The authors demonstrate the importance of the simulation of the water quantity exchange between river water and groundwater to a better understanding of the hydrologic relations between a river and nearby aquifer wher...The authors demonstrate the importance of the simulation of the water quantity exchange between river water and groundwater to a better understanding of the hydrologic relations between a river and nearby aquifer where groundwater is pumped extensively but only seasonally. And MODFLOW is used to design the stream aquifer model in which the pumpage of more than 1000 wells was simulated. The river gaining and river losing processes were analyzed. Simulation results suggest that continuation of over extraction of groundwater will gradually increase the depletion volume in the river year after year and more depletion will occur in later years. The exchange manner between groundwater and the Platte River differs from place to place. The Platte River loses water to the adjacent aquifer in the west part of the study area, and gains water from the adjacent aquifer in the east part of the study area.展开更多
Detailed topographic maps show multiple stream valleys and what are probably dismembered stream valleys that extend completely across Wyoming’s northern Laramie Mountains. Several of the most obvious valleys are desc...Detailed topographic maps show multiple stream valleys and what are probably dismembered stream valleys that extend completely across Wyoming’s northern Laramie Mountains. Several of the most obvious valleys are described with valley origins first explained (or attempted to be explained) from the commonly accepted regional geomorphology paradigm (accepted paradigm) perspective and second from a recently proposed regional geomorphology paradigm (new paradigm) perspective in an effort to determine which of the two paradigms provides the simplest explanations. Accepted paradigm explanations require at least some of the valley erosion to have occurred prior to deposition of Oligocene and Miocene sediments that once covered the northern Laramie Mountains (with some of the exhumed valleys now containing sediment cover remnants). In contrast the fundamentally different new paradigm requires immense south-oriented continental ice sheet melt water floods to have crossed the region as ice sheet related crustal warping raised the region and the Laramie Mountains (and implies sediments now partially filling some of the valleys are probably flood deposited materials). The new paradigm provides simpler explanations for the origins of the valleys now extending completely across the northern Laramie Mountains and also for their related barbed tributaries, truncated side valleys, and drainage route U-turns than the accepted paradigm, although the new paradigm also leads to a fundamentally different middle and late Cenozoic regional geologic history than is currently recognized. One paradigm cannot be used to judge a different paradigm, but the paradigms can be compared based on their ability to explain evidence and Occam’s Razor can determine which of the two paradigms provides the simplest explanations. New paradigm explanations for northern Laramie Mountains valley origins investigated here require fewer assumptions than the accepted paradigm explanations suggesting the new paradigm merits serious future consideration.展开更多
Drainage divides along a southern Laramie Range crest area and in the nearby southeast Wyoming Gangplank area (as observed on detailed topographic maps) suggest present-day drainage routes in the Cheyenne Tablelands r...Drainage divides along a southern Laramie Range crest area and in the nearby southeast Wyoming Gangplank area (as observed on detailed topographic maps) suggest present-day drainage routes in the Cheyenne Tablelands region originated as headward erosion of south-oriented valleys (now the downstream Lodgepole, Crow, and Lone Tree Creek valleys) from an actively eroding northeast-oriented South Platte River valley captured flood flow in the south half of a large east-oriented anastomosing channel complex while headward erosion of a north-oriented valley (now the downstream Horse Creek valley) from the southeast-oriented North Platte River valley captured the north half of the same large anastomosing channel complex. The Gangplank, which today serves as a low gradient ramp of Tertiary Ogallala Formation sediments leading from the Great Plains to the Laramie Range erosion surface, is located along the Crow Creek-Lone Tree Creek drainage divide and low points along that divide (referred to here as divide crossings) suggest, prior to