Background:The medicinal material known as Os Draconis(Longgu)originates from fossilized remains of ancient mammals and is widely used in treating emotional and mental conditions.However,fossil resources are nonrenewa...Background:The medicinal material known as Os Draconis(Longgu)originates from fossilized remains of ancient mammals and is widely used in treating emotional and mental conditions.However,fossil resources are nonrenewable,and clinical demand is increasingly difficult to meet,leading to a proliferation of counterfeit products.During prolonged geological burial,static pressure from the surrounding strata severely compromises the microstructural integrity of osteons in Os Draconis,but Os Draconis still largely retains the structural features of mammalian bone.Methods:Using verified authentic Os Draconis samples over 10,000 years old as a baseline,this study summarizes the ultrastructural characteristics of genuine Os Draconis.Employing electron probe microanalysis and optical polarized light microscopy,we examined 28 batches of authentic Os Draconis and 31 batches of counterfeits to identify their ultrastructural differences.Key points for ultrastructural identification of Os Draconis were compiled,and a new identification approach was proposed based on these differences.Results:Authentic Os Draconis exhibited distinct ultrastructural markers:irregularly shaped osteons with traversing fissures,deformed/displaced Haversian canals,and secondary mineral infill(predominantly calcium carbonate).Counterfeits showed regular osteon arrangements,absent traversal fissures,and homogeneous hydroxyapatite composition.Lab-simulated samples lacked structural degradation features.EPMA confirmed calcium carbonate infill in fossilized Haversian canals,while elemental profiles differentiated lacunae types(void vs.mineral-packed).Conclusion:The study established ultrastructural criteria for authentic Os Draconis identification:osteon deformation,geological fissures penetrating bone units,and heterogenous mineral deposition.These features,unattainable in counterfeits or modern processed bones,provide a cost-effective,accurate identification method.This approach bridges gaps in TCM material standardization and supports quality control for clinical applications.展开更多
针对菇房内杏鲍菇表型参数测量任务中,由于扫描设备视角受限,扫描的杏鲍菇点云出现残缺问题,基于AdaPoinTr(Adaptive geometry-aware point transformers)提出了改进的SwinPoinTr模型,实现了对残缺杏鲍菇点云的准确补全和杏鲍菇表型参...针对菇房内杏鲍菇表型参数测量任务中,由于扫描设备视角受限,扫描的杏鲍菇点云出现残缺问题,基于AdaPoinTr(Adaptive geometry-aware point transformers)提出了改进的SwinPoinTr模型,实现了对残缺杏鲍菇点云的准确补全和杏鲍菇表型参数的测量。该方法在使用提出的特征重塑模块的基础上,构建具有几何感知能力的层次化Transformer编码模块,提高了模型对输入点云的利用率和模型捕捉点云细节特征的能力。然后基于泊松重建方法完成了补全点云表面重建,并测量到杏鲍菇表型参数。实验结果表明,本文所提算法在残缺杏鲍菇点云补全任务中,模型倒角距离为1.316×10^(-4),地球移动距离为21.3282,F1分数为87.87%。在表型参数估测任务中,模型对杏鲍菇菌高、体积、表面积估测结果的决定系数分别为0.9582、0.9596、0.9605,均方根误差分别为4.4213 mm、10.8185 cm^(3)、7.5778 cm^(2)。结果证实了该研究方法可以有效地补全残缺的杏鲍菇点云,可以为菇房内杏鲍菇表型参数测量提供基础。展开更多
This paper introduces part of the content in the association standard,T/CAAM0002–2020 Nomenclature and Location of Acupuncture Points for Laboratory Animals Part 3:Mouse.This standard was released by the China Associ...This paper introduces part of the content in the association standard,T/CAAM0002–2020 Nomenclature and Location of Acupuncture Points for Laboratory Animals Part 3:Mouse.This standard was released by the China Association of Acupuncture and Moxibustion on May 15,2020,implemented on October 31,2020,and published by Standards Press of China.The standard was drafted by the Institute of Acupuncture and Moxibustion,China Academy of Chinese Medical Sciences,and the Nanjing University of Chinese Medicine.Principal draftsmen:Xiang-hong JING and Xing-bang HUA.Participating draftsmen:Wan-zhu BAI,Bin XU,Dong-sheng XU,Yi GUO,Tie-ming MA,Xin-jun WANG,and Sheng-feng LU.展开更多
