OBJECTIVE:To evaluate the effects of external application of warm meridian medicated wine and polarized light therapy combined with acupuncture on pain management following vertebroplasty. METHODS:A total of 120 patie...OBJECTIVE:To evaluate the effects of external application of warm meridian medicated wine and polarized light therapy combined with acupuncture on pain management following vertebroplasty. METHODS:A total of 120 patients with osteoporotic vertebral compression fractures treated by vertebroplasty at our hospital were divided into four groups. The control group received non-steroidal anti-inflammatory drugs, the Treatment Group Ⅰ received acupuncture alone, Treatment Group Ⅱ was treated with medicated wine for warming meridians alongside polarized light physiotherapy, and Treatment Group Ⅲ received a combination of medicated wine for warming meridians, polarized light therapy, and acupuncture. The clinical efficacy, pain thresholds at various time points, temperature pain threshold, electric pain threshold, quality of life, sleep quality index, lumbar dysfunction index, visual analog scale(VAS) scores, and incidence of adverse reactions were compared and analyzed across the four groups. RESULTS:The total clinical effective rate in Treatment Group Ⅲ was significantly higher than that in the control group, Treatment Group Ⅰ, and Treatment Group Ⅱ(P < 0.05). At 24 and 72 h post-treatment, the VAS scores, temperature pain thresholds, and electric pain thresholds in Treatment Group Ⅲ were significantly lower than those in the control group, Treatment Group Ⅰ, and Treatment Group Ⅱ(P < 0.05). Additionally, quality-of-life scores in Treatment Group Ⅲ were markedly higher compared to the control group, Treatment Group Ⅰ, and Treatment Group Ⅱ, while the Pittsburgh Sleep Quality Index scores, Oswestry Disability Index scores, and incidence of adverse reactions in Treatment Group Ⅲ were significantly lower than in the other groups(P < 0.05). CONCLUSION:The external application of warm meridian medicated wine and polarized light therapy combined with acupuncture significantly reduces postoperative pain following vertebroplasty, enhances lumbar function, and improves both sleep quality and overall quality of life for patients. This approach is recommended for clinical application.展开更多
The high mortality rates of colon and rectal tumors have put forward an urgent need for rapid, sensitive, and accurate diagnosis. The polarization imaging technology, with the advantages of noninvasiveness, noncontact...The high mortality rates of colon and rectal tumors have put forward an urgent need for rapid, sensitive, and accurate diagnosis. The polarization imaging technology, with the advantages of noninvasiveness, noncontact, quantification, rapidity, and high sensitivity, is expected to be used for auxiliary diagnosis of colorectal cancer. Herein, the differences in colorectal tissues of four pathological types were studied using this powerful technology. Polarized light imaging combined with the Mueller matrix decomposition (MMPD) method was applied to extract structural features that may be related to colorectal tumors. It demonstrated that parameters δ and θ could reflect the structural differences of colorectal tumors. Preliminary simulated experiment results revealed that the parameter δ was related to the fiber density, and the parameter θ was related to the fiber angle. Then Tamura image texture analysis was used to quantitatively describe tissues of different pathological types, and the results showed that the coarseness, contrast, directionality, and roughness of the four groups were statistically different. Texture analysis based on the quantitative data of the four dimensions could be applied for the identification of benign and malignant colorectal tumors.展开更多
Due to its broken out-of-plane symmetry,z-cut periodically poled lithium niobate(PPLN)has exhibited ultrahigh second-order optical nonlinearity.Precise quantification of the domain structure of z-cut PPLN plays a crit...Due to its broken out-of-plane symmetry,z-cut periodically poled lithium niobate(PPLN)has exhibited ultrahigh second-order optical nonlinearity.Precise quantification of the domain structure of z-cut PPLN plays a critical role during poling fabrication.To enhance the imaging detection efficiency of the domain structure in z-cut PPLN,we have developed a second-harmonic generation microscope system specifically designed to produce a longitudinal electric field in foci for the imaging domain inversion.We demonstrated that imaging using a longitudinal electric field can achieve a contrast ratio enhancement by a factor of 1.77,showing high imaging efficiency and making the proposed method suitable for in situ monitoring of the z-cut PPLN poling process.展开更多
For decades,chiral nanomaterials have been extensively studied because of their extraordinary properties.Chiral nanostructures have attracted a lot of interest because of their potential applications including biosens...For decades,chiral nanomaterials have been extensively studied because of their extraordinary properties.Chiral nanostructures have attracted a lot of interest because of their potential applications including biosensing,asymmetric catalysis,optical devices,and negative index materials.Circularly polarized light(CPL)is the most attractive source for chirality owing to its high availability,and now it has been used as a chiral source for the preparation of chiral matter.In this review,the recent progress in the field of CPL-enabled chiral nanomaterials is summarized.Firstly,the recent advancements in the fabrication of chiral materials using circularly polarized light are described,focusing on the unique strategies.Secondly,an overview of the potential applications of chiral nanomaterials driven by CPL is provided,with a particular emphasis on biosensing,catalysis,and phototherapy.Finally,a perspective on the challenges in the field of CPL-enabled chiral nanomaterials is given.展开更多
Circularly polarized light(CPL)has been given great attention because of its extensive application.While several devices for CPL detection have been studied,their performance is affected by the magnitude of photocurre...Circularly polarized light(CPL)has been given great attention because of its extensive application.While several devices for CPL detection have been studied,their performance is affected by the magnitude of photocurrent.In this paper,a self-powered photodetector based on hot electrons in chiral metamaterials is proposed and optimized.CPL can be distinguished by the direction of photocurrent without external bias owing to the interdigital electrodes with asymmetric chiral metamaterials.Distinguished by the direction of photocurrent,the device can easily detect the rotation direction of the CPL electric field,even if it only has a very weak responsivity.The responsivity of the proposed detector is near 1.9 mA/W at the wavelength of 1322 nm,which is enough to distinguish CPL.The detector we proposed has the potential for application in optical communication.展开更多
Based on the vector diffraction theory, a super-resolution longitudinally polarized optical needle with ultra-long depth of focus(DOF) is generated by tightly focusing a radially polarized beam that is modulated by a ...Based on the vector diffraction theory, a super-resolution longitudinally polarized optical needle with ultra-long depth of focus(DOF) is generated by tightly focusing a radially polarized beam that is modulated by a self-designed ternary hybrid(phase/amplitude) filter(THF). Both the phase and the amplitude patterns of THF are judiciously optimized by the versatile particle swarm optimization(PSO) searching algorithm. For the focusing configuration with a combination of a high numerical aperture(NA) and the optimized sine-shaped THFs, an optical needle with the full width at half maximum(FWHM) of 0.414λ and the DOF of 7.58λ is accessed, which corresponds to an aspect ratio of 18.3. The demonstrated longitudinally polarized super-resolution light needle with high aspect ratio opens up broad applications in high-density optical data storage, nano-photolithography, super-resolution imaging and high-efficiency particle trapping.展开更多
