期刊文献+
共找到40篇文章
< 1 2 >
每页显示 20 50 100
基于Masked-Pointer的多轮对话重写模型 被引量:1
1
作者 杨双涛 符博 +1 位作者 于晨晨 胡长建 《北京大学学报(自然科学版)》 EI CAS CSCD 北大核心 2021年第1期31-37,共7页
针对多轮会话中的Non-Sentential Utterances(NSUs)问题,结合当前在自然语言处理领域广泛使用的预训练语言模型,将Masked Language Model用于多轮会话NSUs的重写任务,提出Masked Rewriter Model。与基于Seq2Seq的重写模型相比,重写效果... 针对多轮会话中的Non-Sentential Utterances(NSUs)问题,结合当前在自然语言处理领域广泛使用的预训练语言模型,将Masked Language Model用于多轮会话NSUs的重写任务,提出Masked Rewriter Model。与基于Seq2Seq的重写模型相比,重写效果提升明显。根据NSUs重写任务特点,将Masked Language Model与Pointer Network相结合,提出基于Masked-Pointer Rewriter Model的多轮会话重写模型,利用指针网络,提升重写模型对上文信息的关注程度,在BERT Masked Rewriter模型的基础上进一步提升重写效果。 展开更多
关键词 人机交互 预训练语言模型 指针网络 会话重写
在线阅读 下载PDF
基于层叠式指针网络的供需事件抽取模型
2
作者 白宇 宁培强 +1 位作者 张桂平 王凌云 《中文信息学报》 北大核心 2025年第10期109-121,共13页
供需事件抽取任务旨在从非结构化文本中识别与供需活动相关的事件信息并以结构化的形式呈现出来。该文将供需事件抽取任务划分为触发词抽取、元素抽取两个子任务并对其分别建模,提出了一种层叠式指针网络管道模型。利用触发词文字信息... 供需事件抽取任务旨在从非结构化文本中识别与供需活动相关的事件信息并以结构化的形式呈现出来。该文将供需事件抽取任务划分为触发词抽取、元素抽取两个子任务并对其分别建模,提出了一种层叠式指针网络管道模型。利用触发词文字信息、触发词位置信息、触发词标记信息建立两个子任务之间的有效特征连接,并通过堆叠多层指针网络、级联解码解决了供需事件抽取中普遍存在的元素跨度较长、多事件共现、元素重叠嵌套等问题。在供需事件数据集上的实验结果显示,该文提出的模型在触发词抽取任务和元素抽取任务上的F 1值分别达到95.32%和83.53%,总体F 1值达到86.91%。 展开更多
关键词 事件抽取 供需事件 指针网络 管道模型 特征连接
在线阅读 下载PDF
基于大语言模型和提示学习的旅游文本实体关系联合抽取方法 被引量:1
3
作者 徐春 苏明钰 +2 位作者 马欢 吉双焱 王萌萌 《数据分析与知识发现》 北大核心 2025年第7期130-140,共11页
【目的】针对旅游领域知识分散、标注数据有限导致的微调效率低、抽取性能不佳等问题,进行小样本场景下实体关系抽取方法的研究。【方法】基于大模型GLM进行旅游领域的提示学习后,对输入文本进行编码表示,结合全局指针网络完成潜在关系... 【目的】针对旅游领域知识分散、标注数据有限导致的微调效率低、抽取性能不佳等问题,进行小样本场景下实体关系抽取方法的研究。【方法】基于大模型GLM进行旅游领域的提示学习后,对输入文本进行编码表示,结合全局指针网络完成潜在关系预测和特定关系下的实体识别,抽取关系三元组。【结果】在自建旅游数据集和百度DuIE数据集上进行实验,本文模型的F1值分别为90.51%和89.45%,较传统关系抽取模型分别提升2.37和0.16个百分点。【局限】提示学习仅应用于旅游领域和特定编码器,在应用场景方面还有拓展空间。【结论】本文方法能够更好地对旅游文本进行实体关系联合抽取,提示学习和大语言模型编码器可以缓解小样本场景下模型训练效果不佳的问题,有效提高实体关系抽取的准确率。 展开更多
