thicknesses and sizes,followed by GO reduction via two different methods including uniform thermal reduction and localized photothermal reduction.We measure devices with various lengths,thicknesses,and reduction degrees of GO films.The results show that the devices with rGO exhibit better performance than those with GO,achieving a polarization-dependent loss of~47 dB and a polarization extinction ratio of~16 dB for the hybrid waveguides and MRRs with rGO,respectively.By fitting the experimental results with theory,it is found that rGO exhibits more significant anisotropy in loss,with an anisotropy ratio over 4 times that of GO.In addition,rGO shows higher thermal stability and greater robustness to photothermal reduction than GO.These results highlight the strong potential of rGO films for implementing high-performance polarization selective devices in integrated photonic platforms.
基金financially supported by the following projects:Open project of SITP(Project Number:IIMDKFJJ-18-09)National Natural Science Foundation of China(Project Number:61927820)+2 种基金The STCSM2019-11-20 funding(Project Number:19142202700)National Natural Science Foundation of China(Project Number:NSF No.U1732104)Zhejiang Lab’s International Talent Fund for Young Professionals。
文摘Polarimetric imaging enhances the ability to distinguish objects from a bright background by detecting their particular polarization status,which offers another degree of freedom in infrared remote sensing.However,to scale up by monolithically integrating grating-based polarizers onto a focal plane array(FPA)of infrared detectors,fundamental technical obstacles must be overcome,including reductions of the extinction ratio by the misalignment between the polarizer and the detector,grating line width fluctuations,the line edge roughness,etc.This paper reports the authors’latest achievements in overcoming those problems by solving key technical issues regarding the integration of large-scale polarizers onto the chips of FPAs with individual indium gallium arsenide/indium phosphide(In Ga As/In P)sensors as the basic building blocks.Polarimetric and photovoltaic chips with divisions of the focal plane of 540×4 pixels and 320×256 superpixels have been successfully manufactured.Polarimetric imaging with enhanced contrast has been demonstrated.The progress made in this work has opened up a broad avenue toward industrialization of high quality polarimetric imaging in infrared wavelengths.
基金Project supported by the Technological Innovation Project of Air-to-Air Missile Institute of China (Grant No.5S85000FS)
文摘This paper deals with a systematical analysis and an algorithm of attenuation characteristics of a light attenuator combined by n pieces of polarizers (n-LACP) whose extinction ratios are different from each other. The attenuation ratio expression of a two-LACP is deduced. We find that the monotonic attenuation interval depends on the first polarizer and that the attenuation range depends on the second one. For the three-LACP, a method for obtaining a monotonic attenuation interval is proposed. Moreover, the attenuation ratio expression is demonstrated. Analysis and experiment show that when the initial status of the three-LACP is at the maximum output, if the second or third polarizer rotates alone, the minimum attenuation ratios can reach K2^-1 and K3^-1, respectively, and if the first polarizer rotates, a minimum attenuation ratio of K2^-1K3^-1 can be obtained (K1, K2 and K3 represent the extinction ratios of the three polarizers in turn). Furthermore, the attenuation ratio expression of n-LACP and the relevant attenuation characteristics are proposed. The minimum attenuation ratio of an n-LACP is (K2K3 ... Kn)-1.
文摘We report depolarizers made of a new kind of scattering depolarization material,named chalcedony,which can make the polarization directions of the photons in the linearly polarized incident light randomly distributed.With a piece of the chalcedony to a thickness of 3mmf a total transmission higher than 50%and the linear polarization degree tending to zero can be easily obtained.
基金supported by the National Natural Science Foundation of China,82471345(to LC)the Key Research and Development Program for Social Development by the Jiangsu Provincial Department of Science and Technology.No.BE2022668(to LC).