针对奶绵羊三维重构中背景分割对复杂场景适应性不足、配准算法对初始位置敏感等问题,该研究提出一种融合改进PointNet++与一致性点漂移(coherent point drift,CPD)算法与局部区域重叠的三维重构方法。通过引入点对特征、优化采样策略...针对奶绵羊三维重构中背景分割对复杂场景适应性不足、配准算法对初始位置敏感等问题,该研究提出一种融合改进PointNet++与一致性点漂移(coherent point drift,CPD)算法与局部区域重叠的三维重构方法。通过引入点对特征、优化采样策略及损失函数,增强了PointNet++在复杂场景下的分割能力;结合CPD算法与局部区域重叠策略,提升了点云配准的鲁棒性和效率。试验结果显示:该方法用于奶绵羊背景分割的准确率和平均交并比分别达到98.78%和97.25%,推理速度为53.4 ms;较原模型平均准确率和平均交并比分别提高了3.04和2.53个百分点,推理时间缩短了45.17%。该方法用于奶绵羊三维配准中,各向异性旋转误差、各向异性平移误差、各向同性旋转误差、各向同性平移误差以及倒角距离分别达到0.0256°、0.0229 m、3.0887°、0.0463 m和0.00789 m,较原始CPD方法均降低。通过与人工体尺测量数据对比,重构模型所提取的体长、体高、十字部高、胸深、胸围等参数的平均绝对百分比误差分别为3.34%、3.07%、3.32%、3.63%和2.81%。该研究方法兼具较高精度与实时性,能够满足一次性重构的需求,可为奶绵羊三维配准与智能化体尺测定提供参考。展开更多
This paper introduces part of the content in the association standard,T/CAAM0002–2020 Nomenclature and Location of Acupuncture Points for Laboratory Animals Part 2:Rat.This standard was released by the China Associat...This paper introduces part of the content in the association standard,T/CAAM0002–2020 Nomenclature and Location of Acupuncture Points for Laboratory Animals Part 2:Rat.This standard was released by the China Association of Acupuncture and Moxibustion on May 15,2020,implemented on October 31,2020,and published by Standards Press of China.The standard was drafted by the Institute of Acupuncture and Moxibustion,China Academy of Chinese Medical Sciences,and the Nanjing University of Chinese Medicine.Principal draftsmen:Xiang-hong JING and Xing-bang HUA.Participating draftsmen:Wan-Zhu BAI,Bin XU,Dong-sheng XU,Yi GUO,Tie-ming MA,Xin-jun WANG,and Sheng-feng LU.展开更多
Large-scale point cloud datasets form the basis for training various deep learning networks and achieving high-quality network processing tasks.Due to the diversity and robustness constraints of the data,data augmenta...Large-scale point cloud datasets form the basis for training various deep learning networks and achieving high-quality network processing tasks.Due to the diversity and robustness constraints of the data,data augmentation(DA)methods are utilised to expand dataset diversity and scale.However,due to the complex and distinct characteristics of LiDAR point cloud data from different platforms(such as missile-borne and vehicular LiDAR data),directly applying traditional 2D visual domain DA methods to 3D data can lead to networks trained using this approach not robustly achieving the corresponding tasks.To address this issue,the present study explores DA for missile-borne LiDAR point cloud using a Monte Carlo(MC)simulation method that closely resembles practical application.Firstly,the model of multi-sensor imaging system is established,taking into account the joint errors arising from the platform itself and the relative motion during the imaging process.A distortion simulation method based on MC simulation for augmenting missile-borne LiDAR point cloud data is proposed,underpinned by an analysis of combined errors between different modal sensors,achieving high-quality augmentation of point cloud data.The effectiveness of the proposed method in addressing imaging system errors and distortion simulation is validated using the imaging scene dataset constructed in this paper.Comparative experiments between the proposed point cloud DA algorithm and the current state-of-the-art algorithms in point cloud detection and single object tracking tasks demonstrate that the proposed method can improve the network performance obtained from unaugmented datasets by over 17.3%and 17.9%,surpassing SOTA performance of current point cloud DA algorithms.展开更多
基金supported by the Scientific and Technological Innovation Project of the China Academy of Chinese Medical Sciences(CI2021A04013)the National Natural Science Foundation of China(82204610)+1 种基金the Qihang Talent Program(L2022046)the Fundamental Research Funds for the Central Public Welfare Research Institutes(ZZ15-YQ-041 and L2021029).