In recent years, the bionic polarized light compass has been widely studied for the unmanned aerial vehicle navigation. However, it is found from the obtained investigation results that a polarized light compass with ...In recent years, the bionic polarized light compass has been widely studied for the unmanned aerial vehicle navigation. However, it is found from the obtained investigation results that a polarized light compass with a sensitive and high dynamic range polarimeter still provides inferior output precision of the heading angle due to the presence of the noise generating from the compass.The noise is existed not only in the angle of the polarization image acquired by polarimeters but also in the output heading data, which leads to a sharp reduction in the accuracy of a polarized light compass. Herein, we present noise analysis and a novel multiscale transform denoising method of a polarized light compass used for the unmanned aerial vehicle navigation. Specifically, a multiscale principle component analysis utilizing one-dimensional image entropy as classification criterion is directly implemented to suppress the noise in the acquired polarization image. Subsequently, a multiscale time–frequency peak filtering method using the sample entropy as classification criterion is applied for the output heading data so as to further increase the heading measurement accuracy from the denoised image above. These two approaches are combined to significantly reduce the heading error affected by different types of noises. Our experimental results indicate the proposed multiscale transform denoising method exhibits high performance in suppressing the noise of a polarized light compass used for the unmanned aerial vehicle navigation compared to existing prior arts.展开更多
We theoretically study the spin transport through a two-terminal quantum dot device under the influence of a symmetric spin bias and circularly polarized light. It is found that the combination of the circularly polar...We theoretically study the spin transport through a two-terminal quantum dot device under the influence of a symmetric spin bias and circularly polarized light. It is found that the combination of the circularly polarized light and the applied spin bias can result in a net charge current. The resultant charge current is large enough to be measured when properly choosing the system parameters. The resultant charge current can be used to deduce the spin bias due to the fact that there exists a simple linear relation between them. When the external circuit is open, a charge bias instead of a charge current can be induced, which is also measurable by present technologies. These findings indicate a new approach to detect the spin bias by using circularly polarized light.展开更多
Circularly polarized light(CPL)is an inherently chiral entity and is regarded as one of the possible deterministic signals that led to the evolution of homochirality in earth.Thus,CPL as an external physical field has...Circularly polarized light(CPL)is an inherently chiral entity and is regarded as one of the possible deterministic signals that led to the evolution of homochirality in earth.Thus,CPL as an external physical field has been widely used in a technique known as absolute asymmetric synthesis,because a product enriched in one enantiomer is formed from racemic precursor molecules without the intervention of a chiral catalyst.In this review,we retrospect the historical research of CPL-induced absolute asymmetric synthesis,including chiral organic molecules,helical polymers,supramolecular assemblies,noble metal nanostructures.However,based on these results,we concluded that the chiral photon-matter interaction is very faint due to the arrangement of molecular bonds giving rise to chiral features,is over a smaller distance than the helical pitch of CPL,leading extremely small enantiomeric excess for product.Therefore,we highlight the recently emerged technology called superchiral field,in which the superchiral far-field and near-field could enhance the dissymmetry of optical field and near-field,respectively.In sum,we hope this review could bring some enlightenment to researchers and further improve the enantioselectivity of CPL-induced absolute asymmetric synthesis.展开更多
In this paper,two ways of micro structural characterization,optical microscopy(OM) and polarized light microscopy(PLM),were both employed to describe the micro structure of semisolid slurry prepared by swirling enthal...In this paper,two ways of micro structural characterization,optical microscopy(OM) and polarized light microscopy(PLM),were both employed to describe the micro structure of semisolid slurry prepared by swirling enthalpy equilibration device(SEED).The results show that PLM is more reliable and accurate than OM to describe the special morphology feature of semisolid slurry made by SEED process.Meanwhile,the effects of pouring temperature and mass of molten liquid on the primary α-Al particle size and morphology were also investigated using PLM.The quantitative metallographic results measured from PLM demonstrate that the grain size and morphology and their distribution are significantly affected by both pouring temperature and the mass of molten liquid.The grain size poured with 2.7 kg liquid decreases from 659 to186 μm,and grain morphology transforms from dendrite to globular structure with pouring temperature reducing from690 to 630℃.The decreasing pouring temperature also promotes the distribution of spherical structure on the cross section.Meanwhile,the mass of molten liquid decreasing from 2.7 to 2.3 kg can decrease the grain size by maximum of 44% at high pouring temperature.展开更多
We investigate the propagation of polarized light in fibrous tissues such as muscle and skin.The myofibrils and collagen fibers are approximated as long cylinders and the tissue phantom is composed of spherical and cy...We investigate the propagation of polarized light in fibrous tissues such as muscle and skin.The myofibrils and collagen fibers are approximated as long cylinders and the tissue phantom is composed of spherical and cylindrical structures.We apply Monte Carlo method based on this phantom to simulate and analyze polarization imaging process of muscle.The good agreement between the simulation results and the experimental results validate the assumption of the phantom composition.This paper also presents how to describe the fiber orientation distribution and tissue anisotropy according to three parameters derived from the polarization imaging.展开更多
The paper studied the relationship between microstructure and shape recovery characteristics by using colored microstructure analysis under polarized light on the thermomechanical cycled CuAlNi single crystals. The tw...The paper studied the relationship between microstructure and shape recovery characteristics by using colored microstructure analysis under polarized light on the thermomechanical cycled CuAlNi single crystals. The two-way shape memory effect in quenched thin bar resulted from the preferential formation/extinction of martensite variant due to the internal quench stress, and the variant was formed at an angle of about 45 deg. with the tension direction ([001] of the βphase). Initial thermomechanical cycling under relatively low stress single variant stress-induced martensite was formed at an angle of 45 deg. with the tension and its morphology was a lath of parallel twins. More than one group of variants were formed after several training cycles and such variants also caused tilting of some thermally formed accommodated martensite. By overheating the trained sample containing stabilized multi-variants of stress-induced martensite, very coarse martensite structure with a strong asymmetry was produced, which caused the reverse two-way shape memory effect.展开更多
