Powdery mildew is one of the most serious diseases of wheat in China. In this paper,bulked segregant analysis (BSA) was used to search for randomly amplified polymorphic DNA (RAPD) markers linked to the Pm12 gene,whic...Powdery mildew is one of the most serious diseases of wheat in China. In this paper,bulked segregant analysis (BSA) was used to search for randomly amplified polymorphic DNA (RAPD) markers linked to the Pm12 gene,which confers resistance to the powdery mildew in wheat. 200 decamer primers were screened and one RAPD marker (S107 1900 ) was identified to be linked to Pm12 in coupling phase,and their genetic distance is 11.98± 4.00cM. This marker can be used for marker-assisted selection in wheat breeding for the identification or pyramiding of Pm12 with other resistance genes.展开更多
Wheat powdery mildew,caused by Blumeria graminis f.sp.tritici(Bgt),is a devastating disease that threatens wheat production worldwide.Pm12,which originated from Aegilops speltoides,a wild relative of wheat,confers str...Wheat powdery mildew,caused by Blumeria graminis f.sp.tritici(Bgt),is a devastating disease that threatens wheat production worldwide.Pm12,which originated from Aegilops speltoides,a wild relative of wheat,confers strong resistance to powdery mildew and therefore has potential use in wheat breeding.Using susceptible mutants induced by gamma irradiation,we physically mapped and isolated Pm12 and showed it to be orthologous to Pm21 from Dasypyrum villosum,also a wild relative of wheat.The resistance function of Pm12 was validated via ethyl methanesulfonatemutagenesis,virus-induced gene silencing,and stable genetic transformation.Evolutionary analysis indicates that the Pm12/Pm21 loci in wheat species are relatively conserved but dynamic.Here,we demonstrated that the two orthologous genes,Pm12 and Pm21,possess differential resistance against the same set of Bgt isolates.Overexpression of the coiledcoil domains of both PM12 and PM21 induces cell death in Nicotiana benthamiana leaves.However,their full-length forms display different cell death-inducing activities caused by their distinct intramolecular interactions.Cloning of Pm12 will facilitate its application in wheat breeding programs.This study also gives new insight into two orthologous resistance genes,Pm12 and Pm21,which show different race specificities and intramolecular interaction patterns.展开更多
Keggin-type phenylimido-polyoxometalates α-[PM12O39NPh]3- (M = W and Mo) have been systematically investigated on the electronic structures, redox as well as nonlinear optical (NLO) properties by density functional t...Keggin-type phenylimido-polyoxometalates α-[PM12O39NPh]3- (M = W and Mo) have been systematically investigated on the electronic structures, redox as well as nonlinear optical (NLO) properties by density functional theory (DFT). The strong M≡N bond confirmed by natural bond orbital (NBO) analysis comprises one σ bond and two π bonds, the same as Mo≡N in [Mo6O18NPh]2-. Furthermore, phenylimido segment effectively modifies the electronic properties of α-[PM12O39NPh]3-. On one hand, when enlarging the inorganic cluster from {Mo6O18} to {PMo12O39}, the energy gap between HOMO and LUMO in α-[PMo12O39NPh]3- decreased, resulting in enormously anodic shift for the reduction potential, while the excitation energy is less and the total second-order polarizability β0 is up to 438.3×10?30 esu, which is nearly 10 times larger than that of [Mo6O18NPh]2-. On the other hand, when metal W in α-[PM12O39NPh]3- is substituted by Mo, the interaction between Mo and N is enhanced and the redox ability becomes stronger. The β0 value for α-[PMo12O39NPh]3- is more than 5 times higher than that of α-[PW12O39NPh]3?. It indicates that changing appropriate metal or enlarging the inorganic cluster will improve the redox properties and second-order nonlinear response. Moreover, the electron transition for three compounds mentioned above occurred mainly from organoimido segment (as the electron donor) to polyanion cluster (as the acceptor). As a result, α-[PMo12O39NPh]3- may be a promising candidate for oxidant and nonlinear optical material.展开更多
文摘Powdery mildew is one of the most serious diseases of wheat in China. In this paper,bulked segregant analysis (BSA) was used to search for randomly amplified polymorphic DNA (RAPD) markers linked to the Pm12 gene,which confers resistance to the powdery mildew in wheat. 200 decamer primers were screened and one RAPD marker (S107 1900 ) was identified to be linked to Pm12 in coupling phase,and their genetic distance is 11.98± 4.00cM. This marker can be used for marker-assisted selection in wheat breeding for the identification or pyramiding of Pm12 with other resistance genes.