文摘Ischemic stroke is a major cause of neurological deficits and high disability rate.As the primary immune cells of the central nervous system,microglia play dual roles in neuroinflammation and tissue repair following a stroke.Their dynamic activation and polarization states are key factors that influence the disease process and treatment outcomes.This review article investigates the role of microglia in ischemic stroke and explores potential intervention strategies.Microglia exhibit a dynamic functional state,transitioning between pro-inflammatory(M1)and anti-inflammatory(M2)phenotypes.This duality is crucial in ischemic stroke,as it maintains a balance between neuroinflammation and tissue repair.Activated microglia contribute to neuroinflammation through cytokine release and disruption of the blood-brain barrier,while simultaneously promoting tissue repair through anti-inflammatory responses and regeneration.Key pathways influencing microglial activation include Toll-like receptor 4/nuclear factor kappa B,mitogen-activated protein kinases,Janus kinase/signal transducer and activator of transcription,and phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin pathways.These pathways are targets for various experimental therapies aimed at promoting M2 polarization and mitigating damage.Potential therapeutic agents include natural compounds found in drugs such as minocycline,as well as traditional Chinese medicines.Drugs that target these regulatory mechanisms,such as small molecule inhibitors and components of traditional Chinese medicines,along with emerging technologies such as single-cell RNA sequencing and spatial transcriptomics,offer new therapeutic strategies and clinical translational potential for ischemic stroke.
文摘In this study,polyacrylic acid(PAA)films were employed as a model system,and a series of PAA films with tunable water wettability was systematically prepared by varying molecular weight and curing temperature.Using attenuated total reflectance Fourier-transform infrared spectroscopy(ATR-FTIR),the molecular configurations of surface carboxyl groups(COOH),free carboxyl(COOH_(f))and hydrogen-bonded carboxyl(COOH_(HB),were directly correlated with the polar component of surface energy(γ^(s,p)).By decomposing theγ^(s,p)values of the PAA thin films as a sum of the contributions of COOH_(f)and COOH_(H B),the intrinsic polar component of surface energy of COOH_(H B)(γ_(H B)^(s,p*))was quantified for the first time as 8.34 mN/m,significantly lower than that of COOH_(f)(γ_(f)^(s,p*)=34 mN/m).This result highlights that hydrogen bonding markedly reduces theγ^(s,p),providing a rational explanation for the relatively large water contact angle observed on PAA thin films.Furthermore,it establishes a thermodynamic basis for estimating the fraction of surface COOH_(H B)groups(f H B)from wettability measurements.Further extension of the model to carboxyl-terminated self-assembled monolayers(COOH-SAMs)revealed that surface COOH density(ΣCOOH)critically regulates wetting behavior:whenΣCOOH ranges from 4.30 to 5.25 nm^(-2),COOH groups predominantly exist in a free state and facilitate effective hydration layers,thereby promoting superhydrophilicity.Overall,this study not only establishes a unified thermodynamic framework linking surface COOH configurations to macroscopic wettability,but also validates its universality by extending it to COOH-SAMs systems,thereby providing a unified theoretical framework for the controllable design of hydrophilicity in various COOH-functionalized surfaces.
基金supported by the National Natural Science Foundation of China (Grant Nos.12475012,62461160263 for P.W.,and 62276171 for H.L.)Quantum Science and Technology-National Science and Technology Major Project of China (Project No.2023ZD0300600 for P.W.)+3 种基金Guangdong Provincial Quantum Science Strategic Initiative (Grant Nos.GDZX240-3009 and GDZX2303005 for P.W.)Guangdong Basic and Applied Basic Research Foundation (Grant No.2024-A1515011938 for H.L.)Shenzhen Fundamental ResearchGeneral Project (Grant No.JCYJ20240813141503005 for H.L.)the Talents Introduction Foundation of Beijing Normal University (Grant No.310432106 for P.W.)。
文摘Hyperpolarization of nuclear spins is crucial for advancing nuclear magnetic resonance and quantum information technologies,as nuclear spins typically exhibit extremely low polarization at room temperature due to their small gyromagnetic ratios.A promising approach to achieving high nuclear spin polarization is transferring the polarization of electrons to nuclear spins.The nitrogen-vacancy(NV)center in diamond has emerged as a highly effective medium for this purpose,and various hyperpolarization protocols have been developed.Among these,the pulsed polarization(PulsePol)method has been extensively studied due to its robustness against static energy shifts of the electron spin.In this work,we present a novel polarization protocol and uncover a family of magic sequences for hyperpolarizing nuclear spins,with PulsePol emerging as a special case of our general approach.Notably,we demonstrate that some of these magic sequences exhibit significantly greater robustness compared to the PulsePol protocol in the presence of finite half𝜋pulse duration of the protocol,Rabi and detuning errors.This enhanced robustness positions our protocol as a more suitable candidate for hyper-polarizing nuclear spins species with large gyromagnetic ratios and also ensures better compatibility with high-efficiency readout techniques at high magnetic fields.Additionally,the generality of our protocol allows for its direct application to other solid-state quantum systems beyond the NV center.