Circularly polarized luminescent materials find extensive applications in 3D displays,information encryption,and photoinduced supramolecular chirality.However,controlling the handedness of circularly polarized lumines...Circularly polarized luminescent materials find extensive applications in 3D displays,information encryption,and photoinduced supramolecular chirality.However,controlling the handedness of circularly polarized luminescence remains a significant challenge in advancing optical technologies.In this study,we present a Janus circularly polarized light emitter comprising a fluorescent film combined with chiral nematic cellulose with switchable chirality.The emitter achieves maximum luminescence dissymmetry factors(0.28 and-0.65)through mode switching.In addition,we show the emitter’s versatility in inducing chiral helices in azobenzene polymers with varying polar groups,resulting in significant chiral signals.Importantly,the chirality of these polymers can be switched by altering the luminescence mode of the emitter.These results are expected to facilitate the efficient design of chiral luminescent materials and photoinduction devices.展开更多
Chiral organic-inorganic hybrid halides show significant potential for applications in circularly polarized photodetection,chiral-induced spin selectivity effects(CISS),and nonlinear optics.However,the widespread use ...Chiral organic-inorganic hybrid halides show significant potential for applications in circularly polarized photodetection,chiral-induced spin selectivity effects(CISS),and nonlinear optics.However,the widespread use of toxic lead element poses environmental concerns,hindering the further applications.Herein,we synthesized a zero-dimensional(0D)lead-free chiral antimony-based halide(R/S-MBA)_(4)Sb_(2)Br_(10)with the coexistence of polarity and crystallographic chirality.The halides exhibit unique magneto-chiroptical effects due to the field-effect-induced fine-tuning of exciton energy,which is the first observation in chiral antimony-based halides.Furthermore,owing to its significant spontaneous polarization(5.0μC/cm^(2))and optical chirality(g_(CD)=0.0018),(R/S-MBA)_(4)Sb_(2)Br_(10)halide exhibits excellent performance in self-powered circularly polarized photodetection,nonlinear optics,and CISS effects.The self-powered photodetector demonstrates high sensitivity with distinguishable factors(g_(res)=0.53/-0.51@0 V)and broad spectral response.The single crystal(R/S-MBA)_(4)Sb_(2)Br_(10)also exhibits a high second-harmonic polarization response asymmetry factor(g_(SHG-CD)=0.98/-0.70)and strong second-harmonic generation intensity.These performances are among the best reported for chiral halides.Our research not only sheds new light on the investigation of magneto-chiroptical phenomena,but also marks a significant advancement in realizing high-sensitivity circularly polarized light detection within the realm of lead-free polar materials.展开更多
To clarify the function effect of spectrum and linear polarization-coupled light on locusts’induction,determine the influence factors of linearly polarized light on locusts’polartactic characteristics,construct the ...To clarify the function effect of spectrum and linear polarization-coupled light on locusts’induction,determine the influence factors of linearly polarized light on locusts’polartactic characteristics,construct the technical characteristics of locusts’polarization induction,and develop locusts’polartactic induction photo-source,this study investigated the functional influence of spectral light and linear polarization-coupled light on locust phototactic and polartactic behavior.A linearly polarized light source system was used to determine the polartactic response of locusts induced by different linearly polarized vectors under normal light conditions.The results demonstrated that,within the context of spectral and linear polarization-coupled light,the visual response sensitivity of locusts was related to the spectral light intensity,being highest in response to orange light intensity.The visual aggregation and selective sensitivities of locusts were both influenced by spectral irradiation distance,with the violet spectrum inducing the strongest sensitivity in both cases.The polartactic chord function tuning response characteristics at different angles(0°-360°)were associated with linear polarization spectrum attributes.The polartactic response of locusts was related to changes in visual sensitivity resulting from the distance from the linear polarization light source,being optimal in response to the orange spectrum,whereas the violet spectrum induced the optimal visual and polartactic aggregation sensitivities.Furthermore,the specificity of chord function tuning response characteristics with periodic vector variations in a heterogeneous spectrum showed significant changes.An orange spectrum vector mode led to the most pronounced changes in response,whereas the violet spectrum vector mode exhibited the most significant changes in chord function properties.These variations in chord function and period induced by spectrum impacted the functional effect of linear polarization vector modes and reset the sensitive vector of locust polarization vision.Specifically,under the orange spectrum,locusts exhibited the highest polartactic response sensitivity at 330°vector,whereas,under the violet spectrum,the polartactic aggregation sensitivity was most pronounced at 30°vector,and visual trend sensitivity was optimal at 120°vector.Our results provide theoretical support for the study of the specific sensitivity nature of locust phototactic and polartactic behaviors,and the construction of a mechanism for inducing the polarization spectrum in locusts.展开更多
Nighttime navigation faces challenges from limited data and interference,especially when satellite signals are unavailable.Leveraging lunar polarized light,polarization navigation offers a promising solution for night...Nighttime navigation faces challenges from limited data and interference,especially when satellite signals are unavailable.Leveraging lunar polarized light,polarization navigation offers a promising solution for nighttime autonomous navigation.Current algorithms,however,are limited by the requirement for known horizontal attitudes,restricting applications.This study introduces an autonomous 3-D attitude determination method to overcome this limitation.Our approach utilizes the Angle of Polarization(AOP)at night to extract neutral points from the AOP pattern.This allows for the calculation of polarization meridian plane information for attitude determination.Subsequently,we present an optimized Polarization TRIAD(Pol-TRIAD)algorithm to acquire the 3-D attitude.The proposed method outperforms the existing approaches in outdoor experiments by achieving lower Root Mean Square Error(RMSE).For one baseline attitude,it improves pitch by 31.7%,roll by 21.7%,and yaw by 2.6%,while for the attitude with a larger tilt angle,the improvements are 64.4%,30.4%,and 9.1%,respectively.展开更多
