Characteristics and generation of internal waves(IWs)in the Sulu Sea are studied using Moderate-Resolution Imaging Spectroradiometer(MODIS)and Visible Infrared Imaging Radiometer Suite(VIIRS)images taken from October ...Characteristics and generation of internal waves(IWs)in the Sulu Sea are studied using Moderate-Resolution Imaging Spectroradiometer(MODIS)and Visible Infrared Imaging Radiometer Suite(VIIRS)images taken from October 2016 to September 2019.Satellite observations show that IWs in the Sulu Sea mainly located in the shallower western areas with occasional observations in the deeper eastern regions.The dominant length of wave crest(LWC)of IWs is between 50 and 150 km with the largest LWC reaching over 300 km.The analysis of temporal distributions of IWs shows that March has the most IWs and July has the least.Further analysis shows that the seasonal variation is mainly due to the cloud contamination of optical satellite images.New generation sites of IWs are analyzed using satellite images.Six possible generation sites for IWs in the western Sulu Sea and one generation site for IWs in the eastern Sulu Sea are found using the ray-tracing method.Multi IW sources in the same strait are found,which may be due to the seawater fl ow over the strait in diff erent directions.The analysis shows that IWs with long wave crest in the Sulu Sea is a combined eff ort of all straits between small islands in the Sulu Archipelago.Remote generated IWs with long wave crest in the eastern Sulu Sea are studied,which are generated at the straits around(121.5°E,6°N)by the nonlinear evolution of internal tide originated from the Sulu Archipelago.展开更多
FY-3 is the second generation polar-orbiting meteorological satellite of China. The first satellite named FY-3A of this series was launched on 27 May 2008. The first operational satellite named FY-3C of this series wa...FY-3 is the second generation polar-orbiting meteorological satellite of China. The first satellite named FY-3A of this series was launched on 27 May 2008. The first operational satellite named FY-3C of this series was launched on 23 September, 2013. The new generation satellites are to provide three-dimensional, quantitative, multi-spectral global remote sensing data under all weather conditions, which will greatly help the operational numerical weather prediction, global climate change research, climate diagnostics and prediction, and natural disaster monitoring. They will also provide help for many other fields such as agriculture, forestry, oceanography and hydrology. With the above-mentioned capability, the FY-3 satellites can make valuable contributions to improving weather forecasts, global natural-disaster and environmental monitoring.展开更多
Investigating urban expansion patterns aids in the management of urbanization and in ameliorating the socioeconomic and environmental issues associated with economic transformation and sustainable development.Applying...Investigating urban expansion patterns aids in the management of urbanization and in ameliorating the socioeconomic and environmental issues associated with economic transformation and sustainable development.Applying Harmonized Defense Meteorological Satellite Program-Operational Line-scan System(DMSP-OLS)and the Suomi National Polar-Orbiting Partnership-Visible Infrared Imagery Radiometer Suite(NPP-VIIRS)Nighttime Light(NTL)data,this paper investigated the characteristics of urban landscape in West Africa.Using the harmonized NTL data,spatial comparison and empirical threshold methods were employed to detect urban changes from 1993 to 2018.We examined the rate of urban change and calculated the direction of the urban expansion of West Africa using the center-of-gravity method for urban areas.In addition,we used the landscape expansion index method to assess the processes and stages of urban growth in West Africa.The accuracy of urban area extraction based on NTL data were R^(2)=0.8314 in 2000,R^(2)=0.8809 in 2006,R^(2)=0.9051 in 2012 for the DMSP-OLS and the simulated NPP-VIIRS was R^(2)=0.8426 in 2018,by using Google Earth images as validation.The results indicated that there was a high rate and acceleration of urban landscapes in West Africa,with rates of 0.0160,0.0173,0.0189,and 0.0686,and accelerations of 0.31,0.42,0.54,and 0.90 for the periods of 1998–2003,2003–2008,2008–2013,and 2013–2018,respectively.The expansion direction of urban agglomeration in West Africa during 1993–2018 was mainly from the coast to inland.However,cities located in the Sahel Region of Africa and in the middle zone expanded from north to south.Finally,the results showed that the urban landscape of West Africa was mainly in a scattered and disordered’diffusion’process,whereas only a few cities located in coastal areas experiencing the process of’coalescence’according to urban growth phase theory.This study provides urban planners with relevant insights for the urban expansion characteristics of West Africa.展开更多