headward erosion of what is now its south-oriented downstream Lone Tree Creek valley, upstream east-oriented Lone Tree Creek drainage routes were intertwined with east-oriented Crow Creek drainage routes, which today flow much further in an east direction (than east-oriented upstream Lone Tree Creek drainage routes) before also turning in a south direction to reach the South Platte River. The ability of the commonly accepted regional geomorphology paradigm to explain this topographic map evidence is then compared with a fundamentally different and new regional geomorphology paradigm’s ability to explain the same evidence. While both paradigms offer possible explanations the new paradigm, which requires headward erosion of the valleys to have occurred as massive continental ice sheet melt water floods crossed the region, explains much more of the drainage system evidence and also permits much more detailed explanations.展开更多
Detailed topographic map drainage system and erosional landform evidence such as drainage route orientations, drainage divides, divide crossings (low points on drainage divides), erosional escarpments, and similar fea...Detailed topographic map drainage system and erosional landform evidence such as drainage route orientations, drainage divides, divide crossings (low points on drainage divides), erosional escarpments, and similar features in the east central Colorado Elbert and Lincoln County region are considered as pieces of a complex but solvable drainage history puzzle. A satisfactory solution to date has eluded investigators who have worked from the accepted Cenozoic geology and glacial history paradigm (accepted paradigm) perspective in which climatic and tectonic factors operating over long time periods lead to what might be considered to be a randomly determined regional drainage history. A new and fundamentally different Cenozoic geology and glacial history paradigm (new paradigm) in which immense and prolonged south-oriented continental ice sheet meltwater floods flowed across the Elbert and Lincoln County area which at that time was near the rising rim surrounding a thick continental icesheet created and occupied deep “hole”. Map evidence documents how northeast-oriented Republican River headwaters valleys eroded headward across must have been large southeast-oriented floods probably moving toward what at that time would have been an actively eroding and deep east-oriented Arkansas River valley head and how those massive southeast-oriented floods subsequently lowered the Colorado Piedmont surface before being beheaded and reversed when the deep northeast- and east-oriented South Platte River valley eroded headward to create in an identifiable sequence (from east to west) what are now long north-oriented South Platte River tributaries. New paradigm predicted massive and prolonged south-oriented meltwater floods flowing across what must have been a rising region explains much, if not all of the Elbert and Lincoln County detailed topographic map drainage system and erosional landform evidence.展开更多
Detailed topographic maps provide much of the information needed to understand how drainage divides like the southeast Wyoming Medicine Bow River-Laramie River drainage divide originated. Topographic map evidence for ...Detailed topographic maps provide much of the information needed to understand how drainage divides like the southeast Wyoming Medicine Bow River-Laramie River drainage divide originated. Topographic map evidence for each Medicine Bow-Laramie River drainage divide segment is here described and analyzed first using a commonly published interpretation (accepted paradigm) in which drainage routes developed on a surface of now mostly absent Oligocene and Miocene sediments that previous investigators have hypothesized to have once filled the Laramie Basin and to have also buried (or partially buried) the surrounding Laramie and Medicine Bow Mountains. Second, the same map evidence is analyzed using a recently proposed interpretation (new paradigm) in which massive and prolonged floods flowed across Wyoming as the Laramie and Medicine Bow Mountains began to be uplifted and as the southeast-oriented North Platte River valley eroded headward along the rising Laramie Mountains northeast flank. Low points along the drainage divide (referred to as divide crossings) are interpreted to be places where water once flowed across the drainage divide with the drainage divide being formed when capture events diverted the water in other directions. Valleys leading away from divide crossings are used to determine the nature of observed capture events, many of which are difficult or impossible to explain from the accepted paradigm perspective, but which are consistent with the mountain uplift, headward erosion of deeper valleys, and/or draining of floodwaters trapped in the Laramie Basin as the new paradigm predicts. However, the new paradigm requires a North American continental ice sheet heavy enough to raise entire regions and mountain ranges as massive and prolonged meltwater floods flowed across them, something the accepted paradigm does not recognize.展开更多