关键词 实体关系抽取 大语言模型 提示学习 全局指针网络
原文传递
基于对抗训练和全局指针网络的医疗文本 实体关系联合抽取模型
4
作者 段宇锋 柏萍 《情报科学》 北大核心 2025年第3期47-57,共11页
【目的/意义】在比较分析现有关系抽取方法的基础上,构建适用于医疗文本的关系抽取模型。【方法/过程】构建AGP模型实现关系抽取。该模型将医疗文本的嵌入表示输入Transformer编码器进一步提取文本特征,利用全局指针网络解码。为了提高... 【目的/意义】在比较分析现有关系抽取方法的基础上,构建适用于医疗文本的关系抽取模型。【方法/过程】构建AGP模型实现关系抽取。该模型将医疗文本的嵌入表示输入Transformer编码器进一步提取文本特征,利用全局指针网络解码。为了提高鲁棒性,模型引入了对抗训练。【结果/结论】AGP模型在CMeIE-V1、CMeIE-V2和DiaKG数据集上F1值分别达到0.6190、0.5321和0.5684。实验结果证明AGP模型在医疗文本关系抽取任务上的性能优于基准模型。【创新/局限】本文提出的模型未整合大语言模型。 展开更多
关键词 对抗训练 全局指针网络 关系抽取 预训练模型 医疗文本
原文传递
基于深度学习的指针式仪表自动读数与读数校正方法
5
作者 朱均超 张明惠 +2 位作者 韩芳芳 王玉军 宋思源 《仪表技术与传感器》 北大核心 2025年第7期50-56,共7页
为了实现不同量程指针式仪表的自动精准读数,文中提出了一种基于深度学习的指针式仪表自动读数与读数校正的方法。针对不同量程指针式仪表的自动读数,首先,采用YOLOv5模型和U-Net模型进行仪表的检测及指针与刻度线信息的分割;随后利用PP... 为了实现不同量程指针式仪表的自动精准读数,文中提出了一种基于深度学习的指针式仪表自动读数与读数校正的方法。针对不同量程指针式仪表的自动读数,首先,采用YOLOv5模型和U-Net模型进行仪表的检测及指针与刻度线信息的分割;随后利用PP-OCRv3模型读取量程信息,实现对不同量程的仪表信息提取;最后将读取的量程信息代入夹角占比公式计算出仪表读数。针对倾斜仪表读数不准确的问题,构建BP神经网络拟合出检测读数与实际读数的非线性映射关系,实现对不同倾斜角度的指针式仪表检测读数的校正。实验表明:该方法能够得出不同量程的精准读数,平均绝对百分比误差MAPE为2.6845%。 展开更多
关键词 指针式仪表 深度学习 BP神经网络 读数校正 自动读数 OCR模型
在线阅读 下载PDF
基于深度强化学习的多无人机协同配送路径组合优化研究 被引量:1
6
作者 孔繁辉 姜斌 《科技管理研究》 2025年第7期194-206,共13页
无人机配送是合理优化“最后一公里”物流配送问题的重要探索。通过聚焦无人机物流配送路径优化这个前沿问题,引入深度强化学习智能算法,对如何实现多架无人机协同配送模式下路径组合进行优化决策。与传统的精确算法和启发式算法不同,... 无人机配送是合理优化“最后一公里”物流配送问题的重要探索。通过聚焦无人机物流配送路径优化这个前沿问题,引入深度强化学习智能算法,对如何实现多架无人机协同配送模式下路径组合进行优化决策。与传统的精确算法和启发式算法不同,深度强化学习算法在充分考虑无人机物流配送特征,尤其在分析非线性能源消费对配送潜能作用机理基础上,构建多约束下混合整数规划模型,通过指针网络(Ptr-Net)模型训练多层自更新的生成前馈网络,从而优化多架无人机服务序列组合决策顺序。研究结果表明,深度强化学习方法具有比传统算法更高的优化效率,此外,模型解码端的注意力机制强化了输入与输出元素间的权重联系,提高了训练数据的特征收敛速度。该问题的解决可拓展物流配送模式与路径优化理论,进一步推动无人机在物流配送领域的应用范围。 展开更多
关键词 多无人机路径优化 协同配送 深度强化学习 指针网络模型 注意力机制
在线阅读 下载PDF
融合PERT与高效全局指针网络的电力变压器缺陷文本实体识别方法
7