Sea ice has important effect on the marine ecosystem and people living in the surrounding regions in winter.However,the understanding on changes of sea ice in the Bohai and northern Huanghai Sea(BNHS),China is still l...Sea ice has important effect on the marine ecosystem and people living in the surrounding regions in winter.However,the understanding on changes of sea ice in the Bohai and northern Huanghai Sea(BNHS),China is still limited.Based on the images from Visible and InfraRed Radiometer(VIRR)onboard Chinese second generation polar-orbit meteorological series satellites FY-3A/B/C,the sea ice areas in the BNHS were extracted from December 2008 to March 2019,the spatio-temporal distribution charac-teristics of sea ice and the relationship between sea ice area and climatic factors were analyzed,then a preliminary sea ice forecast model based on the climatic factors was developed.The results showed that sea ice area in the BNHS in each December was relatively small and rather high sea ice occurrence probability appeared in the offshore areas in Liaodong Bay and northern Huanghai Sea.The sea ice area in January or February each year was the largest,and sea ice occurred in most of areas in Liaodong Bay and northern Huanghai Sea with rather high probability and in some areas in Bohai Bay and Laizhou Bay with relatively high probability.How-ever,the sea ice area in each March was the smallest,and sea ice was even melted completely occasionally,hence with relatively low occurrence probability in Liaodong Bay.As for the inter-annual variability of sea ice in the BNHS during the research period,the sea ice area was largest in winter 2010/11 and smallest in winter 2014/15,and annual sea ice area presented a decreasing trend.The at-mospheric temperature,western Pacific subtropical high(WPSH),Asia polar vortex(APV),Asian monsoon circulation(AMC)and Eurasian monsoon circulation(EMC)were very important climatic factors for sea ice formation and they had significant correlations with sea ice area.Therefore,a preliminary sea ice forecast model was constructed by using eight climatic factors including western Pacific subtropical high area index(WPSHAI),western Pacific subtropical high intensity index(WPSHII),western Pacific subtro-pical high northern boundary position index(WPSHNBPI),Asia polar vortex area index(APVAI),Asian zonal circulation index(AZCI),Asian meridional circulation index(AMCI),Eurasian zonal circulation index(EZCI)and mean minimum atmospheric tem-perature(MMAT).The model was confirmed to have a robust forecast effect by using F-test and validated sample data.The results are useful for monitoring sea ice with remote sensed data and forecasting sea ice conditions by climatic indices.展开更多
基金Supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(Nos.XDA19060101,XDA19090103,XDB42000000)the National Natural Science Foundation for Young Scientists of China(No.41906157)+3 种基金the National Natural Science Foundation for Young Scientists of China(Nos.41776183,41606200)the Key Project of Center for Ocean Mega-Science,Chinese Academy of Sciences(No.COMS2019R02)the Major Scientifi c and Technological Innovation Projects in Shandong Province(No.2019JZZY010102)the CAS Program(No.Y9KY04101L)。
文摘Characteristics and generation of internal waves(IWs)in the Sulu Sea are studied using Moderate-Resolution Imaging Spectroradiometer(MODIS)and Visible Infrared Imaging Radiometer Suite(VIIRS)images taken from October 2016 to September 2019.Satellite observations show that IWs in the Sulu Sea mainly located in the shallower western areas with occasional observations in the deeper eastern regions.The dominant length of wave crest(LWC)of IWs is between 50 and 150 km with the largest LWC reaching over 300 km.The analysis of temporal distributions of IWs shows that March has the most IWs and July has the least.Further analysis shows that the seasonal variation is mainly due to the cloud contamination of optical satellite images.New generation sites of IWs are analyzed using satellite images.Six possible generation sites for IWs in the western Sulu Sea and one generation site for IWs in the eastern Sulu Sea are found using the ray-tracing method.Multi IW sources in the same strait are found,which may be due to the seawater fl ow over the strait in diff erent directions.The analysis shows that IWs with long wave crest in the Sulu Sea is a combined eff ort of all straits between small islands in the Sulu Archipelago.Remote generated IWs with long wave crest in the eastern Sulu Sea are studied,which are generated at the straits around(121.5°E,6°N)by the nonlinear evolution of internal tide originated from the Sulu Archipelago.
文摘FY-3 is the second generation polar-orbiting meteorological satellite of China. The first satellite named FY-3A of this series was launched on 27 May 2008. The first operational satellite named FY-3C of this series was launched on 23 September, 2013. The new generation satellites are to provide three-dimensional, quantitative, multi-spectral global remote sensing data under all weather conditions, which will greatly help the operational numerical weather prediction, global climate change research, climate diagnostics and prediction, and natural disaster monitoring. They will also provide help for many other fields such as agriculture, forestry, oceanography and hydrology. With the above-mentioned capability, the FY-3 satellites can make valuable contributions to improving weather forecasts, global natural-disaster and environmental monitoring.