The study aimed to apply to Machine Learning(ML)researchers working in image processing and biomedical analysis who play an extensive role in compre-hending and performing on complex medical data,eventually improving ...The study aimed to apply to Machine Learning(ML)researchers working in image processing and biomedical analysis who play an extensive role in compre-hending and performing on complex medical data,eventually improving patient care.Developing a novel ML algorithm specific to Diabetic Retinopathy(DR)is a chal-lenge and need of the hour.Biomedical images include several challenges,including relevant feature selection,class variations,and robust classification.Although the cur-rent research in DR has yielded favourable results,several research issues need to be explored.There is a requirement to look at novel pre-processing methods to discard irrelevant features,balance the obtained relevant features,and obtain a robust classi-fication.This is performed using the Steerable Kernalized Partial Derivative and Platt Scale Classifier(SKPD-PSC)method.The novelty of this method relies on the appropriate non-linear classification of exclusive image processing models in har-mony with the Platt Scale Classifier(PSC)to improve the accuracy of DR detection.First,a Steerable Filter Kernel Pre-processing(SFKP)model is applied to the Retinal Images(RI)to remove irrelevant and redundant features and extract more meaningful pathological features through Directional Derivatives of Gaussians(DDG).Next,the Partial Derivative Image Localization(PDIL)model is applied to the extracted fea-tures to localize candidate features and suppress the background noise.Finally,a Platt Scale Classifier(PSC)is applied to the localized features for robust classification.For the experiments,we used the publicly available DR detection database provided by Standard Diabetic Retinopathy(SDR),called DIARETDB0.A database of 130 image samples has been collected to train and test the ML-based classifiers.Experimental results show that the proposed method that combines the image processing and ML models can attain good detection performance with a high DR detection accu-racy rate with minimum time and complexity compared to the state-of-the-art meth-ods.The accuracy and speed of DR detection for numerous types of images will be tested through experimental evaluation.Compared to state-of-the-art methods,the method increases DR detection accuracy by 24%and DR detection time by 37.展开更多
In the fall of 2018, Kansas City—the hometown of Edgar Snow,a noted American journalist known throughout China for his strong relationship with the country—held a grand conference to mark the80th anniversary of the ...In the fall of 2018, Kansas City—the hometown of Edgar Snow,a noted American journalist known throughout China for his strong relationship with the country—held a grand conference to mark the80th anniversary of the publication of Snow’s classic book Red Star Over China. More than 50 experts and scholars from the United States and China gathered on Oct 4 to 6 to remember this old friend of the Chinese people and discuss topics such as USChina relations.展开更多
基金UnitedStateGeologicalSurveyGrant(No.1 4 34 HQ 96 GR 0 2 683)
文摘The authors demonstrate the importance of the simulation of the water quantity exchange between river water and groundwater to a better understanding of the hydrologic relations between a river and nearby aquifer where groundwater is pumped extensively but only seasonally. And MODFLOW is used to design the stream aquifer model in which the pumpage of more than 1000 wells was simulated. The river gaining and river losing processes were analyzed. Simulation results suggest that continuation of over extraction of groundwater will gradually increase the depletion volume in the river year after year and more depletion will occur in later years. The exchange manner between groundwater and the Platte River differs from place to place. The Platte River loses water to the adjacent aquifer in the west part of the study area, and gains water from the adjacent aquifer in the east part of the study area.