作者 林蔚青 郑垂锭 +4 位作者 陈静 江灏 肖洒 王铭海 缪希仁 《电网技术》 北大核心 2025年第11期4876-4887,共12页
电力变压器缺陷文本蕴含大量与设备可靠性密切相关的信息,可为变压器的智能化运维及寿命周期管理提供重要支撑。依托基于Transformer的双向编码器表示(bidirectional encoder representation from transformers,BERT)模型,文章提出一种... 电力变压器缺陷文本蕴含大量与设备可靠性密切相关的信息,可为变压器的智能化运维及寿命周期管理提供重要支撑。依托基于Transformer的双向编码器表示(bidirectional encoder representation from transformers,BERT)模型,文章提出一种融合乱序语言模型预训练BERT(pre-training BERT with permuted language model,PERT)与高效全局指针(efficient global pointer,EGP)网络的电力变压器缺陷文本实体识别方法。首先,在大规模中文语料库上利用乱序语言模型进行预训练以形成PERT模型。其次,PERT作为语义编码层,以深入挖掘实体内部的语义依赖关系,并捕捉复杂文本中的语言特征;EGP作为信息解码层,专注于精确定位关键信息并提取实体在缺陷文本中的分布特征,进而准确识别缺陷实体。最后,运用PERT-EGP模型识别缺陷文本中包含的缺陷设备、缺陷部件、缺陷部位、缺陷现象和缺陷程度5类实体。算例结果表明,相较于现有方法,该方法不仅在成分复杂的复合实体和长文本上效果提升显著,而且大幅缩短模型训练时间,具有更好的文本识别性能。 展开更多
关键词 缺陷文本 变压器 实体识别 乱序语言模型 高效全局指针网络
原文传递
基于提示学习和全局指针网络的中文古籍实体关系联合抽取方法 被引量:3
8
作者 李斌 林民 +3 位作者 斯日古楞 高颖杰 王玉荣 张树钧 《计算机应用》 北大核心 2025年第1期75-81,共7页
基于“预训练+微调”范式的实体关系联合抽取方法依赖大规模标注数据,在数据标注难度大、成本高的中文古籍小样本场景下微调效率低,抽取性能不佳;中文古籍中普遍存在实体嵌套和关系重叠的问题,限制了实体关系联合抽取的效果;管道式抽取... 基于“预训练+微调”范式的实体关系联合抽取方法依赖大规模标注数据,在数据标注难度大、成本高的中文古籍小样本场景下微调效率低,抽取性能不佳;中文古籍中普遍存在实体嵌套和关系重叠的问题,限制了实体关系联合抽取的效果;管道式抽取方法存在错误传播问题,影响抽取效果。针对以上问题,提出一种基于提示学习和全局指针网络的中文古籍实体关系联合抽取方法。首先,利用区间抽取式阅读理解的提示学习方法对预训练语言模型(PLM)注入领域知识以统一预训练和微调的优化目标,并对输入句子进行编码表示;其次,使用全局指针网络分别对主、客实体边界和不同关系下的主、客实体边界进行预测和联合解码,对齐成实体关系三元组,并构建了PTBG(Prompt Tuned BERT with Global pointer)模型,解决实体嵌套和关系重叠问题,同时避免了管道式解码的错误传播问题;最后,在上述工作基础上分析了不同提示模板对抽取性能的影响。在《史记》数据集上进行实验的结果表明,相较于注入领域知识前后的OneRel模型,PTBG模型所取得的F1值分别提升了1.64和1.97个百分点。可见,PTBG模型能更好地对中文古籍实体关系进行联合抽取,为低资源的小样本深度学习场景提供了新的研究思路与方法。 展开更多
关键词 实体关系联合抽取 全局指针网络 提示学习 预训练语言模型 中文古籍
在线阅读 下载PDF
基于全局指针限定窗口的中文医学实体识别
9
作者 仇家康 张卫山 +2 位作者 陈涛 张宝宇 朱宜昌 《计算机工程与设计》 北大核心 2025年第9期2586-2591,共6页