This study investigated the influence of different linearly polarized spectrum lights on locusts polartactic response characteristics linearly polarized vector sensitivity mode and polartactic response by using linear...This study investigated the influence of different linearly polarized spectrum lights on locusts polartactic response characteristics linearly polarized vector sensitivity mode and polartactic response by using linearly polarized spectrum vector light module and experimental device.The objective was to clarify the vector sensitivity characteristics and functional effect of linearly polarized light spectrum intensity on locusts polartactic response,determine the influence specificity of linearly polarized spectrum illumination properties on locusts polarization-related behavior.When spectrum and illumination were constant,locusts polartactic response,presenting the response feature of sine and cosine function change specificity,was related to spectrum attribute.The visual acuity effect stimulated by violet spectrum was the best,whereas the optical distance modulation effect induced by orange spectrum was the strongest.When illumination was enhanced,locusts vector sensitivity mode shifted to present the specific sensitivity prompted by light intensity at long distance and inhibited by light intensity at short distance.Moreover,the regulating function of violet spectrum was the strongest,and the regulatory mutation effect of orange spectrum was the least significant.Simultaneously,locusts polartactic sensitivity to 300°vector at 100 lx,whereas to 240°vector at 1000 lx of linearly polarized violet light was the strongest.Locusts polartactic aggregation and visual tendency sensitivity to 90°vector at 100 lx,whereas to 270°vector at 1000 lx of linearly polarized violet light was the strongest.The heterogeneous regulation function of different linearly polarized spectrum couplings with light intensity led to significant variations in locusts vector sensitivity mode.This was derived from the antagonistic and specific tuning characteristics of locusts polartactic vision,reflecting the integrated output effect of locusts vector dependence regulated by linearly polarized spectrum intensity attribute.The findings were significant for the construction of pest polarization induction light sources and the investigation of the sensitive physiology pathway of locusts polarization vision.展开更多
Chiral inorganic semiconductors with high dissymmetric factor are highly desirable,but it is generally difficult to induce chiral structure in inorganic semiconductors because of their structure rigidity and symmetry....Chiral inorganic semiconductors with high dissymmetric factor are highly desirable,but it is generally difficult to induce chiral structure in inorganic semiconductors because of their structure rigidity and symmetry.In this study,we introduced chiral ZnO film as hard template to transfer chirality to CsPbBr_(3) film and PbS quantum dots(QDs)for circularly polarized light(CPL)emission and detection,respectively.The prepared CsPbBr_(3)/ZnO thin film exhibited CPL emission at 520 nm and the PbS QDs/ZnO film realized CPL detection at 780 nm,featuring high dissymmetric factor up to around 0.4.The electron transition based mechanism is responsible for chirality transfer.展开更多
Light-emitting diodes are becoming the alternative for future general lighting applications,with huge energy savings compared to conventional light sources owing to their high efficiency and reliability.Polarized ligh...Light-emitting diodes are becoming the alternative for future general lighting applications,with huge energy savings compared to conventional light sources owing to their high efficiency and reliability.Polarized light sources would largely enhance the efficiency in a number of applications,such as in liquid-crystal displays,and also greatly improve contrast in general illumination due to the reduction in indirect glare.Here,we demonstrate light-emitting diodes presenting high-brightness polarized light emission by combining the polarization-preserving and directional extraction properties of embedded photonic-crystals applied to non-polar gallium nitride.A directional enhancement of up to 1.8-fold was observed in the total polarized light emission together with a high polarization degree of 88.7%at 465 nm.We discuss the mechanisms of polarized light emission in non-polar gallium nitride and the photonic-crystal design rules to further increase the light-emitting diode brightness.This work could open the way to polarized white-light emitters through their association with polarization-preserving down-converting phosphors.展开更多
Locust and grasshopper plagues pose a serious threat to crop production in many areas worldwide.However,there is a lack of effective,quick-acting methods to control such outbreaks.Methods exploiting the phototactic re...Locust and grasshopper plagues pose a serious threat to crop production in many areas worldwide.However,there is a lack of effective,quick-acting methods to control such outbreaks.Methods exploiting the phototactic response of these insects are receiving increasing attention.The current study investigated the effect of linearly polarized and unpolarized light on locust phototactic and polarotactic responses,in particular the function of their dorsal rim area(DRA)and non-DRA visual fields.The results showed that the polarotactic function weight of DRA vision was stimulated by linearly polarized ultraviolet(UV)and violet light,the phototactic function weight was induced by blue,green,and orange light,and under linearly polarized light,the functional effect of DRA vision was strongest in response to linearly polarized violet light.Moreover,the locust visual response effect was related to spectral light attributes,with the linear polarization effect intensifying in response to the short-range vision sensitivity of non-DRA visual fields,whereas DRA vision regulated the short-range sensitivity of compound eye vision.When illumination increased,the synergistic enhancement effects of linearly polarized ultraviolet and violet light were significant,whereas the visual sensitivity was restricted significantly by linearly polarized blue,green,or orange light.Thus,non-DRA vision determined,while DRA vision enhanced,the phototactic response sensitivity,whereas,in linearly polarized UV or violet light,non-DRA vision determined,while DRA vision enhanced,the visual trend and polarotaxic aggregation sensitivity,with opposite effects in linearly polarized blue,green,or orange light.When illumination increased,there was a driving effect caused by linearly polarized violet light on non-DRA vision,whereas at short-wave lengths,the control effect induced by linearly polarized orange light was optimal;however,the photo-induced effect of linearly polarized violet light and the visual distance control effect of linearly polarized orange light were optimal.These results provide theoretical support for the photo-induced mechanism of the locust visual response effect and for the development of linearly polarized light sources for the environmentally friendly prevention and control of locust populations.展开更多
文摘OBJECTIVE:To evaluate the effects of external application of warm meridian medicated wine and polarized light therapy combined with acupuncture on pain management following vertebroplasty. METHODS:A total of 120 patients with osteoporotic vertebral compression fractures treated by vertebroplasty at our hospital were divided into four groups. The control group received non-steroidal anti-inflammatory drugs, the Treatment Group Ⅰ received acupuncture alone, Treatment Group Ⅱ was treated with medicated wine for warming meridians alongside polarized light physiotherapy, and Treatment Group Ⅲ received a combination of medicated wine for warming meridians, polarized light therapy, and acupuncture. The clinical efficacy, pain thresholds at various time points, temperature pain threshold, electric pain threshold, quality of life, sleep quality index, lumbar dysfunction index, visual analog scale(VAS) scores, and incidence of adverse reactions were compared and analyzed across the four groups. RESULTS:The total clinical effective rate in Treatment Group Ⅲ was significantly higher than that in the control group, Treatment Group Ⅰ, and Treatment Group Ⅱ(P < 0.05). At 24 and 72 h post-treatment, the VAS scores, temperature pain thresholds, and electric pain thresholds in Treatment Group Ⅲ were significantly lower than those in the control group, Treatment Group Ⅰ, and Treatment Group Ⅱ(P < 0.05). Additionally, quality-of-life scores in Treatment Group Ⅲ were markedly higher compared to the control group, Treatment Group Ⅰ, and Treatment Group Ⅱ, while the Pittsburgh Sleep Quality Index scores, Oswestry Disability Index scores, and incidence of adverse reactions in Treatment Group Ⅲ were significantly lower than in the other groups(P < 0.05). CONCLUSION:The external application of warm meridian medicated wine and polarized light therapy combined with acupuncture significantly reduces postoperative pain following vertebroplasty, enhances lumbar function, and improves both sleep quality and overall quality of life for patients. This approach is recommended for clinical application.
