Plus-strand RNA virus replication occurs in tight association with cytoplasmic host cell membranes. Both, viral and cellular factors cooperatively generate distinct organelle-like structures, designated viral replicat...Plus-strand RNA virus replication occurs in tight association with cytoplasmic host cell membranes. Both, viral and cellular factors cooperatively generate distinct organelle-like structures, designated viral replication factories. This compartmentalization allows coordination of the different steps of the viral replication cycle, highly efficient genome replication and protection of the viral RNA from cellular defense mechanisms. Electron tomography studies conducted during the last couple of years revealed the three dimensional structure of numerous plus-strand RNA virus replication compartments and highlight morphological analogies between different virus families. Based on the morphology of virusinduced membrane rearrangements, we propose two separate subclasses: the invaginated vesicle/spherule type and the double membrane vesicle type. This review discusses common themes and distinct differences in the architecture of plus-strand RNA virus-induced membrane alterations and summarizes recent progress that has been made in understanding the complex interplay between viral and co-opted cellular factors in biogenesis and maintenance of plus-strand RNA virus replication factories.展开更多
Classical swine fever virus (CSFV) is the pathogen of the swine fever. Understanding of the replication and expression of its genome is the basis for research of the pathogenicity for CSFV and development of antiviral...Classical swine fever virus (CSFV) is the pathogen of the swine fever. Understanding of the replication and expression of its genome is the basis for research of the pathogenicity for CSFV and development of antiviral drug. The noncoding regions (NCRs) of CSFV are the main regulatory regions for replication and expression. Qualitative, quantitative and structural analysis of 3’ NCRs and 5’ NCRs was done in order to locate the regulatory region in the NCRs and to character the NCRs. The sites, conserved sequences and structural elements related to the initiation of replication and expression were extracted from 17 3’ NCRs and 56 5’ NCRs. Those cis-elements may be initial recognition sites for replication, binding sites for transcription factors of host cell and interacting sites for initiation of protein synthesis, based on which a mechanism for the replication and expression of CSFV was brought forth. This research offers the direction for further experiment and lays down a basis for the research on展开更多
基金Supported by The DFG,SFB638,TP A5 and SFB/TRR83,TP 13
文摘Plus-strand RNA virus replication occurs in tight association with cytoplasmic host cell membranes. Both, viral and cellular factors cooperatively generate distinct organelle-like structures, designated viral replication factories. This compartmentalization allows coordination of the different steps of the viral replication cycle, highly efficient genome replication and protection of the viral RNA from cellular defense mechanisms. Electron tomography studies conducted during the last couple of years revealed the three dimensional structure of numerous plus-strand RNA virus replication compartments and highlight morphological analogies between different virus families. Based on the morphology of virusinduced membrane rearrangements, we propose two separate subclasses: the invaginated vesicle/spherule type and the double membrane vesicle type. This review discusses common themes and distinct differences in the architecture of plus-strand RNA virus-induced membrane alterations and summarizes recent progress that has been made in understanding the complex interplay between viral and co-opted cellular factors in biogenesis and maintenance of plus-strand RNA virus replication factories.
基金This work was supported by the National Basic Research Developmental Project (Grant No. G1999011900).
文摘Classical swine fever virus (CSFV) is the pathogen of the swine fever. Understanding of the replication and expression of its genome is the basis for research of the pathogenicity for CSFV and development of antiviral drug. The noncoding regions (NCRs) of CSFV are the main regulatory regions for replication and expression. Qualitative, quantitative and structural analysis of 3’ NCRs and 5’ NCRs was done in order to locate the regulatory region in the NCRs and to character the NCRs. The sites, conserved sequences and structural elements related to the initiation of replication and expression were extracted from 17 3’ NCRs and 56 5’ NCRs. Those cis-elements may be initial recognition sites for replication, binding sites for transcription factors of host cell and interacting sites for initiation of protein synthesis, based on which a mechanism for the replication and expression of CSFV was brought forth. This research offers the direction for further experiment and lays down a basis for the research on