针对中文医学文本复杂嵌套实体难以处理的问题,提出一种基于全局指针限定窗口的中文医学实体识别模型。该模型通过医疗领域自适应预训练和新词挖掘,学习并适应医疗领域的特定数据分布。使用全局指针网络解码,并引入实体限定窗口,有效减... 针对中文医学文本复杂嵌套实体难以处理的问题,提出一种基于全局指针限定窗口的中文医学实体识别模型。该模型通过医疗领域自适应预训练和新词挖掘,学习并适应医疗领域的特定数据分布。使用全局指针网络解码,并引入实体限定窗口,有效减少长冗余负样本对模型训练的干扰。为降低模型对样本顺序的敏感性,采用最优自蒸馏策略,使模型学习到更高质量的知识和特征表示。实验结果表明,该模型在4个公开数据集上的性能均显著高于基线模型。 展开更多
关键词 实体识别 中文医学 模型蒸馏 文本挖掘 全局指针 神经网络 深度学习
在线阅读 下载PDF
一种融合主题的PGN-GAN文本摘要模型 被引量:2
10
作者 郭继峰 费禹潇 +2 位作者 孙文博 谢培浇 张健 《小型微型计算机系统》 CSCD 北大核心 2023年第1期199-203,共5页
为了改进生成式文本的摘要模型,本文提出了一种基于主题的生成对抗与指针网络结合的文本摘要模型.首先通过LDA主题建模方法获取主题词,在获取单词的主题向量后,将结合主题的词向量与传统的序列注意力相结合,形成新的复合注意力共同影响... 为了改进生成式文本的摘要模型,本文提出了一种基于主题的生成对抗与指针网络结合的文本摘要模型.首先通过LDA主题建模方法获取主题词,在获取单词的主题向量后,将结合主题的词向量与传统的序列注意力相结合,形成新的复合注意力共同影响单词的生成,然后通过加入生成对抗网络以在指针生成网络上取得了更好的效果.实验采用gigaword数据集进行训练,采用ROUGE评分机制进行评分,结果证明由于融入主题因素,相比单独采用指针网络我们的模型提升了摘要结果的可读性及准确性,具有更好的表现. 展开更多
关键词 指针网络 生成对抗 主题模型 文本摘要
在线阅读 下载PDF
基于RoBERTa-Span-Attack的标签指针网络军事命名实体识别 被引量:4
11
作者 罗兵 张显峰 +1 位作者 段立 陈琳 《海军工程大学学报》 CAS 北大核心 2024年第1期76-82,93,共8页
军事领域文本中存在大量军事实体信息,准确识别这些信息是军事文本信息提取和构建军事知识图谱的基础性任务。首先,提出了一种基于RoBERTa预训练模型、跨度和对抗训练的标签指针网络的融合深度模型(RoBERTa-Span-Attack),用于中文军事... 军事领域文本中存在大量军事实体信息,准确识别这些信息是军事文本信息提取和构建军事知识图谱的基础性任务。首先,提出了一种基于RoBERTa预训练模型、跨度和对抗训练的标签指针网络的融合深度模型(RoBERTa-Span-Attack),用于中文军事命名实体识别;然后,采用了一种基于Span的标签指针网络,同时完成实体的起止位置和类别的识别任务;最后,在模型训练过程中加入对抗训练策略,通过添加一些扰动来生成对抗样本进行训练。在军事领域数据集上的实验结果表明:所提出的军事领域命名实体识别模型相较于BERT-CRF、BERT-Softmax和BERT-Span,在识别准确度上具有更优的效果。 展开更多
关键词 军事命名实体识别 预训练模型 跨度 标签指针网络 对抗训练
在线阅读 下载PDF
基于指针网络的抽取生成式摘要生成模型 被引量:3
12
作者 陈伟 杨燕 《计算机应用》 CSCD 北大核心 2021年第12期3527-3533,共7页