基金Under the auspices of National Natural Science Foundation of China(No.41971202)。
文摘Investigating urban expansion patterns aids in the management of urbanization and in ameliorating the socioeconomic and environmental issues associated with economic transformation and sustainable development.Applying Harmonized Defense Meteorological Satellite Program-Operational Line-scan System(DMSP-OLS)and the Suomi National Polar-Orbiting Partnership-Visible Infrared Imagery Radiometer Suite(NPP-VIIRS)Nighttime Light(NTL)data,this paper investigated the characteristics of urban landscape in West Africa.Using the harmonized NTL data,spatial comparison and empirical threshold methods were employed to detect urban changes from 1993 to 2018.We examined the rate of urban change and calculated the direction of the urban expansion of West Africa using the center-of-gravity method for urban areas.In addition,we used the landscape expansion index method to assess the processes and stages of urban growth in West Africa.The accuracy of urban area extraction based on NTL data were R^(2)=0.8314 in 2000,R^(2)=0.8809 in 2006,R^(2)=0.9051 in 2012 for the DMSP-OLS and the simulated NPP-VIIRS was R^(2)=0.8426 in 2018,by using Google Earth images as validation.The results indicated that there was a high rate and acceleration of urban landscapes in West Africa,with rates of 0.0160,0.0173,0.0189,and 0.0686,and accelerations of 0.31,0.42,0.54,and 0.90 for the periods of 1998–2003,2003–2008,2008–2013,and 2013–2018,respectively.The expansion direction of urban agglomeration in West Africa during 1993–2018 was mainly from the coast to inland.However,cities located in the Sahel Region of Africa and in the middle zone expanded from north to south.Finally,the results showed that the urban landscape of West Africa was mainly in a scattered and disordered’diffusion’process,whereas only a few cities located in coastal areas experiencing the process of’coalescence’according to urban growth phase theory.This study provides urban planners with relevant insights for the urban expansion characteristics of West Africa.
基金supported by the National Research and Development Program of China(Nos.2020YFA0608203 and 2016YFC1402003)the FengYun Application Pioneering Project of China Meteorological Administration(No.FYAPP2021)+1 种基金the National Natural Science Foundation of China(No.42001362)the NUIST-Reading Research Institute Pump-Priming Application.
文摘Sea ice has important effect on the marine ecosystem and people living in the surrounding regions in winter.However,the understanding on changes of sea ice in the Bohai and northern Huanghai Sea(BNHS),China is still limited.Based on the images from Visible and InfraRed Radiometer(VIRR)onboard Chinese second generation polar-orbit meteorological series satellites FY-3A/B/C,the sea ice areas in the BNHS were extracted from December 2008 to March 2019,the spatio-temporal distribution charac-teristics of sea ice and the relationship between sea ice area and climatic factors were analyzed,then a preliminary sea ice forecast model based on the climatic factors was developed.The results showed that sea ice area in the BNHS in each December was relatively small and rather high sea ice occurrence probability appeared in the offshore areas in Liaodong Bay and northern Huanghai Sea.The sea ice area in January or February each year was the largest,and sea ice occurred in most of areas in Liaodong Bay and northern Huanghai Sea with rather high probability and in some areas in Bohai Bay and Laizhou Bay with relatively high probability.How-ever,the sea ice area in each March was the smallest,and sea ice was even melted completely occasionally,hence with relatively low occurrence probability in Liaodong Bay.As for the inter-annual variability of sea ice in the BNHS during the research period,the sea ice area was largest in winter 2010/11 and smallest in winter 2014/15,and annual sea ice area presented a decreasing trend.The at-mospheric temperature,western Pacific subtropical high(WPSH),Asia polar vortex(APV),Asian monsoon circulation(AMC)and Eurasian monsoon circulation(EMC)were very important climatic factors for sea ice formation and they had significant correlations with sea ice area.Therefore,a preliminary sea ice forecast model was constructed by using eight climatic factors including western Pacific subtropical high area index(WPSHAI),western Pacific subtropical high intensity index(WPSHII),western Pacific subtro-pical high northern boundary position index(WPSHNBPI),Asia polar vortex area index(APVAI),Asian zonal circulation index(AZCI),Asian meridional circulation index(AMCI),Eurasian zonal circulation index(EZCI)and mean minimum atmospheric tem-perature(MMAT).The model was confirmed to have a robust forecast effect by using F-test and validated sample data.The results are useful for monitoring sea ice with remote sensed data and forecasting sea ice conditions by climatic indices.