基金supported by the Scientific and Technological Innovation Project of the China Academy of Chinese Medical Sciences(CI2021A04013)the National Natural Science Foundation of China(82204610)+1 种基金the Qihang Talent Program(L2022046)the Fundamental Research Funds for the Central Public Welfare Research Institutes(ZZ15-YQ-041 and L2021029).
文摘Background:The medicinal material known as Os Draconis(Longgu)originates from fossilized remains of ancient mammals and is widely used in treating emotional and mental conditions.However,fossil resources are nonrenewable,and clinical demand is increasingly difficult to meet,leading to a proliferation of counterfeit products.During prolonged geological burial,static pressure from the surrounding strata severely compromises the microstructural integrity of osteons in Os Draconis,but Os Draconis still largely retains the structural features of mammalian bone.Methods:Using verified authentic Os Draconis samples over 10,000 years old as a baseline,this study summarizes the ultrastructural characteristics of genuine Os Draconis.Employing electron probe microanalysis and optical polarized light microscopy,we examined 28 batches of authentic Os Draconis and 31 batches of counterfeits to identify their ultrastructural differences.Key points for ultrastructural identification of Os Draconis were compiled,and a new identification approach was proposed based on these differences.Results:Authentic Os Draconis exhibited distinct ultrastructural markers:irregularly shaped osteons with traversing fissures,deformed/displaced Haversian canals,and secondary mineral infill(predominantly calcium carbonate).Counterfeits showed regular osteon arrangements,absent traversal fissures,and homogeneous hydroxyapatite composition.Lab-simulated samples lacked structural degradation features.EPMA confirmed calcium carbonate infill in fossilized Haversian canals,while elemental profiles differentiated lacunae types(void vs.mineral-packed).Conclusion:The study established ultrastructural criteria for authentic Os Draconis identification:osteon deformation,geological fissures penetrating bone units,and heterogenous mineral deposition.These features,unattainable in counterfeits or modern processed bones,provide a cost-effective,accurate identification method.This approach bridges gaps in TCM material standardization and supports quality control for clinical applications.
基金supported by the National Natural Science Foundation of China(Grants 42374215,42230209,42374199,42304183,42422406,42174185,72061147004 and 72342001)the Science and Technology Development Fund,Macao SAR(File no.0042/2024/RIA1 and 0008/2024/AKP)+1 种基金the Natural Science Foundation of Hunan Province(Grant 2023JJ20038)the Research Project of Science and Technology of Hunan Province(2025JJ10009,2022RC4025,2025QK1004,2023JJ50312,2023JJ50010 and 2024RC9012).
文摘Auroral kilometric radiation(AKR),a fundamental plasma emission in Earth's magnetosphere,exhibits three characteristic modes:the right-handed extraordinary(R-X),left-handed ordinary(L-O)and left-handed extraordinary(L-X)modes.The role of AKR in magnetosphere−ionosphere−atmosphere coupling depends sensitively on its wave mode.While previous studies have primarily focused on the dominant R-X mode,we present the first systematic identification of all three modes using a practical polarization analysis method based on Arase satellite observations.This method employs a spin-axis-relative Ratio:when the satellite's spin axis aligns with the background magnetic field,a positive(negative)Ratio indicates the right-handed(left-handed)polarization,with reversal under anti-parallel conditions.Combined polarization-frequency analysis reveals that R-X,L-O,and L-X modes can exist in both dayside and nightside regions,with power spectral densities up to 10^(-6)mV^(2)m^(-2)Hz^(-1).This study resolves long-standing ambiguities in AKR mode classification and has implications for understanding AKR-induced electron dynamics.
