To enhance the computational efficiency of spatio-temporally discretized phase-field models,we present a high-speed solver specifically designed for the Poisson equations,a component frequently used in the numerical c...To enhance the computational efficiency of spatio-temporally discretized phase-field models,we present a high-speed solver specifically designed for the Poisson equations,a component frequently used in the numerical computation of such models.This efficient solver employs algorithms based on discrete cosine transformations(DCT)or discrete sine transformations(DST)and is not restricted by any spatio-temporal schemes.Our proposed methodology is appropriate for a variety of phase-field models and is especially efficient when combined with flow field systems.Meanwhile,this study has conducted an extensive numerical comparison and found that employing DCT and DST techniques not only yields results comparable to those obtained via the Multigrid(MG)method,a conventional approach used in the resolution of the Poisson equations,but also enhances computational efficiency by over 90%.展开更多
This paper focuses on studying the Poisson theory and the integration method of dynamics of relative motion. Equations of a dynamical system of relative motion in phase space are given. Poisson theory of the system is...This paper focuses on studying the Poisson theory and the integration method of dynamics of relative motion. Equations of a dynamical system of relative motion in phase space are given. Poisson theory of the system is established. The Jacobi last multiplier of the system is defined, and the relation between the Jacobi last multiplier and the first integrals of the system is studied. Our research shows that for a dynamical system of relative motion, whose configuration is determined by n generalized coordinates, the solution of the system can be found by using the Jacobi last multiplier if (2n-1) first integrals of the system are known. At the end of the paper, an example is given to illustrate the application of the results.展开更多
The application of Tikhonov regularization method dealing with the ill-conditioned problems in the regional gravity field modeling by Poisson wavelets is studied. In particular, the choices of the regularization matri...The application of Tikhonov regularization method dealing with the ill-conditioned problems in the regional gravity field modeling by Poisson wavelets is studied. In particular, the choices of the regularization matrices as well as the approaches for estimating the regularization parameters are investigated in details. The numerical results show that the regularized solutions derived from the first-order regularization are better than the ones obtained from zero-order regularization. For cross validation, the optimal regularization parameters are estimated from L-curve, variance component estimation(VCE) and minimum standard deviation(MSTD) approach, respectively, and the results show that the derived regularization parameters from different methods are consistent with each other. Together with the firstorder Tikhonov regularization and VCE method, the optimal network of Poisson wavelets is derived, based on which the local gravimetric geoid is computed. The accuracy of the corresponding gravimetric geoid reaches 1.1 cm in Netherlands, which validates the reliability of using Tikhonov regularization method in tackling the ill-conditioned problem for regional gravity field modeling.展开更多
A new method for solving the 1D Poisson equation is presented using the finite difference method. This method is based on the exact formulation of the inverse of the tridiagonal matrix associated with the Laplacian. T...A new method for solving the 1D Poisson equation is presented using the finite difference method. This method is based on the exact formulation of the inverse of the tridiagonal matrix associated with the Laplacian. This is the first time that the inverse of this remarkable matrix is determined directly and exactly. Thus, solving 1D Poisson equation becomes very accurate and extremely fast. This method is a very important tool for physics and engineering where the Poisson equation appears very often in the description of certain phenomena.展开更多
In recent years,there is a scenario in urban tunnel constructions to build super-large-span tunnels for traffic diversion and route optimization purposes.However,the increased size makes tunnel support more difficult....In recent years,there is a scenario in urban tunnel constructions to build super-large-span tunnels for traffic diversion and route optimization purposes.However,the increased size makes tunnel support more difficult.Unfortunately,there are few studies on the failure and support mechanism of the surrounding rocks in the excavation of supported tunnel,while most model tests of super-large-span tunnels focus on the failure characteristics of surrounding rocks in tunnel excavation without supports.Based on excavation compensation method(ECM),model tests of a super-large-span tunnel excavation by different anchor cable support methods in the initial support stage were carried out.The results indicate that during excavation of super-large-span tunnel,the stress and displacement of the shallow surrounding rocks decrease,following a step-shape pattern,and the tunnel failure is mainly concentrated on the vault and spandrel areas.Compared with conventional anchor cable supports,the NPR(negative Poisson’s ratio)anchor cable support is more suitable for the initial support stage of the super-large-span tunnels.The tunnel support theory,model test materials,methods,and the results obtained in this study could provide references for study of similar super-large-span tunnels。展开更多
In this work, the three dimensional Poisson’s equation in Cartesian coordinates with the Dirichlet’s boundary conditions in a cube is solved directly, by extending the method of Hockney. The Poisson equation is appr...In this work, the three dimensional Poisson’s equation in Cartesian coordinates with the Dirichlet’s boundary conditions in a cube is solved directly, by extending the method of Hockney. The Poisson equation is approximated by 19-points and 27-points fourth order finite difference approximation schemes and the resulting large algebraic system of linear equations is treated systematically in order to get a block tri-diagonal system. The efficiency of this method is tested for some Poisson’s equations with known analytical solutions and the numerical results obtained show that the method produces accurate results. It is shown that 19-point formula produces comparable results with 27-point formula, though computational efforts are more in 27-point formula.展开更多