文摘The high mortality rates of colon and rectal tumors have put forward an urgent need for rapid, sensitive, and accurate diagnosis. The polarization imaging technology, with the advantages of noninvasiveness, noncontact, quantification, rapidity, and high sensitivity, is expected to be used for auxiliary diagnosis of colorectal cancer. Herein, the differences in colorectal tissues of four pathological types were studied using this powerful technology. Polarized light imaging combined with the Mueller matrix decomposition (MMPD) method was applied to extract structural features that may be related to colorectal tumors. It demonstrated that parameters δ and θ could reflect the structural differences of colorectal tumors. Preliminary simulated experiment results revealed that the parameter δ was related to the fiber density, and the parameter θ was related to the fiber angle. Then Tamura image texture analysis was used to quantitatively describe tissues of different pathological types, and the results showed that the coarseness, contrast, directionality, and roughness of the four groups were statistically different. Texture analysis based on the quantitative data of the four dimensions could be applied for the identification of benign and malignant colorectal tumors.
基金supported by the National Key Research and Development Program of China(Grant Nos.2022YFC3401100 and 2022YFF0712500)the Guangdong Major Project of Basic and Applied Basic Research(Grant No.2020B0301030009)+2 种基金the National Natural Science Foundation of China(Grant Nos.12204017,12004012,12004013,12041602,91750203,91850111,and 92150301)the China Postdoctoral Science Foundation(Grant No.2020M680220 and 2020M680230)the Clinical Medicine Plus X-Young Scholars Project,Peking University,Fundamental Research Funds for the Central Universities.
文摘Due to its broken out-of-plane symmetry,z-cut periodically poled lithium niobate(PPLN)has exhibited ultrahigh second-order optical nonlinearity.Precise quantification of the domain structure of z-cut PPLN plays a critical role during poling fabrication.To enhance the imaging detection efficiency of the domain structure in z-cut PPLN,we have developed a second-harmonic generation microscope system specifically designed to produce a longitudinal electric field in foci for the imaging domain inversion.We demonstrated that imaging using a longitudinal electric field can achieve a contrast ratio enhancement by a factor of 1.77,showing high imaging efficiency and making the proposed method suitable for in situ monitoring of the z-cut PPLN poling process.
基金financially the National Natural Science Foundation of China(51902136)the Fundamental Research Funds for the Central Universities(JUSRP12003,JUSRP622026)Natural Science Foundation of Jiangsu Province(BK20211236)。
文摘For decades,chiral nanomaterials have been extensively studied because of their extraordinary properties.Chiral nanostructures have attracted a lot of interest because of their potential applications including biosensing,asymmetric catalysis,optical devices,and negative index materials.Circularly polarized light(CPL)is the most attractive source for chirality owing to its high availability,and now it has been used as a chiral source for the preparation of chiral matter.In this review,the recent progress in the field of CPL-enabled chiral nanomaterials is summarized.Firstly,the recent advancements in the fabrication of chiral materials using circularly polarized light are described,focusing on the unique strategies.Secondly,an overview of the potential applications of chiral nanomaterials driven by CPL is provided,with a particular emphasis on biosensing,catalysis,and phototherapy.Finally,a perspective on the challenges in the field of CPL-enabled chiral nanomaterials is given.
基金This work was supported by the National Natural Science Foundation of China(No.61705065)Hunan Provincial Natural Science Foundation of China(No.2017JJ3034)+1 种基金Technology Program of Changsha(No.kq1804001)National Training Program of Innovation and Entrepreneurship for undergraduates(No.S201910532166).
文摘Circularly polarized light(CPL)has been given great attention because of its extensive application.While several devices for CPL detection have been studied,their performance is affected by the magnitude of photocurrent.In this paper,a self-powered photodetector based on hot electrons in chiral metamaterials is proposed and optimized.CPL can be distinguished by the direction of photocurrent without external bias owing to the interdigital electrodes with asymmetric chiral metamaterials.Distinguished by the direction of photocurrent,the device can easily detect the rotation direction of the CPL electric field,even if it only has a very weak responsivity.The responsivity of the proposed detector is near 1.9 mA/W at the wavelength of 1322 nm,which is enough to distinguish CPL.The detector we proposed has the potential for application in optical communication.
基金supported by the National Natural Science Foundation of China(Nos.61575139,61605136,51602213 and 11604236)the Youth Foundation of the Taiyuan University of Technology(No.2015QN066)
文摘Based on the vector diffraction theory, a super-resolution longitudinally polarized optical needle with ultra-long depth of focus(DOF) is generated by tightly focusing a radially polarized beam that is modulated by a self-designed ternary hybrid(phase/amplitude) filter(THF). Both the phase and the amplitude patterns of THF are judiciously optimized by the versatile particle swarm optimization(PSO) searching algorithm. For the focusing configuration with a combination of a high numerical aperture(NA) and the optimized sine-shaped THFs, an optical needle with the full width at half maximum(FWHM) of 0.414λ and the DOF of 7.58λ is accessed, which corresponds to an aspect ratio of 18.3. The demonstrated longitudinally polarized super-resolution light needle with high aspect ratio opens up broad applications in high-density optical data storage, nano-photolithography, super-resolution imaging and high-efficiency particle trapping.