基金supported by grants from the National Natural Science Foundation of China(32171990,32072053,31971874,31872009,and U1604116)the Key Research and Development Program of Zhenjiang(NY2021001)+3 种基金the State Key Laboratory of Plant Cell and Chromosome Engineering(PCCE-KF-2021-05,PCCE-KF-2022-07)the State Key Laboratory of Crop Biology in Shandong Agricultural University(2021KF01)the Taishan Scholars Project(tsqn201812123)the Key Research and Development Program of Yantai(2019YT06000470).
文摘Wheat powdery mildew,caused by Blumeria graminis f.sp.tritici(Bgt),is a devastating disease that threatens wheat production worldwide.Pm12,which originated from Aegilops speltoides,a wild relative of wheat,confers strong resistance to powdery mildew and therefore has potential use in wheat breeding.Using susceptible mutants induced by gamma irradiation,we physically mapped and isolated Pm12 and showed it to be orthologous to Pm21 from Dasypyrum villosum,also a wild relative of wheat.The resistance function of Pm12 was validated via ethyl methanesulfonatemutagenesis,virus-induced gene silencing,and stable genetic transformation.Evolutionary analysis indicates that the Pm12/Pm21 loci in wheat species are relatively conserved but dynamic.Here,we demonstrated that the two orthologous genes,Pm12 and Pm21,possess differential resistance against the same set of Bgt isolates.Overexpression of the coiledcoil domains of both PM12 and PM21 induces cell death in Nicotiana benthamiana leaves.However,their full-length forms display different cell death-inducing activities caused by their distinct intramolecular interactions.Cloning of Pm12 will facilitate its application in wheat breeding programs.This study also gives new insight into two orthologous resistance genes,Pm12 and Pm21,which show different race specificities and intramolecular interaction patterns.
基金Supported by National Natural Science Foundation of China (Grant No. 20573016)Training Fund of NENU’S Scientific Innovation Project (Grant No. NENU- STC07017)+1 种基金Science Foundation for Young Teachers of Northeast Normal University (Grant No. 20070304)Program for Changjiang Scholars and Innovative Research Team in University (PCSIRT)
文摘Keggin-type phenylimido-polyoxometalates α-[PM12O39NPh]3- (M = W and Mo) have been systematically investigated on the electronic structures, redox as well as nonlinear optical (NLO) properties by density functional theory (DFT). The strong M≡N bond confirmed by natural bond orbital (NBO) analysis comprises one σ bond and two π bonds, the same as Mo≡N in [Mo6O18NPh]2-. Furthermore, phenylimido segment effectively modifies the electronic properties of α-[PM12O39NPh]3-. On one hand, when enlarging the inorganic cluster from {Mo6O18} to {PMo12O39}, the energy gap between HOMO and LUMO in α-[PMo12O39NPh]3- decreased, resulting in enormously anodic shift for the reduction potential, while the excitation energy is less and the total second-order polarizability β0 is up to 438.3×10?30 esu, which is nearly 10 times larger than that of [Mo6O18NPh]2-. On the other hand, when metal W in α-[PM12O39NPh]3- is substituted by Mo, the interaction between Mo and N is enhanced and the redox ability becomes stronger. The β0 value for α-[PMo12O39NPh]3- is more than 5 times higher than that of α-[PW12O39NPh]3?. It indicates that changing appropriate metal or enlarging the inorganic cluster will improve the redox properties and second-order nonlinear response. Moreover, the electron transition for three compounds mentioned above occurred mainly from organoimido segment (as the electron donor) to polyanion cluster (as the acceptor). As a result, α-[PMo12O39NPh]3- may be a promising candidate for oxidant and nonlinear optical material.