文摘Detailed topographic maps show multiple stream valleys and what are probably dismembered stream valleys that extend completely across Wyoming’s northern Laramie Mountains. Several of the most obvious valleys are described with valley origins first explained (or attempted to be explained) from the commonly accepted regional geomorphology paradigm (accepted paradigm) perspective and second from a recently proposed regional geomorphology paradigm (new paradigm) perspective in an effort to determine which of the two paradigms provides the simplest explanations. Accepted paradigm explanations require at least some of the valley erosion to have occurred prior to deposition of Oligocene and Miocene sediments that once covered the northern Laramie Mountains (with some of the exhumed valleys now containing sediment cover remnants). In contrast the fundamentally different new paradigm requires immense south-oriented continental ice sheet melt water floods to have crossed the region as ice sheet related crustal warping raised the region and the Laramie Mountains (and implies sediments now partially filling some of the valleys are probably flood deposited materials). The new paradigm provides simpler explanations for the origins of the valleys now extending completely across the northern Laramie Mountains and also for their related barbed tributaries, truncated side valleys, and drainage route U-turns than the accepted paradigm, although the new paradigm also leads to a fundamentally different middle and late Cenozoic regional geologic history than is currently recognized. One paradigm cannot be used to judge a different paradigm, but the paradigms can be compared based on their ability to explain evidence and Occam’s Razor can determine which of the two paradigms provides the simplest explanations. New paradigm explanations for northern Laramie Mountains valley origins investigated here require fewer assumptions than the accepted paradigm explanations suggesting the new paradigm merits serious future consideration.
文摘Drainage divides along a southern Laramie Range crest area and in the nearby southeast Wyoming Gangplank area (as observed on detailed topographic maps) suggest present-day drainage routes in the Cheyenne Tablelands region originated as headward erosion of south-oriented valleys (now the downstream Lodgepole, Crow, and Lone Tree Creek valleys) from an actively eroding northeast-oriented South Platte River valley captured flood flow in the south half of a large east-oriented anastomosing channel complex while headward erosion of a north-oriented valley (now the downstream Horse Creek valley) from the southeast-oriented North Platte River valley captured the north half of the same large anastomosing channel complex. The Gangplank, which today serves as a low gradient ramp of Tertiary Ogallala Formation sediments leading from the Great Plains to the Laramie Range erosion surface, is located along the Crow Creek-Lone Tree Creek drainage divide and low points along that divide (referred to here as divide crossings) suggest, prior to headward erosion of what is now its south-oriented downstream Lone Tree Creek valley, upstream east-oriented Lone Tree Creek drainage routes were intertwined with east-oriented Crow Creek drainage routes, which today flow much further in an east direction (than east-oriented upstream Lone Tree Creek drainage routes) before also turning in a south direction to reach the South Platte River. The ability of the commonly accepted regional geomorphology paradigm to explain this topographic map evidence is then compared with a fundamentally different and new regional geomorphology paradigm’s ability to explain the same evidence. While both paradigms offer possible explanations the new paradigm, which requires headward erosion of the valleys to have occurred as massive continental ice sheet melt water floods crossed the region, explains much more of the drainage system evidence and also permits much more detailed explanations.
文摘Detailed topographic map drainage system and erosional landform evidence such as drainage route orientations, drainage divides, divide crossings (low points on drainage divides), erosional escarpments, and similar features in the east central Colorado Elbert and Lincoln County region are considered as pieces of a complex but solvable drainage history puzzle. A satisfactory solution to date has eluded investigators who have worked from the accepted Cenozoic geology and glacial history paradigm (accepted paradigm) perspective in which climatic and tectonic factors operating over long time periods lead to what might be considered to be a randomly determined regional drainage history. A new and fundamentally different Cenozoic geology and glacial history paradigm (new paradigm) in which immense and prolonged south-oriented continental ice sheet meltwater floods flowed across the Elbert and Lincoln County area which at that time was near the rising rim surrounding a thick continental icesheet created and occupied deep “hole”. Map evidence documents how northeast-oriented Republican River headwaters valleys eroded headward across must have been large southeast-oriented floods probably moving toward what at that time would have been an actively eroding and deep east-oriented Arkansas River valley head and how those massive southeast-oriented floods subsequently lowered the Colorado Piedmont surface before being beheaded and reversed when the deep northeast- and east-oriented South Platte River valley eroded headward to create in an identifiable sequence (from east to west) what are now long north-oriented South Platte River tributaries. New paradigm predicted massive and prolonged south-oriented meltwater floods flowing across what must have been a rising region explains much, if not all of the Elbert and Lincoln County detailed topographic map drainage system and erosional landform evidence.