基金co-supported by the National Natural Science Foundation of China(No.61973281)The Innovative Research Group Project of National Natural Science Foundation of China(No.51821003)+4 种基金the Aeronautical Science Foundation of China(No.2018ZCU0002)the Program for the Top Young Academic Leaders of Higher Learning Institutions of ShanxiShanxi Postgraduate Innovation Project,China(No.2020BY102)the Young Academic Leaders Foundation in North University of Chinathe Fund for Shanxi‘‘1331 Project”Key Subjects Construction。
文摘In recent years, the bionic polarized light compass has been widely studied for the unmanned aerial vehicle navigation. However, it is found from the obtained investigation results that a polarized light compass with a sensitive and high dynamic range polarimeter still provides inferior output precision of the heading angle due to the presence of the noise generating from the compass.The noise is existed not only in the angle of the polarization image acquired by polarimeters but also in the output heading data, which leads to a sharp reduction in the accuracy of a polarized light compass. Herein, we present noise analysis and a novel multiscale transform denoising method of a polarized light compass used for the unmanned aerial vehicle navigation. Specifically, a multiscale principle component analysis utilizing one-dimensional image entropy as classification criterion is directly implemented to suppress the noise in the acquired polarization image. Subsequently, a multiscale time–frequency peak filtering method using the sample entropy as classification criterion is applied for the output heading data so as to further increase the heading measurement accuracy from the denoised image above. These two approaches are combined to significantly reduce the heading error affected by different types of noises. Our experimental results indicate the proposed multiscale transform denoising method exhibits high performance in suppressing the noise of a polarized light compass used for the unmanned aerial vehicle navigation compared to existing prior arts.
基金Supported by the National Natural Science Foundation of China under Grant No 11404142the Youth Teacher Foundation of Huaiyin Institute of Technology under Grant No 2717577
文摘We theoretically study the spin transport through a two-terminal quantum dot device under the influence of a symmetric spin bias and circularly polarized light. It is found that the combination of the circularly polarized light and the applied spin bias can result in a net charge current. The resultant charge current is large enough to be measured when properly choosing the system parameters. The resultant charge current can be used to deduce the spin bias due to the fact that there exists a simple linear relation between them. When the external circuit is open, a charge bias instead of a charge current can be induced, which is also measurable by present technologies. These findings indicate a new approach to detect the spin bias by using circularly polarized light.
基金the support of Academic promotion program of Shandong First Medical University(No.2019LJ003)。
文摘Circularly polarized light(CPL)is an inherently chiral entity and is regarded as one of the possible deterministic signals that led to the evolution of homochirality in earth.Thus,CPL as an external physical field has been widely used in a technique known as absolute asymmetric synthesis,because a product enriched in one enantiomer is formed from racemic precursor molecules without the intervention of a chiral catalyst.In this review,we retrospect the historical research of CPL-induced absolute asymmetric synthesis,including chiral organic molecules,helical polymers,supramolecular assemblies,noble metal nanostructures.However,based on these results,we concluded that the chiral photon-matter interaction is very faint due to the arrangement of molecular bonds giving rise to chiral features,is over a smaller distance than the helical pitch of CPL,leading extremely small enantiomeric excess for product.Therefore,we highlight the recently emerged technology called superchiral field,in which the superchiral far-field and near-field could enhance the dissymmetry of optical field and near-field,respectively.In sum,we hope this review could bring some enlightenment to researchers and further improve the enantioselectivity of CPL-induced absolute asymmetric synthesis.
基金financially supported by the National Key Research and Development Program of China (No. 2016YFB0301003)the Shenzhen Free Exploring Basic Research Project (No. JCYJ20170307110223452)。
文摘In this paper,two ways of micro structural characterization,optical microscopy(OM) and polarized light microscopy(PLM),were both employed to describe the micro structure of semisolid slurry prepared by swirling enthalpy equilibration device(SEED).The results show that PLM is more reliable and accurate than OM to describe the special morphology feature of semisolid slurry made by SEED process.Meanwhile,the effects of pouring temperature and mass of molten liquid on the primary α-Al particle size and morphology were also investigated using PLM.The quantitative metallographic results measured from PLM demonstrate that the grain size and morphology and their distribution are significantly affected by both pouring temperature and the mass of molten liquid.The grain size poured with 2.7 kg liquid decreases from 659 to186 μm,and grain morphology transforms from dendrite to globular structure with pouring temperature reducing from690 to 630℃.The decreasing pouring temperature also promotes the distribution of spherical structure on the cross section.Meanwhile,the mass of molten liquid decreasing from 2.7 to 2.3 kg can decrease the grain size by maximum of 44% at high pouring temperature.
基金National Natural Science Foundation of China(Grant 60578003)Ministry of Science and Technology(Grant 2006CB70570),China.
文摘We investigate the propagation of polarized light in fibrous tissues such as muscle and skin.The myofibrils and collagen fibers are approximated as long cylinders and the tissue phantom is composed of spherical and cylindrical structures.We apply Monte Carlo method based on this phantom to simulate and analyze polarization imaging process of muscle.The good agreement between the simulation results and the experimental results validate the assumption of the phantom composition.This paper also presents how to describe the fiber orientation distribution and tissue anisotropy according to three parameters derived from the polarization imaging.
文摘The paper studied the relationship between microstructure and shape recovery characteristics by using colored microstructure analysis under polarized light on the thermomechanical cycled CuAlNi single crystals. The two-way shape memory effect in quenched thin bar resulted from the preferential formation/extinction of martensite variant due to the internal quench stress, and the variant was formed at an angle of about 45 deg. with the tension direction ([001] of the βphase). Initial thermomechanical cycling under relatively low stress single variant stress-induced martensite was formed at an angle of 45 deg. with the tension and its morphology was a lath of parallel twins. More than one group of variants were formed after several training cycles and such variants also caused tilting of some thermally formed accommodated martensite. By overheating the trained sample containing stabilized multi-variants of stress-induced martensite, very coarse martensite structure with a strong asymmetry was produced, which caused the reverse two-way shape memory effect.
