Generating selfie images on the surface of a celestial body poses several challenges,including the position of the robotic arm,camera field of view,and limited shooting time.To address these challenges,the PCMIS(3D Po...Generating selfie images on the surface of a celestial body poses several challenges,including the position of the robotic arm,camera field of view,and limited shooting time.To address these challenges,the PCMIS(3D Point Cloud Matching Based Image Stitching)algorithm is designed,along with a corresponding shooting plan.This algorithm establishes a correspondence between depth and color information,enabling the generation of stitching views under any given view parameter.Furthermore,the algorithm is accelerated using GPU processing,resulting in a significant reduction in stitching time.The algorithm is successfully applied to generate selfie images for the Chang'e-5 mission.展开更多
In this paper,a novel compression framework based on 3D point cloud data is proposed for telepresence,which consists of two parts.One is implemented to remove the spatial redundancy,i.e.,a robust Bayesian framework is...In this paper,a novel compression framework based on 3D point cloud data is proposed for telepresence,which consists of two parts.One is implemented to remove the spatial redundancy,i.e.,a robust Bayesian framework is designed to track the human motion and the 3D point cloud data of the human body is acquired by using the tracking 2D box.The other part is applied to remove the temporal redundancy of the 3D point cloud data.The temporal redundancy between point clouds is removed by using the motion vector,i.e.,the most similar cluster in the previous frame is found for the cluster in the current frame by comparing the cluster feature and the cluster in the current frame is replaced by the motion vector for compressing the current frame.The hrst,the B-SHOT(binary signatures of histograms orientation)descriptor is applied to represent the point feature for matching the corresponding point between two frames.The second,the K-mean algorithm is used to generate the cluster because there are a lot of unsuccessfully matched points in the current frame.The matching operation is exploited to find the corresponding clusters between the point cloud data of two frames.Finally,the cluster information in the current frame is replaced by the motion vector for compressing the current frame and the unsuccessfully matched clusters in the curren t and the motion vectors are transmit ted into the rem ote end.In order to reduce calculation time of the B-SHOT descriptor,we introduce an octree structure into the B-SHOT descriptor.In particular,in order to improve the robustness of the matching operation,we design the cluster feature to estimate the similarity bet ween two clusters.Experimen tai results have shown the bet ter performance of the proposed method due to the lower calculation time and the higher compression ratio.The proposed met hod achieves the compression ratio of 8.42 and the delay time of 1228 ms compared with the compression ratio of 5.99 and the delay time of 2163 ms in the octree-based compression method under conditions of similar distortion rate.展开更多
基金supported by the Leading Goose Research and Development Program of Zhejiang Province of China under Grant No.2024C01103.
文摘Generating selfie images on the surface of a celestial body poses several challenges,including the position of the robotic arm,camera field of view,and limited shooting time.To address these challenges,the PCMIS(3D Point Cloud Matching Based Image Stitching)algorithm is designed,along with a corresponding shooting plan.This algorithm establishes a correspondence between depth and color information,enabling the generation of stitching views under any given view parameter.Furthermore,the algorithm is accelerated using GPU processing,resulting in a significant reduction in stitching time.The algorithm is successfully applied to generate selfie images for the Chang'e-5 mission.
基金This work was supported by National Nature Science Foundation of China(No.61811530281 and 61861136009)Guangdong Regional Joint Foundation(No.2019B1515120076)the Fundamental Research for the Central Universities.
文摘In this paper,a novel compression framework based on 3D point cloud data is proposed for telepresence,which consists of two parts.One is implemented to remove the spatial redundancy,i.e.,a robust Bayesian framework is designed to track the human motion and the 3D point cloud data of the human body is acquired by using the tracking 2D box.The other part is applied to remove the temporal redundancy of the 3D point cloud data.The temporal redundancy between point clouds is removed by using the motion vector,i.e.,the most similar cluster in the previous frame is found for the cluster in the current frame by comparing the cluster feature and the cluster in the current frame is replaced by the motion vector for compressing the current frame.The hrst,the B-SHOT(binary signatures of histograms orientation)descriptor is applied to represent the point feature for matching the corresponding point between two frames.The second,the K-mean algorithm is used to generate the cluster because there are a lot of unsuccessfully matched points in the current frame.The matching operation is exploited to find the corresponding clusters between the point cloud data of two frames.Finally,the cluster information in the current frame is replaced by the motion vector for compressing the current frame and the unsuccessfully matched clusters in the curren t and the motion vectors are transmit ted into the rem ote end.In order to reduce calculation time of the B-SHOT descriptor,we introduce an octree structure into the B-SHOT descriptor.In particular,in order to improve the robustness of the matching operation,we design the cluster feature to estimate the similarity bet ween two clusters.Experimen tai results have shown the bet ter performance of the proposed method due to the lower calculation time and the higher compression ratio.The proposed met hod achieves the compression ratio of 8.42 and the delay time of 1228 ms compared with the compression ratio of 5.99 and the delay time of 2163 ms in the octree-based compression method under conditions of similar distortion rate.