基金supported by the Shenzhen Hong Kong Joint Funding Project,No.SGDX20230116093645007(to LY)the Shenzhen Science and Technology Innovation Committee International Cooperation Project,No.GJHZ20200731095608025(to LY)+7 种基金Shenzhen Development and Reform Commission’s Intelligent Diagnosis,Treatment and Prevention of Adolescent Spinal Health Public Service Platform,No.S2002Q84500835(to LY)Shenzhen Medical Research Fund,No.B2303005(to LY)Team-based Medical Science Research Program,No.2024YZZ02(to LY)Zhejiang Provincial Natural Science Foundation of China,No.LWQ20H170001(to RL)Basic Research Project of Shenzhen Science and Technology from Shenzhen Science and Technology Innovation Commission,No.JCYJ20210324103010029(to BY)Shenzhen Second People’s Hospital Clinical Research Fund of Guangdong Province High-level Hospital Construction Project,Nos.2023yjlcyj029(to BY),2023yjlcyj021(to LL)Guangdong Basic and Applied Basic Research Foundation,No.2022A1515110679(to LL)China Postdoctoral Science Foundation,No.2022M722203(to GL).
文摘Peripheral nerve injury causes severe neuroinflammation and has become a global medical challenge.Previous research has demonstrated that porcine decellularized nerve matrix hydrogel exhibits excellent biological properties and tissue specificity,highlighting its potential as a biomedical material for the repair of severe peripheral nerve injury;however,its role in modulating neuroinflammation post-peripheral nerve injury remains unknown.Here,we aimed to characterize the anti-inflammatory properties of porcine decellularized nerve matrix hydrogel and their underlying molecular mechanisms.Using peripheral nerve injury model rats treated with porcine decellularized nerve matrix hydrogel,we evaluated structural and functional recovery,macrophage phenotype alteration,specific cytokine expression,and changes in related signaling molecules in vivo.Similar parameters were evaluated in vitro using monocyte/macrophage cell lines stimulated with lipopolysaccharide and cultured on porcine decellularized nerve matrix hydrogel-coated plates in complete medium.These comprehensive analyses revealed that porcine decellularized nerve matrix hydrogel attenuated the activation of excessive inflammation at the early stage of peripheral nerve injury and increased the proportion of the M2 subtype in monocytes/macrophages.Additionally,porcine decellularized nerve matrix hydrogel negatively regulated the Toll-like receptor 4/myeloid differentiation factor 88/nuclear factor-κB axis both in vivo and in vitro.Our findings suggest that the efficacious anti-inflammatory properties of porcine decellularized nerve matrix hydrogel induce M2 macrophage polarization via suppression of the Toll-like receptor 4/myeloid differentiation factor 88/nuclear factor-κB pathway,providing new insights into the therapeutic mechanism of porcine decellularized nerve matrix hydrogel in peripheral nerve injury.
基金supported by the National Natural Science Foundation of China (Grant No.12174455)Guangdong Basic and Applied Basic Research Foundation (Grant No.2023B1515040023)。
文摘Floquet engineering provides a powerful and flexible method for modifying the band structures of quantum materials.While circularly polarized light has been shown to convert curved nodal lines in three-dimensional semimetals into Weyl points,such a transformation is forbidden for an isolated straight nodal line.In this work,we uncover a dramatic shift in this paradigm when multiple straight nodal lines intersect.We observe that circularly polarized light not only gaps them into Weyl points but also induces unprecedented surface-state Fermi arcs that extend across the entire surface Brillouin zone and form a linked topological structure.These findings advance our fundamental understanding of light-driven transitions in topological semimetals and unveil a unique Weyl semimetal phase defined by linked Fermi arcs.We discuss potential exotic phenomena arising from this phase,applications of our predictions to spin-split antiferromagnets,and the extension of this Weyl semimetal phase to classical systems.