作为自然语言处理中的热点问题,摘要生成具有重要的研究意义。基于Seq2Seq模型的生成式摘要模型取得了良好的效果,然而抽取式的方法具有挖掘有效特征并抽取文章重要句子的潜力,因此如何利用抽取式方法来改进生成式方法是一个较好的研究... 作为自然语言处理中的热点问题,摘要生成具有重要的研究意义。基于Seq2Seq模型的生成式摘要模型取得了良好的效果,然而抽取式的方法具有挖掘有效特征并抽取文章重要句子的潜力,因此如何利用抽取式方法来改进生成式方法是一个较好的研究方向。鉴于此,提出了融合生成式和抽取式方法的模型。首先,使用TextRank算法并融合主题相似度来抽取文章中有重要意义的句子。然后,设计了融合抽取信息语义的基于Seq2Seq模型的生成式框架来实现摘要生成任务;同时,引入指针网络解决模型训练中的未登录词(OOV)问题。综合以上步骤得到最终摘要,并在CNN/Daily Mail数据集上进行验证。结果表明在ROUGE-1、ROUGE-2和ROUGE-L三个指标上所提模型比传统TextRank算法均有所提升,同时也验证了融合抽取式和生成式方法在摘要生成领域中的有效性。 展开更多
关键词 抽取生成式摘要 TextRank算法 Seq2Seq模型 指针网络 语义融合
在线阅读 下载PDF
基于对比学习与梯度惩罚的实体关系联合抽取模型 被引量:2
13
作者 张强 曾俊玮 陈锐 《吉林大学学报(理学版)》 CAS 北大核心 2024年第5期1155-1162,共8页
针对使用全局指针网络进行实体关系抽取时特征信息不明显的实体关系类型数据稀疏问题,以及数据中存在的类别不平衡和错误标注问题,提出一种基于对比学习和梯度惩罚方法并使用改进的RoBERTa预训练模型的实体关系联合抽取模型,在阿里天池... 针对使用全局指针网络进行实体关系抽取时特征信息不明显的实体关系类型数据稀疏问题,以及数据中存在的类别不平衡和错误标注问题,提出一种基于对比学习和梯度惩罚方法并使用改进的RoBERTa预训练模型的实体关系联合抽取模型,在阿里天池中文医疗信息处理评测基准数据集CBLUE2.0上进行实验的结果表明,该模型相比全局指针网络效果更优,能更有效完成复杂数据的实体关系抽取. 展开更多
关键词 实体关系抽取 对比学习 梯度惩罚 RoBERTa预训练模型 全局指针网络
在线阅读 下载PDF
基于连续提示注入与指针网络的农业病害命名实体识别
14
作者 王春山 张宸硕 +3 位作者 吴华瑞 朱华吉 缪祎晟 张立杰 《农业机械学报》 EI CAS CSCD 北大核心 2024年第6期254-261,共8页
针对农业病害领域命名实体识别过程中存在的预训练语言模型利用不充分、外部知识注入利用率低、嵌套命名实体识别率低的问题,本文提出基于连续提示注入和指针网络的命名实体识别模型CP-MRC(Continuous prompts for machine reading comp... 针对农业病害领域命名实体识别过程中存在的预训练语言模型利用不充分、外部知识注入利用率低、嵌套命名实体识别率低的问题,本文提出基于连续提示注入和指针网络的命名实体识别模型CP-MRC(Continuous prompts for machine reading comprehension)。该模型引入BERT(Bidirectional encoder representation from transformers)预训练模型,通过冻结BERT模型原有参数,保留其在预训练阶段获取到的文本表征能力;为了增强模型对领域数据的适用性,在每层Transformer中插入连续可训练提示向量;为提高嵌套命名实体识别的准确性,采用指针网络抽取实体序列。在自建农业病害数据集上开展了对比实验,该数据集包含2933条文本语料,8个实体类型,共10414个实体。实验结果显示,CP-MRC模型的精确率、召回率、F1值达到83.55%、81.4%、82.4%,优于其他模型;在病原、作物两类嵌套实体的识别率较其他模型F1值提升3个百分点和13个百分点,嵌套实体识别率明显提升。本文提出的模型仅采用少量可训练参数仍然具备良好识别性能,为较大规模预训练模型在信息抽取任务上的应用提供了思路。 展开更多
关键词 农业病害 命名实体识别 连续提示 指针网络 嵌套实体 预训练语言模型
在线阅读 下载PDF
融合指针网络的Transformer摘要生成模型的改进
15
作者 李维乾 蒲程磊 《西安工程大学学报》 CAS 2022年第2期94-100,共7页
