针对传统位姿估计方法中依赖CAD模型的问题,提出基于多视图几何的双目数据集制作方法及基于3D关键点的物体6D位姿估计网络StereoNet.通过3D关键点估计网络获取物体的3D关键点,在网络中引入视差注意模块,提高关键点预测的精度.采用运动...针对传统位姿估计方法中依赖CAD模型的问题,提出基于多视图几何的双目数据集制作方法及基于3D关键点的物体6D位姿估计网络StereoNet.通过3D关键点估计网络获取物体的3D关键点,在网络中引入视差注意模块,提高关键点预测的精度.采用运动恢复结构(SfM)方法重建物体的稀疏点云模型,将查询图像的3D点与SfM模型中的3D点输入图注意力网络(GATs)中进行匹配,通过RANSAC和PnP算法计算得到物体的6D位姿.实验结果表明,当对3D关键点估计时,StereoNet的MAE评价指标较KeypointNet、KeyPose高1.2~1.6倍.在6D位姿估计方面,StereoNet的5 cm 5°和3 cm 3°评价指标均优于HLoc、OnePose、Gen6D,平均精确度达到82.1%,证明该网络具有良好的泛化性和准确性.展开更多
变电站室内无人机巡检可有效降低人工巡检作业强度。由于飞行精度要求高,搭载能力有限,仅依靠无人机搭载摄像头与惯性测量单元(inertial measurement unit, IMU)数据融合确定位姿无法满足精度要求,为此,提出基于变电站室内已有固定摄像...变电站室内无人机巡检可有效降低人工巡检作业强度。由于飞行精度要求高,搭载能力有限,仅依靠无人机搭载摄像头与惯性测量单元(inertial measurement unit, IMU)数据融合确定位姿无法满足精度要求,为此,提出基于变电站室内已有固定摄像头的泛在物联的多视觉-惯导融合框架,针对室内光线情况对无人机摄像头图像进行强化,并与IMU数据结合得到初步的无人机位置数据。进一步通过在无人机上布设二维码(quick response code,QR码),应用改进后的PnP(perspective-n-point)算法优化无人机位姿数据。飞行结束后在无人机机巢对IMU的累计误差进行校验。实验证明:该方法布设与维护的工作量小,相较仅依靠搭载摄像头与IMU数据融合算法,飞行精度有较大提高,可满足变电站内无人机巡检作业的需要。展开更多
目的针对对应点个数大于等于6的摄像机位姿估计问题,提出一种既适用于已标定也适用于未标定摄像机的时间复杂度为O(n)的高精度快速算法。方法首先选取4个非共面虚拟控制点,并根据空间点和虚拟控制点的空间关系以及空间点的图像建立线性...目的针对对应点个数大于等于6的摄像机位姿估计问题,提出一种既适用于已标定也适用于未标定摄像机的时间复杂度为O(n)的高精度快速算法。方法首先选取4个非共面虚拟控制点,并根据空间点和虚拟控制点的空间关系以及空间点的图像建立线性方程组,以此求解虚拟控制点的图像坐标及摄像机内参,再由POSIT(pose from orthography and scaling with iterations)算法根据虚拟控制点及其图像坐标求解旋转矩阵和平移向量。结果模拟数据实验和真实图像实验表明该算法时间复杂度和计算精度均优于现有的已标定摄像机位姿的高精度快速求解算法EPnP(efficient perspective-n-point)。结论该算法能够同时估计摄像机内外参数,而且比现有算法具有更好的速度和精度。展开更多
文摘针对传统位姿估计方法中依赖CAD模型的问题,提出基于多视图几何的双目数据集制作方法及基于3D关键点的物体6D位姿估计网络StereoNet.通过3D关键点估计网络获取物体的3D关键点,在网络中引入视差注意模块,提高关键点预测的精度.采用运动恢复结构(SfM)方法重建物体的稀疏点云模型,将查询图像的3D点与SfM模型中的3D点输入图注意力网络(GATs)中进行匹配,通过RANSAC和PnP算法计算得到物体的6D位姿.实验结果表明,当对3D关键点估计时,StereoNet的MAE评价指标较KeypointNet、KeyPose高1.2~1.6倍.在6D位姿估计方面,StereoNet的5 cm 5°和3 cm 3°评价指标均优于HLoc、OnePose、Gen6D,平均精确度达到82.1%,证明该网络具有良好的泛化性和准确性.
文摘目的针对对应点个数大于等于6的摄像机位姿估计问题,提出一种既适用于已标定也适用于未标定摄像机的时间复杂度为O(n)的高精度快速算法。方法首先选取4个非共面虚拟控制点,并根据空间点和虚拟控制点的空间关系以及空间点的图像建立线性方程组,以此求解虚拟控制点的图像坐标及摄像机内参,再由POSIT(pose from orthography and scaling with iterations)算法根据虚拟控制点及其图像坐标求解旋转矩阵和平移向量。结果模拟数据实验和真实图像实验表明该算法时间复杂度和计算精度均优于现有的已标定摄像机位姿的高精度快速求解算法EPnP(efficient perspective-n-point)。结论该算法能够同时估计摄像机内外参数,而且比现有算法具有更好的速度和精度。