A new finite difference-Chebyshev-Tau method for the solution of the two-dimensional Poisson equation is presented. Some of the numerical results are also presented which indicate that the method is satisfactory and c...A new finite difference-Chebyshev-Tau method for the solution of the two-dimensional Poisson equation is presented. Some of the numerical results are also presented which indicate that the method is satisfactory and compatible to other methods.展开更多
This paper studies integration of a higher-order differential equation which can be reduced to a second-order ordinary differential equation. The solution of the second-order equation can be obtained by the Noether me...This paper studies integration of a higher-order differential equation which can be reduced to a second-order ordinary differential equation. The solution of the second-order equation can be obtained by the Noether method and the Poisson method. Then the solution of the higher-order equation can be obtained by integrating the solution of the second-order equation.展开更多
A new pressure Poisson equation method with viscous terms is established on staggered grids. The derivations show that the newly established pressure equation has the identical equation form in the projection method. ...A new pressure Poisson equation method with viscous terms is established on staggered grids. The derivations show that the newly established pressure equation has the identical equation form in the projection method. The results show that the two methods have the same velocity and pressure values except slight differences in the CPU time.展开更多
The algebraic structure and the Poisson method for a weakly nonholonomic system are studied.The differential equations of motion of the system can be written in a contravariant algebra form and its algebraic structure...The algebraic structure and the Poisson method for a weakly nonholonomic system are studied.The differential equations of motion of the system can be written in a contravariant algebra form and its algebraic structure is discussed.The Poisson theory for the systems which possess Lie algebra structure is generalized to the weakly nonholonomic system.An example is given to illustrate the application of the result.展开更多
By introducing a more general auxiliary ordinary differential equation (ODE), a modified variable separated ordinary differential equation method is presented for solving the (2 + 1)-dimensional sine-Poisson equa...By introducing a more general auxiliary ordinary differential equation (ODE), a modified variable separated ordinary differential equation method is presented for solving the (2 + 1)-dimensional sine-Poisson equation. As a result, many explicit and exact solutions of the (2 + 1)-dimensional sine-Poisson equation are derived in a simple manner by this technique.展开更多
As a boundary-type meshless method, the singular hybrid boundary node method(SHBNM) is based on the modified variational principle and the moving least square(MLS) approximation, so it has the advantages of both b...As a boundary-type meshless method, the singular hybrid boundary node method(SHBNM) is based on the modified variational principle and the moving least square(MLS) approximation, so it has the advantages of both boundary element method(BEM) and meshless method. In this paper, the dual reciprocity method(DRM) is combined with SHBNM to solve Poisson equation in which the solution is divided into particular solution and general solution. The general solution is achieved by means of SHBNM, and the particular solution is approximated by using the radial basis function(RBF). Only randomly distributed nodes on the bounding surface of the domain are required and it doesn't need extra equations to compute internal parameters in the domain. The postprocess is very simple. Numerical examples for the solution of Poisson equation show that high convergence rates and high accuracy with a small node number are achievable.展开更多
An innovative, extremely fast and accurate method is presented for Neumann-Dirichlet and Dirichlet-Neumann boundary problems for the Poisson equation, and the diffusion and wave equation in quasi-stationary regime;usi...An innovative, extremely fast and accurate method is presented for Neumann-Dirichlet and Dirichlet-Neumann boundary problems for the Poisson equation, and the diffusion and wave equation in quasi-stationary regime;using the finite difference method, in one dimensional case. Two novels matrices are determined allowing a direct and exact formulation of the solution of the Poisson equation. Verification is also done considering an interesting potential problem and the sensibility is determined. This new method has an algorithm complexity of O(N), its truncation error goes like O(h2), and it is more precise and faster than the Thomas algorithm.展开更多
目的介绍应用修正poisson回归模型计算常见结局事件的前瞻性研究中暴露因素的调整相对危险度的精确区间估计值。方法应用稳健误差方差估计法(sandwich variance esti mator)来校正相对危险度(RR)的估计方差,并通过SAS程序中GENMOD过程的...目的介绍应用修正poisson回归模型计算常见结局事件的前瞻性研究中暴露因素的调整相对危险度的精确区间估计值。方法应用稳健误差方差估计法(sandwich variance esti mator)来校正相对危险度(RR)的估计方差,并通过SAS程序中GENMOD过程的REPEATED语句实现修正poisson回归。此外,采用不同的统计方法对5个虚拟的研究数据进行了分析比较。结果以分层的Mantel-Haenszel法为标准参照,修正poisson回归对aRR点和区间估计均较为理想,普通poisson回归的aRR区间估计偏于保守。而logistic回归得到的aOR值明显偏离真实的RR值。结论修正poisson回归模型适合于处理常见结局事件的前瞻性研究资料。展开更多
基金Supported by Shanxi Province Natural Science Research(202203021212249)Special/Youth Foundation of Taiyuan University of Technology(2022QN101)+3 种基金National Natural Science Foundation of China(12301556)Research Project Supported by Shanxi Scholarship Council of China(2021-029)International Cooperation Base and Platform Project of Shanxi Province(202104041101019)Basic Research Plan of Shanxi Province(202203021211129)。
文摘To enhance the computational efficiency of spatio-temporally discretized phase-field models,we present a high-speed solver specifically designed for the Poisson equations,a component frequently used in the numerical computation of such models.This efficient solver employs algorithms based on discrete cosine transformations(DCT)or discrete sine transformations(DST)and is not restricted by any spatio-temporal schemes.Our proposed methodology is appropriate for a variety of phase-field models and is especially efficient when combined with flow field systems.Meanwhile,this study has conducted an extensive numerical comparison and found that employing DCT and DST techniques not only yields results comparable to those obtained via the Multigrid(MG)method,a conventional approach used in the resolution of the Poisson equations,but also enhances computational efficiency by over 90%.