文摘Detailed topographic maps provide much of the information needed to understand how drainage divides like the southeast Wyoming Medicine Bow River-Laramie River drainage divide originated. Topographic map evidence for each Medicine Bow-Laramie River drainage divide segment is here described and analyzed first using a commonly published interpretation (accepted paradigm) in which drainage routes developed on a surface of now mostly absent Oligocene and Miocene sediments that previous investigators have hypothesized to have once filled the Laramie Basin and to have also buried (or partially buried) the surrounding Laramie and Medicine Bow Mountains. Second, the same map evidence is analyzed using a recently proposed interpretation (new paradigm) in which massive and prolonged floods flowed across Wyoming as the Laramie and Medicine Bow Mountains began to be uplifted and as the southeast-oriented North Platte River valley eroded headward along the rising Laramie Mountains northeast flank. Low points along the drainage divide (referred to as divide crossings) are interpreted to be places where water once flowed across the drainage divide with the drainage divide being formed when capture events diverted the water in other directions. Valleys leading away from divide crossings are used to determine the nature of observed capture events, many of which are difficult or impossible to explain from the accepted paradigm perspective, but which are consistent with the mountain uplift, headward erosion of deeper valleys, and/or draining of floodwaters trapped in the Laramie Basin as the new paradigm predicts. However, the new paradigm requires a North American continental ice sheet heavy enough to raise entire regions and mountain ranges as massive and prolonged meltwater floods flowed across them, something the accepted paradigm does not recognize.
基金supported by Princess Nourah bint Abdulrahman University Researchers Supporting Project number(PNURSP2022R195),Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘The study aimed to apply to Machine Learning(ML)researchers working in image processing and biomedical analysis who play an extensive role in compre-hending and performing on complex medical data,eventually improving patient care.Developing a novel ML algorithm specific to Diabetic Retinopathy(DR)is a chal-lenge and need of the hour.Biomedical images include several challenges,including relevant feature selection,class variations,and robust classification.Although the cur-rent research in DR has yielded favourable results,several research issues need to be explored.There is a requirement to look at novel pre-processing methods to discard irrelevant features,balance the obtained relevant features,and obtain a robust classi-fication.This is performed using the Steerable Kernalized Partial Derivative and Platt Scale Classifier(SKPD-PSC)method.The novelty of this method relies on the appropriate non-linear classification of exclusive image processing models in har-mony with the Platt Scale Classifier(PSC)to improve the accuracy of DR detection.First,a Steerable Filter Kernel Pre-processing(SFKP)model is applied to the Retinal Images(RI)to remove irrelevant and redundant features and extract more meaningful pathological features through Directional Derivatives of Gaussians(DDG).Next,the Partial Derivative Image Localization(PDIL)model is applied to the extracted fea-tures to localize candidate features and suppress the background noise.Finally,a Platt Scale Classifier(PSC)is applied to the localized features for robust classification.For the experiments,we used the publicly available DR detection database provided by Standard Diabetic Retinopathy(SDR),called DIARETDB0.A database of 130 image samples has been collected to train and test the ML-based classifiers.Experimental results show that the proposed method that combines the image processing and ML models can attain good detection performance with a high DR detection accu-racy rate with minimum time and complexity compared to the state-of-the-art meth-ods.The accuracy and speed of DR detection for numerous types of images will be tested through experimental evaluation.Compared to state-of-the-art methods,the method increases DR detection accuracy by 24%and DR detection time by 37.
文摘In the fall of 2018, Kansas City—the hometown of Edgar Snow,a noted American journalist known throughout China for his strong relationship with the country—held a grand conference to mark the80th anniversary of the publication of Snow’s classic book Red Star Over China. More than 50 experts and scholars from the United States and China gathered on Oct 4 to 6 to remember this old friend of the Chinese people and discuss topics such as USChina relations.