基金supported by the National Key R&D Program of China(2023YFD2201405)the National Natural Science Foundation of China(32471804,32401514)+2 种基金the Canada Excellence Research Chair Program(CERC-2018-00006)the Canada Foundation for Innovation(38623)the Pacific Economic Development Canada(PacifiCAN).
文摘Circularly polarized luminescent materials find extensive applications in 3D displays,information encryption,and photoinduced supramolecular chirality.However,controlling the handedness of circularly polarized luminescence remains a significant challenge in advancing optical technologies.In this study,we present a Janus circularly polarized light emitter comprising a fluorescent film combined with chiral nematic cellulose with switchable chirality.The emitter achieves maximum luminescence dissymmetry factors(0.28 and-0.65)through mode switching.In addition,we show the emitter’s versatility in inducing chiral helices in azobenzene polymers with varying polar groups,resulting in significant chiral signals.Importantly,the chirality of these polymers can be switched by altering the luminescence mode of the emitter.These results are expected to facilitate the efficient design of chiral luminescent materials and photoinduction devices.
基金supported by the Guangxi Natural Science Foundation(Nos.2025GXNSFDA069038)the Special Fund for Science and Technology Development of Guangxi(No.AD25069078)+4 种基金the Guangxi Natural Science Foundation(No.AA23073018)the National Natural Science Foundation of China(Nos.22175043 and 52162021)the Open Foundation of State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures(No.MMCS2023OF05)the Innovation Project of Guangxi Graduate Education(No.YCBZ2025046)the Innovation Project of Guangxi Graduate Education(No.YCSW2025092).
文摘Chiral organic-inorganic hybrid halides show significant potential for applications in circularly polarized photodetection,chiral-induced spin selectivity effects(CISS),and nonlinear optics.However,the widespread use of toxic lead element poses environmental concerns,hindering the further applications.Herein,we synthesized a zero-dimensional(0D)lead-free chiral antimony-based halide(R/S-MBA)_(4)Sb_(2)Br_(10)with the coexistence of polarity and crystallographic chirality.The halides exhibit unique magneto-chiroptical effects due to the field-effect-induced fine-tuning of exciton energy,which is the first observation in chiral antimony-based halides.Furthermore,owing to its significant spontaneous polarization(5.0μC/cm^(2))and optical chirality(g_(CD)=0.0018),(R/S-MBA)_(4)Sb_(2)Br_(10)halide exhibits excellent performance in self-powered circularly polarized photodetection,nonlinear optics,and CISS effects.The self-powered photodetector demonstrates high sensitivity with distinguishable factors(g_(res)=0.53/-0.51@0 V)and broad spectral response.The single crystal(R/S-MBA)_(4)Sb_(2)Br_(10)also exhibits a high second-harmonic polarization response asymmetry factor(g_(SHG-CD)=0.98/-0.70)and strong second-harmonic generation intensity.These performances are among the best reported for chiral halides.Our research not only sheds new light on the investigation of magneto-chiroptical phenomena,but also marks a significant advancement in realizing high-sensitivity circularly polarized light detection within the realm of lead-free polar materials.
基金supported by the Scientific and Technological Project of Henan Province,China(Grant No.242102111179,222102210116,222102320080)he Natural Science Foundation Project of Henan Province,China(Grant No.232300420024).
文摘To clarify the function effect of spectrum and linear polarization-coupled light on locusts’induction,determine the influence factors of linearly polarized light on locusts’polartactic characteristics,construct the technical characteristics of locusts’polarization induction,and develop locusts’polartactic induction photo-source,this study investigated the functional influence of spectral light and linear polarization-coupled light on locust phototactic and polartactic behavior.A linearly polarized light source system was used to determine the polartactic response of locusts induced by different linearly polarized vectors under normal light conditions.The results demonstrated that,within the context of spectral and linear polarization-coupled light,the visual response sensitivity of locusts was related to the spectral light intensity,being highest in response to orange light intensity.The visual aggregation and selective sensitivities of locusts were both influenced by spectral irradiation distance,with the violet spectrum inducing the strongest sensitivity in both cases.The polartactic chord function tuning response characteristics at different angles(0°-360°)were associated with linear polarization spectrum attributes.The polartactic response of locusts was related to changes in visual sensitivity resulting from the distance from the linear polarization light source,being optimal in response to the orange spectrum,whereas the violet spectrum induced the optimal visual and polartactic aggregation sensitivities.Furthermore,the specificity of chord function tuning response characteristics with periodic vector variations in a heterogeneous spectrum showed significant changes.An orange spectrum vector mode led to the most pronounced changes in response,whereas the violet spectrum vector mode exhibited the most significant changes in chord function properties.These variations in chord function and period induced by spectrum impacted the functional effect of linear polarization vector modes and reset the sensitive vector of locust polarization vision.Specifically,under the orange spectrum,locusts exhibited the highest polartactic response sensitivity at 330°vector,whereas,under the violet spectrum,the polartactic aggregation sensitivity was most pronounced at 30°vector,and visual trend sensitivity was optimal at 120°vector.Our results provide theoretical support for the study of the specific sensitivity nature of locust phototactic and polartactic behaviors,and the construction of a mechanism for inducing the polarization spectrum in locusts.
基金supported in part by the National Key Research and Development Program of China(Nos.2020YFA0711200,2022YFB4701301)in part by the Defense Industrial Technology Development Program,China(No.JCKY2021601B016)+1 种基金in part by the Fundamental Research Funds for the Central Universities,China(No.YWF-23-JC-07)in part by the National Natural Science Foundation of China(No.62425302)。
文摘Nighttime navigation faces challenges from limited data and interference,especially when satellite signals are unavailable.Leveraging lunar polarized light,polarization navigation offers a promising solution for nighttime autonomous navigation.Current algorithms,however,are limited by the requirement for known horizontal attitudes,restricting applications.This study introduces an autonomous 3-D attitude determination method to overcome this limitation.Our approach utilizes the Angle of Polarization(AOP)at night to extract neutral points from the AOP pattern.This allows for the calculation of polarization meridian plane information for attitude determination.Subsequently,we present an optimized Polarization TRIAD(Pol-TRIAD)algorithm to acquire the 3-D attitude.The proposed method outperforms the existing approaches in outdoor experiments by achieving lower Root Mean Square Error(RMSE).For one baseline attitude,it improves pitch by 31.7%,roll by 21.7%,and yaw by 2.6%,while for the attitude with a larger tilt angle,the improvements are 64.4%,30.4%,and 9.1%,respectively.