基金supported by the National Natural Science Foundation of China (Grant No. 10972151)
文摘This paper focuses on studying the Poisson theory and the integration method of dynamics of relative motion. Equations of a dynamical system of relative motion in phase space are given. Poisson theory of the system is established. The Jacobi last multiplier of the system is defined, and the relation between the Jacobi last multiplier and the first integrals of the system is studied. Our research shows that for a dynamical system of relative motion, whose configuration is determined by n generalized coordinates, the solution of the system can be found by using the Jacobi last multiplier if (2n-1) first integrals of the system are known. At the end of the paper, an example is given to illustrate the application of the results.
基金supported by the National Natural Science Foundation of China (Nos.41374023,41131067,41474019)the National 973 Project of China (No.2013CB733302)+2 种基金the China Postdoctoral Science Foundation (No.2016M602301)the Key Laboratory of Geospace Envi-ronment and Geodesy,Ministry of Education,Wuhan University (No.15-02-08)the State Scholarship Fund from Chinese Scholarship Council (No.201306270014)
文摘The application of Tikhonov regularization method dealing with the ill-conditioned problems in the regional gravity field modeling by Poisson wavelets is studied. In particular, the choices of the regularization matrices as well as the approaches for estimating the regularization parameters are investigated in details. The numerical results show that the regularized solutions derived from the first-order regularization are better than the ones obtained from zero-order regularization. For cross validation, the optimal regularization parameters are estimated from L-curve, variance component estimation(VCE) and minimum standard deviation(MSTD) approach, respectively, and the results show that the derived regularization parameters from different methods are consistent with each other. Together with the firstorder Tikhonov regularization and VCE method, the optimal network of Poisson wavelets is derived, based on which the local gravimetric geoid is computed. The accuracy of the corresponding gravimetric geoid reaches 1.1 cm in Netherlands, which validates the reliability of using Tikhonov regularization method in tackling the ill-conditioned problem for regional gravity field modeling.
文摘A new method for solving the 1D Poisson equation is presented using the finite difference method. This method is based on the exact formulation of the inverse of the tridiagonal matrix associated with the Laplacian. This is the first time that the inverse of this remarkable matrix is determined directly and exactly. Thus, solving 1D Poisson equation becomes very accurate and extremely fast. This method is a very important tool for physics and engineering where the Poisson equation appears very often in the description of certain phenomena.
基金supported by the Innovation Fund Research Project of State Key Laboratory for Geomechanics and Deep Underground Engineering,China University of Mining and Technology(Grant No.SKLGDUEK202201)the Foundation for the Opening of State Key Laboratory for Geomechanics and Deep Underground Engineering,China University of Mining and Technology(Grant No.SKLGDUEK2129)the Open Research Fund of State Key Laboratory of Geomechanics and Geotechnical Engineering,Institute of Rock and Soil Mechanics,Chinese Academy of Sciences(Grant No.Z020007)。
文摘In recent years,there is a scenario in urban tunnel constructions to build super-large-span tunnels for traffic diversion and route optimization purposes.However,the increased size makes tunnel support more difficult.Unfortunately,there are few studies on the failure and support mechanism of the surrounding rocks in the excavation of supported tunnel,while most model tests of super-large-span tunnels focus on the failure characteristics of surrounding rocks in tunnel excavation without supports.Based on excavation compensation method(ECM),model tests of a super-large-span tunnel excavation by different anchor cable support methods in the initial support stage were carried out.The results indicate that during excavation of super-large-span tunnel,the stress and displacement of the shallow surrounding rocks decrease,following a step-shape pattern,and the tunnel failure is mainly concentrated on the vault and spandrel areas.Compared with conventional anchor cable supports,the NPR(negative Poisson’s ratio)anchor cable support is more suitable for the initial support stage of the super-large-span tunnels.The tunnel support theory,model test materials,methods,and the results obtained in this study could provide references for study of similar super-large-span tunnels。
文摘In this work, the three dimensional Poisson’s equation in Cartesian coordinates with the Dirichlet’s boundary conditions in a cube is solved directly, by extending the method of Hockney. The Poisson equation is approximated by 19-points and 27-points fourth order finite difference approximation schemes and the resulting large algebraic system of linear equations is treated systematically in order to get a block tri-diagonal system. The efficiency of this method is tested for some Poisson’s equations with known analytical solutions and the numerical results obtained show that the method produces accurate results. It is shown that 19-point formula produces comparable results with 27-point formula, though computational efforts are more in 27-point formula.
