We study the Poisson-Lie structures on the group SU(2,R). We calculate all Poisson-Lie structures on SU(2,R) through the correspondence with Lie bialgebra structures on its Lie algebra su(2,R). We show that all these ...We study the Poisson-Lie structures on the group SU(2,R). We calculate all Poisson-Lie structures on SU(2,R) through the correspondence with Lie bialgebra structures on its Lie algebra su(2,R). We show that all these structures are linearizable in the neighborhood of the unity of the group SU(2,R). Finally, we show that the Lie algebra consisting of all infinitesimal automorphisms is strictly contained in the Lie algebra consisting of Hamiltonian vector fields.展开更多
利用H am ilton对称群的作用不变量,将R4N上具有标准辛结构的双非线性化T oda特征值问题约化为R4N/(R>0)N上L ie-Po iss on结构下的3×3非线性化特征值问题;并进一步讨论了该3×3非线性化特征值问题与R2N上标准辛结构下的2...利用H am ilton对称群的作用不变量,将R4N上具有标准辛结构的双非线性化T oda特征值问题约化为R4N/(R>0)N上L ie-Po iss on结构下的3×3非线性化特征值问题;并进一步讨论了该3×3非线性化特征值问题与R2N上标准辛结构下的2×2非线性化特征值问题之间的关系.展开更多
文摘We study the Poisson-Lie structures on the group SU(2,R). We calculate all Poisson-Lie structures on SU(2,R) through the correspondence with Lie bialgebra structures on its Lie algebra su(2,R). We show that all these structures are linearizable in the neighborhood of the unity of the group SU(2,R). Finally, we show that the Lie algebra consisting of all infinitesimal automorphisms is strictly contained in the Lie algebra consisting of Hamiltonian vector fields.