基金supported by the National Natural Science Foundation of China (Grant Nos.T2325027,12274448,T2350007,12404239,12174041,12325405,12090054,and T2221001)the National Key R&D Program of China (Grant No.2022YFF0503504)。
文摘The intrinsic pressure framework,which treats self-propelling force as an external force,provides a convenient and consistent description of mechanical equilibrium in active matter.However,direct experimental evidence is still lacking.To validate this framework,here we employ a programmable robotic platform,where a single light-controlled wheeled robot travels in an activity landscape.Our experiments quantitatively demonstrate that the intrinsic pressure difference across the activity interface is balanced by the emerged polarization force.This result unambiguously confirms the theoretical predictions,thus validating the intrinsic pressure framework and laying the experimental foundation for the intrinsic pressure-based mechanical description of dry active matter.
基金supported by the Natural Science Basic Research Program of Shaanxi Province (Grant Nos.2024JC-JCQN-06 and2025JC-QYCX-006)the National Natural Science Foundation of China (Grant No.12474337)Chinese Academy of Sciences Project (Grant Nos.E4BA270100,E4Z127010F,E4Z6270100,and E53327020D)。
文摘In conventional higher-order topological insulators(HOTIs),the emergence of topological states can be explained by using the nonzero bulk polarization index.However,corner states emerge in HOTIs with incomplete boundary unit cells(i.e.,boundary defects)even though the bulk polarization is zero,which challenges the conventional understanding of HOTIs.Here,based on a Kekul´e-distorted honeycomb lattice with incomplete unit cells,we reveal that incomplete unit cells exhibit fractional charges through the analysis of Wannier centers by developing a compensation method and creating the concept of Wannier center domain(WCD)which is the smallest region that one Wannier center occupies.This method compensates for the missing parts of these boundary incomplete unit cells with additional WCDs to make them complete.The compensated WCDs automatically carry the corresponding charge,and this charge together with that of the incomplete unit cell constitutes the total charge of the complete unit cell after compensation.We conclude that the emergence of corner states is attributed to the filling anomaly,which is a fundamental mechanism.Our results refresh the understanding of HOTIs,especially those with structural discontinuities,and provide a novel design for topological states which have application value in producing optical functional devices.
基金supported by the National Key R&D Program of China(Nos.2022YFB4101500 and 2022YFE0209500)the National Natural Science Foundation of China(Nos.22276191 and 21976177)the Qinghai Province Air Pollution Assessment and Fine Management Support Project,and the University of Chinese Academy of Science.
文摘As a potential adsorption material,it is still a challenge for activated carbon fiber(ACF)in efficient adsorption of ethanol due to its nonpolar surface,which is mainly emitted from the grain drying industry.This study prepared surface polarity-modified ACF using the heteroatom doping method.The modified ACF possessed a richer array of strongly polar oxygen/nitrogen-containing functional groups(primarily phenolic hydroxyl and lactone groups),a larger specific surface are1,and a more developed micropore structure.The adsorption capacities of ethanol for O-ACF and N-ACF were 4.110 mmol/g and 1.698 mmol/g,respectively,which were 11.3 times and 4.7 times those of unmodified ACF.This was a significant improvement over our previous work(0.363 mmol/g).The improvement of adsorption capacity for the N-ACF was mainly due to the higher specific surface are1,greater number of micropores(more adsorption sites)and abundant existence of defects,whereas,for O-ACF,the improvement mainly relied on the abundant presence of oxygen-containing functional groups on the surface.However,water had a negative effect on the adsorption of ethanol for the modified ACF due to competitive adsorption and the disappearance of capillary condensation.It was further revealed that the adsorption process of ethanol and water was quite different.It obeyed the linear driving force(LDF)model for ethanol adsorption,however,the intraparticle diffusion(IPD)model for water adsorption.
基金supported by grants from the Jiangxi Provincial Natural Science Foundation,No.20242BAB26134(to XF)the National Natural Science Foundation of China,Nos.82060638(to TC),82060222(to XF),82460237(to XF)+1 种基金the Major Disciplines of Academic and Technical Leaders Project of Jiangxi Province,Nos.20194BCJ22032(to TC),20213BCJL22049(to XF)Science and Technology Plan of Jiangxi Health Planning Committee,No.202210390(to XF).