基金financially supported by the Scientific and Technological Project of Henan Province,China(Grant No.242102111179,222102210116,222102320080)the Science and Technology Opening Cooperation Project of Henan,China(Grant No.172106000056)the National Natural Science Foundation of China(Grant No.31772501).
文摘This study investigated the influence of different linearly polarized spectrum lights on locusts polartactic response characteristics linearly polarized vector sensitivity mode and polartactic response by using linearly polarized spectrum vector light module and experimental device.The objective was to clarify the vector sensitivity characteristics and functional effect of linearly polarized light spectrum intensity on locusts polartactic response,determine the influence specificity of linearly polarized spectrum illumination properties on locusts polarization-related behavior.When spectrum and illumination were constant,locusts polartactic response,presenting the response feature of sine and cosine function change specificity,was related to spectrum attribute.The visual acuity effect stimulated by violet spectrum was the best,whereas the optical distance modulation effect induced by orange spectrum was the strongest.When illumination was enhanced,locusts vector sensitivity mode shifted to present the specific sensitivity prompted by light intensity at long distance and inhibited by light intensity at short distance.Moreover,the regulating function of violet spectrum was the strongest,and the regulatory mutation effect of orange spectrum was the least significant.Simultaneously,locusts polartactic sensitivity to 300°vector at 100 lx,whereas to 240°vector at 1000 lx of linearly polarized violet light was the strongest.Locusts polartactic aggregation and visual tendency sensitivity to 90°vector at 100 lx,whereas to 270°vector at 1000 lx of linearly polarized violet light was the strongest.The heterogeneous regulation function of different linearly polarized spectrum couplings with light intensity led to significant variations in locusts vector sensitivity mode.This was derived from the antagonistic and specific tuning characteristics of locusts polartactic vision,reflecting the integrated output effect of locusts vector dependence regulated by linearly polarized spectrum intensity attribute.The findings were significant for the construction of pest polarization induction light sources and the investigation of the sensitive physiology pathway of locusts polarization vision.
基金supported by the National Natural Science Foundation of China(Grant No.61904065)the National Key R&D Program of China(No.2016YFB070700702)the National Postdoctoral Program for Innovative Talent(No.BX20190127)。
文摘Chiral inorganic semiconductors with high dissymmetric factor are highly desirable,but it is generally difficult to induce chiral structure in inorganic semiconductors because of their structure rigidity and symmetry.In this study,we introduced chiral ZnO film as hard template to transfer chirality to CsPbBr_(3) film and PbS quantum dots(QDs)for circularly polarized light(CPL)emission and detection,respectively.The prepared CsPbBr_(3)/ZnO thin film exhibited CPL emission at 520 nm and the PbS QDs/ZnO film realized CPL detection at 780 nm,featuring high dissymmetric factor up to around 0.4.The electron transition based mechanism is responsible for chirality transfer.
基金The experimental part of this work was performed at University of California,Santa Barbara.This study is based upon work partially supported as part of the‘Center for Energy Efficient Materials’at University of California,Santa Barbara,an Energy Frontier Research Center funded by the US Department of Energy,Office of Science,Office of Basic Energy Sciences under Award Number DE-SC0001009 and by the Solid State Lighting and Energy Center(SSLEC)at the University of California,Santa Barbara.
文摘Light-emitting diodes are becoming the alternative for future general lighting applications,with huge energy savings compared to conventional light sources owing to their high efficiency and reliability.Polarized light sources would largely enhance the efficiency in a number of applications,such as in liquid-crystal displays,and also greatly improve contrast in general illumination due to the reduction in indirect glare.Here,we demonstrate light-emitting diodes presenting high-brightness polarized light emission by combining the polarization-preserving and directional extraction properties of embedded photonic-crystals applied to non-polar gallium nitride.A directional enhancement of up to 1.8-fold was observed in the total polarized light emission together with a high polarization degree of 88.7%at 465 nm.We discuss the mechanisms of polarized light emission in non-polar gallium nitride and the photonic-crystal design rules to further increase the light-emitting diode brightness.This work could open the way to polarized white-light emitters through their association with polarization-preserving down-converting phosphors.
基金The authors acknowledge that this work was financially supported by the Scientific and Technological Project of Henan Province,China(Grant No.222102210116,212102110229)the special project of Xinxiang Science and Technology of Henan Province,China(Grant No.21ZD003)the National Natural Science Foundation of China(Grant No.31772501).
文摘Locust and grasshopper plagues pose a serious threat to crop production in many areas worldwide.However,there is a lack of effective,quick-acting methods to control such outbreaks.Methods exploiting the phototactic response of these insects are receiving increasing attention.The current study investigated the effect of linearly polarized and unpolarized light on locust phototactic and polarotactic responses,in particular the function of their dorsal rim area(DRA)and non-DRA visual fields.The results showed that the polarotactic function weight of DRA vision was stimulated by linearly polarized ultraviolet(UV)and violet light,the phototactic function weight was induced by blue,green,and orange light,and under linearly polarized light,the functional effect of DRA vision was strongest in response to linearly polarized violet light.Moreover,the locust visual response effect was related to spectral light attributes,with the linear polarization effect intensifying in response to the short-range vision sensitivity of non-DRA visual fields,whereas DRA vision regulated the short-range sensitivity of compound eye vision.When illumination increased,the synergistic enhancement effects of linearly polarized ultraviolet and violet light were significant,whereas the visual sensitivity was restricted significantly by linearly polarized blue,green,or orange light.Thus,non-DRA vision determined,while DRA vision enhanced,the phototactic response sensitivity,whereas,in linearly polarized UV or violet light,non-DRA vision determined,while DRA vision enhanced,the visual trend and polarotaxic aggregation sensitivity,with opposite effects in linearly polarized blue,green,or orange light.When illumination increased,there was a driving effect caused by linearly polarized violet light on non-DRA vision,whereas at short-wave lengths,the control effect induced by linearly polarized orange light was optimal;however,the photo-induced effect of linearly polarized violet light and the visual distance control effect of linearly polarized orange light were optimal.These results provide theoretical support for the photo-induced mechanism of the locust visual response effect and for the development of linearly polarized light sources for the environmentally friendly prevention and control of locust populations.