针对传统引入注意力机制的Encoder-Decoder模型在摘要生成任务上存在文字冗余、表述不一致、非登录词(out of vocabulary,OOV)等问题,而导致生成摘要准确性较差,对可嵌入文本位置信息的Transformer模型进行了改进。提出引入指针网络帮... 针对传统引入注意力机制的Encoder-Decoder模型在摘要生成任务上存在文字冗余、表述不一致、非登录词(out of vocabulary,OOV)等问题,而导致生成摘要准确性较差,对可嵌入文本位置信息的Transformer模型进行了改进。提出引入指针网络帮助解码,利用指针网络生成文本的优势生成摘要,并在LCSTS中文短文本摘要数据集上验证了该模型的有效性。结果表明:改进后的Transformer模型在ROUGE评分上比基准模型平均高出2分,在保证摘要与输入文本一致性的同时,其生成内容的显著性和语言的流畅性提升明显。 展开更多
关键词 文本摘要 注意力机制 Encoder-Decoder模型 Transformer模型 指针网络
在线阅读 下载PDF
基于BERT-SUMOPN模型的抽取-生成式文本自动摘要 被引量:13
16
作者 谭金源 刁宇峰 +2 位作者 杨亮 祁瑞华 林鸿飞 《山东大学学报(理学版)》 CAS CSCD 北大核心 2021年第7期82-90,共9页
可读性、准确性较差,生成式摘要存在连贯性、逻辑性的不足,此外2种摘要方法的传统模型对文本的向量表示往往不够充分、准确。针对以上问题,该文提出了一种基于BERT-SUMOPN模型的抽取-生成式摘要方法。模型通过BERT预训练语言模型获取文... 可读性、准确性较差,生成式摘要存在连贯性、逻辑性的不足,此外2种摘要方法的传统模型对文本的向量表示往往不够充分、准确。针对以上问题,该文提出了一种基于BERT-SUMOPN模型的抽取-生成式摘要方法。模型通过BERT预训练语言模型获取文本向量,然后利用抽取式结构化摘要模型抽取文本中的关键句子,最后将得到的关键句子输入到生成式指针生成网络中,通过EAC损失函数对模型进行端到端训练,结合coverage机制减少生成重复,获取摘要结果。实验结果表明,BERT-SUMOPN模型在BIGPATENT专利数据集上取得了很好的效果,ROUGE-1和ROUGE-2指标分别提升了3.3%和2.5%。 展开更多
关键词 BERT预训练语言模型 结构化模型 指针生成网络 EAC损失函数
原文传递
面向法律文书的分段式摘要模型 被引量:6
17
作者 王刚 孙媛媛 +1 位作者 陈彦光 林鸿飞 《计算机工程》 CAS CSCD 北大核心 2022年第6期288-294,共7页
是指对文本信息内容进行概括、提取主要内容进而形成摘要的过程。现有的文本摘要模型通常将内容选择和摘要生成独立分析,虽然能够有效提高句子压缩和融合的性能,但是在抽取过程中会丢失部分文本信息,导致准确率降低。基于预训练模型和Tr... 是指对文本信息内容进行概括、提取主要内容进而形成摘要的过程。现有的文本摘要模型通常将内容选择和摘要生成独立分析,虽然能够有效提高句子压缩和融合的性能,但是在抽取过程中会丢失部分文本信息,导致准确率降低。基于预训练模型和Transformer结构的文档级句子编码器,提出一种结合内容抽取与摘要生成的分段式摘要模型。采用BERT模型对大量语料进行自监督学习,获得包含丰富语义信息的词表示。基于Transformer结构,通过全连接网络分类器将每个句子分成3类标签,抽取每句摘要对应的原文句子集合。利用指针生成器网络对原文句子集合进行压缩,将多个句子集合生成单句摘要,缩短输出序列和输入序列的长度。实验结果表明,相比直接生成摘要全文,该模型在生成句子上ROUGE-1、ROUGE-2和ROUGE-L的F1平均值提高了1.69个百分点,能够有效提高生成句子的准确率。 展开更多
关键词 司法摘要 预训练模型 Transformer编码器 序列标注 指针生成器网络 分段式摘要模型
在线阅读 下载PDF
主题感知的长文本自动摘要算法 被引量:2
18