文摘Parkinson’s disease is characterized by synucleinopathy-associated neurodegeneration.Previous studies have shown that glucagon-like peptide-1(GLP-1)has beneficial effects in a mouse model of Parkinson’s disease induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine.However,the effect of GLP-1 on intrinsic synuclein malfunction remains unclear.In this study,we investigated the effect of Lactococcus lactis MG1363-pMG36e-GLP-1 on parkinsonism in SncaA53T transgenic mice and explored the underlying mechanisms.Our data showed that Lactococcus lactis MG1363-pMG36e-GLP-1 inhibited dopaminergic neuronal death,reduced pathological aggregation ofα-synuclein,and decreased movement disorders in SncaA53T transgenic mice.Furthermore,Lactococcus lactis MG1363-pMG36e-GLP-1 downregulated lipopolysaccharide-related inflammation,reduced cerebral activation of microglia and astrocytes,and promoted cell survival via the GLP-1 receptor/PI3K/Akt pathway in the substantia nigra.Additionally,Lactococcus lactis MG1363-pMG36e-GLP-1 decreased serum levels of pro-inflammatory molecules including lipopolysaccharide,lipopolysaccharide binding protein,interleukin-1β,and interleukin-6.Gut histopathology and western blotting further revealed that Lactococcus lactis MG1363-pMG36e-GLP-1 increased the expression of gut integrity-related proteins and reduced lipopolysaccharide-related inflammation by reversing gut dysbiosis in SncaA53T transgenic mice.Our findings showed that the beneficial effect of Lactococcus lactis MG1363-pMG36e-GLP-1 on parkinsonism traits in SncaA53T transgenic mice is mediated by microglial polarization and the reversal of dysbiosis.Collectively,our findings suggest that Lactococcus lactis MG1363-pMG36e-GLP-1 is a promising therapeutic agent for the treatment of Parkinson’s disease.
基金supported by the National Key Research and Development Program of China(Nos.2022YFB3607300 and 2021YFB2802003)the National Natural Science Foundation of China(NSFC)(No.62075084)the Guangdong Basic and Applied Basic Research Foundation(No.2022B1515020004)。
文摘Polarizers have always been an important optical component for optical engineering and have played an indispensable part of polarization imaging systems.Metasurface polarizers provide an excellent platform to achieve miniaturization,high resolution,and low cost of polarization imaging systems.Here,we proposed freeform metasurface polarizers derived by adjoint-based inverse design of a full-Jones matrix with gradient-descent optimization.We designed multiple freeform polarizers with different filtered states of polarization(SOPs),including circular polarizers,elliptical polarizers,and linear polarizers that could cover the full Poincarésphere.Note that near-unitary polarization dichroism and the ultrahigh polarization extinction ratio(ER)reaching 50 d B were achieved for optimized circular polarizers.The multiple freeform polarizers with filtered polarization state locating at four vertices of an inscribed regular tetrahedron of the Poincarésphere are designed to form a full-Stokes parameters micropolarizer array.Our work provides a novel approach,we believe,for the design of meta-polarizers that may have potential applications in polarization imaging,polarization detection,and communication.
基金supported by the National Natural Science Foundation of China, Nos.82201474 (to GL), 82071330 (to ZT), and 92148206 (to ZT)Key Research and Discovery Program of Hubei Province, No.2021BCA109 (to ZT)。
文摘Ischemic stroke is a cerebrovascular disease associated with high mortality and disability rates. Since the inflammation and immune response play a central role in driving ischemic damage, it becomes essential to modulate excessive inflammatory reactions to promote cell survival and facilitate tissue repair around the injury site. Various cell types are involved in the inflammatory response, including microglia, astrocytes, and neutrophils, each exhibiting distinct phenotypic profiles upon stimulation. They display either proinflammatory or anti-inflammatory states, a phenomenon known as ‘cell polarization.’ There are two cell polarization therapy strategies. The first involves inducing cells into a neuroprotective phenotype in vitro, then reintroducing them autologously. The second approach utilizes small molecular substances to directly affect cells in vivo. In this review, we elucidate the polarization dynamics of the three reactive cell populations(microglia, astrocytes, and neutrophils) in the context of ischemic stroke, and provide a comprehensive summary of the molecular mechanisms involved in their phenotypic switching. By unraveling the complexity of cell polarization, we hope to offer insights for future research on neuroinflammation and novel therapeutic strategies for ischemic stroke.