文摘A new finite difference-Chebyshev-Tau method for the solution of the two-dimensional Poisson equation is presented. Some of the numerical results are also presented which indicate that the method is satisfactory and compatible to other methods.
基金Project supported by the National Natural Science Foundation of China(Grant No10572021)Doctoral Programme Foundation of Institution of Higher Education of China(Grant No20040007022)
文摘This paper studies integration of a higher-order differential equation which can be reduced to a second-order ordinary differential equation. The solution of the second-order equation can be obtained by the Noether method and the Poisson method. Then the solution of the higher-order equation can be obtained by integrating the solution of the second-order equation.
基金Project supported by the National Natural Science Foundation of China (No. 50876114)
文摘A new pressure Poisson equation method with viscous terms is established on staggered grids. The derivations show that the newly established pressure equation has the identical equation form in the projection method. The results show that the two methods have the same velocity and pressure values except slight differences in the CPU time.
基金supported by the National Natural Science Foundation of China(10772025,10932002,10972031)the Beijing Municipal Key Disciplines Fund for General Mechanics and Foundation of Mechanics
文摘The algebraic structure and the Poisson method for a weakly nonholonomic system are studied.The differential equations of motion of the system can be written in a contravariant algebra form and its algebraic structure is discussed.The Poisson theory for the systems which possess Lie algebra structure is generalized to the weakly nonholonomic system.An example is given to illustrate the application of the result.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10672053)
文摘By introducing a more general auxiliary ordinary differential equation (ODE), a modified variable separated ordinary differential equation method is presented for solving the (2 + 1)-dimensional sine-Poisson equation. As a result, many explicit and exact solutions of the (2 + 1)-dimensional sine-Poisson equation are derived in a simple manner by this technique.
基金Foundation item: Supported by the National Natural Science Foundation of China(50608036)
文摘As a boundary-type meshless method, the singular hybrid boundary node method(SHBNM) is based on the modified variational principle and the moving least square(MLS) approximation, so it has the advantages of both boundary element method(BEM) and meshless method. In this paper, the dual reciprocity method(DRM) is combined with SHBNM to solve Poisson equation in which the solution is divided into particular solution and general solution. The general solution is achieved by means of SHBNM, and the particular solution is approximated by using the radial basis function(RBF). Only randomly distributed nodes on the bounding surface of the domain are required and it doesn't need extra equations to compute internal parameters in the domain. The postprocess is very simple. Numerical examples for the solution of Poisson equation show that high convergence rates and high accuracy with a small node number are achievable.
文摘An innovative, extremely fast and accurate method is presented for Neumann-Dirichlet and Dirichlet-Neumann boundary problems for the Poisson equation, and the diffusion and wave equation in quasi-stationary regime;using the finite difference method, in one dimensional case. Two novels matrices are determined allowing a direct and exact formulation of the solution of the Poisson equation. Verification is also done considering an interesting potential problem and the sensibility is determined. This new method has an algorithm complexity of O(N), its truncation error goes like O(h2), and it is more precise and faster than the Thomas algorithm.
文摘目的介绍应用修正poisson回归模型计算常见结局事件的前瞻性研究中暴露因素的调整相对危险度的精确区间估计值。方法应用稳健误差方差估计法(sandwich variance esti mator)来校正相对危险度(RR)的估计方差,并通过SAS程序中GENMOD过程的REPEATED语句实现修正poisson回归。此外,采用不同的统计方法对5个虚拟的研究数据进行了分析比较。结果以分层的Mantel-Haenszel法为标准参照,修正poisson回归对aRR点和区间估计均较为理想,普通poisson回归的aRR区间估计偏于保守。而logistic回归得到的aOR值明显偏离真实的RR值。结论修正poisson回归模型适合于处理常见结局事件的前瞻性研究资料。