文摘Background:The medicinal material known as Os Draconis(Longgu)originates from fossilized remains of ancient mammals and is widely used in treating emotional and mental conditions.However,fossil resources are nonrenewable,and clinical demand is increasingly difficult to meet,leading to a proliferation of counterfeit products.During prolonged geological burial,static pressure from the surrounding strata severely compromises the microstructural integrity of osteons in Os Draconis,but Os Draconis still largely retains the structural features of mammalian bone.Methods:Using verified authentic Os Draconis samples over 10,000 years old as a baseline,this study summarizes the ultrastructural characteristics of genuine Os Draconis.Employing electron probe microanalysis and optical polarized light microscopy,we examined 28 batches of authentic Os Draconis and 31 batches of counterfeits to identify their ultrastructural differences.Key points for ultrastructural identification of Os Draconis were compiled,and a new identification approach was proposed based on these differences.Results:Authentic Os Draconis exhibited distinct ultrastructural markers:irregularly shaped osteons with traversing fissures,deformed/displaced Haversian canals,and secondary mineral infill(predominantly calcium carbonate).Counterfeits showed regular osteon arrangements,absent traversal fissures,and homogeneous hydroxyapatite composition.Lab-simulated samples lacked structural degradation features.EPMA confirmed calcium carbonate infill in fossilized Haversian canals,while elemental profiles differentiated lacunae types(void vs.mineral-packed).Conclusion:The study established ultrastructural criteria for authentic Os Draconis identification:osteon deformation,geological fissures penetrating bone units,and heterogenous mineral deposition.These features,unattainable in counterfeits or modern processed bones,provide a cost-effective,accurate identification method.This approach bridges gaps in TCM material standardization and supports quality control for clinical applications.
文摘This paper introduces part of the content in the association standard,T/CAAM0002–2020 Nomenclature and Location of Acupuncture Points for Laboratory Animals Part 3:Mouse.This standard was released by the China Association of Acupuncture and Moxibustion on May 15,2020,implemented on October 31,2020,and published by Standards Press of China.The standard was drafted by the Institute of Acupuncture and Moxibustion,China Academy of Chinese Medical Sciences,and the Nanjing University of Chinese Medicine.Principal draftsmen:Xiang-hong JING and Xing-bang HUA.Participating draftsmen:Wan-zhu BAI,Bin XU,Dong-sheng XU,Yi GUO,Tie-ming MA,Xin-jun WANG,and Sheng-feng LU.
文摘This paper introduces part of the content in the association standard,T/CAAM0002–2020 Nomenclature and Location of Acupuncture Points for Laboratory Animals Part 2:Rat.This standard was released by the China Association of Acupuncture and Moxibustion on May 15,2020,implemented on October 31,2020,and published by Standards Press of China.The standard was drafted by the Institute of Acupuncture and Moxibustion,China Academy of Chinese Medical Sciences,and the Nanjing University of Chinese Medicine.Principal draftsmen:Xiang-hong JING and Xing-bang HUA.Participating draftsmen:Wan-Zhu BAI,Bin XU,Dong-sheng XU,Yi GUO,Tie-ming MA,Xin-jun WANG,and Sheng-feng LU.
基金Postgraduate Innovation Top notch Talent Training Project of Hunan Province,Grant/Award Number:CX20220045Scientific Research Project of National University of Defense Technology,Grant/Award Number:22-ZZCX-07+2 种基金New Era Education Quality Project of Anhui Province,Grant/Award Number:2023cxcysj194National Natural Science Foundation of China,Grant/Award Numbers:62201597,62205372,1210456foundation of Hefei Comprehensive National Science Center,Grant/Award Number:KY23C502。
文摘Large-scale point cloud datasets form the basis for training various deep learning networks and achieving high-quality network processing tasks.Due to the diversity and robustness constraints of the data,data augmentation(DA)methods are utilised to expand dataset diversity and scale.However,due to the complex and distinct characteristics of LiDAR point cloud data from different platforms(such as missile-borne and vehicular LiDAR data),directly applying traditional 2D visual domain DA methods to 3D data can lead to networks trained using this approach not robustly achieving the corresponding tasks.To address this issue,the present study explores DA for missile-borne LiDAR point cloud using a Monte Carlo(MC)simulation method that closely resembles practical application.Firstly,the model of multi-sensor imaging system is established,taking into account the joint errors arising from the platform itself and the relative motion during the imaging process.A distortion simulation method based on MC simulation for augmenting missile-borne LiDAR point cloud data is proposed,underpinned by an analysis of combined errors between different modal sensors,achieving high-quality augmentation of point cloud data.The effectiveness of the proposed method in addressing imaging system errors and distortion simulation is validated using the imaging scene dataset constructed in this paper.Comparative experiments between the proposed point cloud DA algorithm and the current state-of-the-art algorithms in point cloud detection and single object tracking tasks demonstrate that the proposed method can improve the network performance obtained from unaugmented datasets by over 17.3%and 17.9%,surpassing SOTA performance of current point cloud DA algorithms.