基金supported by the National Natural Science Foundation of China,No.82201460(to YH)Nanjing Medical University Science and Technology Development Fund,No.NMUB20210202(to YH).
文摘Neurotoxic astrocytes are a promising therapeutic target for the attenuation of cerebral ischemia/reperfusion injury.Low-density lipoprotein receptor,a classic cholesterol regulatory receptor,has been found to inhibit NLR family pyrin domain containing protein 3(NLRP3)inflammasome activation in neurons following ischemic stroke and to suppress the activation of microglia and astrocytes in individuals with Alzheimer’s disease.However,little is known about the effects of low-density lipoprotein receptor on astrocytic activation in ischemic stroke.To address this issue in the present study,we examined the mechanisms by which low-density lipoprotein receptor regulates astrocytic polarization in ischemic stroke models.First,we examined low-density lipoprotein receptor expression in astrocytes via immunofluorescence staining and western blotting analysis.We observed significant downregulation of low-density lipoprotein receptor following middle cerebral artery occlusion reperfusion and oxygen-glucose deprivation/reoxygenation.Second,we induced the astrocyte-specific overexpression of low-density lipoprotein receptor using astrocyte-specific adeno-associated virus.Low-density lipoprotein receptor overexpression in astrocytes improved neurological outcomes in middle cerebral artery occlusion mice and reversed neurotoxic astrocytes to create a neuroprotective phenotype.Finally,we found that the overexpression of low-density lipoprotein receptor inhibited NLRP3 inflammasome activation in oxygen-glucose deprivation/reoxygenation injured astrocytes and that the addition of nigericin,an NLRP3 agonist,restored the neurotoxic astrocyte phenotype.These findings suggest that low-density lipoprotein receptor could inhibit the NLRP3-meidiated neurotoxic polarization of astrocytes and that increasing low-density lipoprotein receptor in astrocytes might represent a novel strategy for treating cerebral ischemic stroke.
基金financially supported by the National Natural Science Foundation of China(Grants nos.62201411,62371378,22205168,52302150 and 62304171)the China Postdoctoral Science Foundation(2022M722500)+1 种基金the Fundamental Research Funds for the Central Universities(Grants nos.ZYTS2308 and 20103237929)Startup Foundation of Xidian University(10251220001).
文摘Defects-rich heterointerfaces integrated with adjustable crystalline phases and atom vacancies,as well as veiled dielectric-responsive character,are instrumental in electromagnetic dissipation.Conventional methods,however,constrain their delicate constructions.Herein,an innovative alternative is proposed:carrageenan-assistant cations-regulated(CACR)strategy,which induces a series of sulfides nanoparticles rooted in situ on the surface of carbon matrix.This unique configuration originates from strategic vacancy formation energy of sulfides and strong sulfides-carbon support interaction,benefiting the delicate construction of defects-rich heterostructures in M_(x)S_(y)/carbon composites(M-CAs).Impressively,these generated sulfur vacancies are firstly found to strengthen electron accumulation/consumption ability at heterointerfaces and,simultaneously,induct local asymmetry of electronic structure to evoke large dipole moment,ultimately leading to polarization coupling,i.e.,defect-type interfacial polarization.Such“Janus effect”(Janus effect means versatility,as in the Greek two-headed Janus)of interfacial sulfur vacancies is intuitively confirmed by both theoretical and experimental investigations for the first time.Consequently,the sulfur vacancies-rich heterostructured Co/Ni-CAs displays broad absorption bandwidth of 6.76 GHz at only 1.8 mm,compared to sulfur vacancies-free CAs without any dielectric response.Harnessing defects-rich heterostructures,this one-pot CACR strategy may steer the design and development of advanced nanomaterials,boosting functionality across diverse application domains beyond electromagnetic response.