作者 杨涛 解庆 +1 位作者 刘永坚 刘平峰 《计算机工程与应用》 CSCD 北大核心 2022年第20期165-173,共9页
长文本摘要生成一直是自动摘要领域的难题。现有方法在处理长文本的过程中,存在准确率低、冗余等问题。鉴于主题模型在多文档摘要中的突出表现,将其引入到长文本摘要任务中。另外,目前单一的抽取式或生成式方法都无法应对长文本的复杂... 长文本摘要生成一直是自动摘要领域的难题。现有方法在处理长文本的过程中,存在准确率低、冗余等问题。鉴于主题模型在多文档摘要中的突出表现,将其引入到长文本摘要任务中。另外,目前单一的抽取式或生成式方法都无法应对长文本的复杂情况。结合两种摘要方法,提出了一种针对长文本的基于主题感知的抽取式与生成式结合的混合摘要模型。并在TTNews和CNN/Daily Mail数据集上验证了模型的有效性,该模型生成摘要ROUGE分数与同类型模型相比提升了1~2个百分点,生成了可读性更高的摘要。 展开更多
关键词 主题模型 长文本摘要 混合模型 指针网络
在线阅读 下载PDF
融合指针网络的新闻文本摘要模型 被引量:16
19
作者 蔡中祥 孙建伟 《小型微型计算机系统》 CSCD 北大核心 2021年第3期462-466,共5页
本文针对实际党建领域中的新闻标题进行自动生成,提出了一种融合指针网络的自动文本摘要模型-Tri-PCN.相比于传统基于编码器-解码器框架的自动文本摘要模型,党建新闻标题生成模型还需要满足(1)从更长的文本序列提取特征;(2)保留关键的... 本文针对实际党建领域中的新闻标题进行自动生成,提出了一种融合指针网络的自动文本摘要模型-Tri-PCN.相比于传统基于编码器-解码器框架的自动文本摘要模型,党建新闻标题生成模型还需要满足(1)从更长的文本序列提取特征;(2)保留关键的党建信息.针对党建新闻比普通文本摘要任务面临更长文本序列问题,论文使用Transformer模型在解码阶段提取多层次全局文本特征.针对党建新闻标题生成过程中需要保留关键的党建信息,论文引入指针生成网络模型的复制机制在新闻标题生成时可以直接从新闻文本中复制关键词信息.实验采用ROUGE值作为评测指标,结果表明本文提出的Tri-PCN模型在党建新闻领域自动文本摘要任务上效果明显优于基准模型,比其他模型具有更好的效果. 展开更多
关键词 文本摘要 党建新闻 Transformer模型 指针网络 抽取式摘要
在线阅读 下载PDF
基于知识增强的中文电子病历命名实体识别 被引量:2
20
作者 李宛泽 宋波 齐岳山 《计算机系统应用》 2023年第12期112-119,共8页
针对中文电子病历中医疗嵌套实体难以处理的问题,本文基于RoBERTa-wwm-ext-large预训练模型提出一种知识增强的中文电子病历命名实体识别模型ERBEGP.RoBERTa-wwm-ext-large采用的全词掩码策略能够获得词级别的语义表示,更适用于中文文本... 针对中文电子病历中医疗嵌套实体难以处理的问题,本文基于RoBERTa-wwm-ext-large预训练模型提出一种知识增强的中文电子病历命名实体识别模型ERBEGP.RoBERTa-wwm-ext-large采用的全词掩码策略能够获得词级别的语义表示,更适用于中文文本.首先结合知识图谱,使模型学习到了大量的医疗实体名词,进一步提高模型对电子病历实体识别的准确性.然后通过BiLSTM对电子病历输入序列编码,能够更好捕获病历的中上下语义信息.最后利用全局指针网络模型EGP(efficient GlobalPointer)同时考虑实体的头部和尾部的特征信息来预测嵌套实体,更加有效地解决中文电子病历命名实体识别任务中嵌套实体难以处理的问题.在CBLUE中的4个数据集上本文方法均取得了更好的识别效果,证明了ERBEGP模型的有效性. 展开更多
关键词 中文电子病历 命名实体识别 知识增强 嵌套实体 全局指针网络模型 深度学习
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部