The National Geophysical Data Center(NGDC)of the United States has collected aeromagnetic data for input into a series of geomagnetic models to improve model resolution;however,in the Tibetan Plateau region,ground-bas...The National Geophysical Data Center(NGDC)of the United States has collected aeromagnetic data for input into a series of geomagnetic models to improve model resolution;however,in the Tibetan Plateau region,ground-based observations remain insufficient to clearly reflect the characteristics of the region’s lithospheric magnetism.In this study,we evaluate the lithospheric magnetism of the Tibetan Plateau by using a 3D surface spline model based on observations from>200 newly constructed repeat stations(portable stations)to determine the spatial distribution of plateau geomagnetism,as well as its correlation with the tectonic features of the region.We analyze the relationships between M≥5 earthquakes and lithospheric magnetic field variations on the Tibetan Plateau and identify regions susceptible to strong earthquakes.We compare the geomagnetic results with those from an enhanced magnetic model(EMM2015)developed by the NGDC and provide insights into improving lithospheric magnetic field calculations in the Tibetan Plateau region.Further research reveals that these magnetic anomalies exhibit distinct differences from the magnetic-seismic correlation mechanisms observed in other tectonic settings;here,they are governed primarily by the combined effects of compressional magnetism,thermal magnetism,and deep thermal stress.This study provides new evidence of geomagnetic anomalies on the Tibetan Plateau,interprets them physically,and demonstrates their potential for identifying seismic hazard zones on the Plateau.展开更多
Ecosystems along the eastern margin of the Qinghai-Tibet Plateau(EQTP)are highly fragile and extremely sensitive to climate change and human disturbances.To quantitatively assess climate-induced ecosystem responses,th...Ecosystems along the eastern margin of the Qinghai-Tibet Plateau(EQTP)are highly fragile and extremely sensitive to climate change and human disturbances.To quantitatively assess climate-induced ecosystem responses,this study proposes a Climate-Induced Productivity Index(CIPI)based on the Super Slack-Based Measure(Super-SBM)model using remote sensing data from 2001 to 2020.The results reveal persistently low CIPI values(0.47-0.53)across major ecosystem types,indicating widespread vulnerability to climatic variability.Among these ecosystems,forests exhibit the highest CIPI(0.55),followed by shrublands(0.54),croplands(0.53),grasslands(0.51),and barelands(0.43).The Theil index analysis further demonstrates significant intra-group disparities,suggesting that extreme climatic events amplify CIPI heterogeneity.Moreover,the dominant environmental drivers differ among ecosystem types:the Palmer Drought Severity Index(PDSI)primarily constrains grassland productivity,solar radiation(SRAD)strongly influences shrub and cropland systems,whereas subsurface factors exert greater control in forested regions.This study provides a quantitative framework for evaluating climate-ecosystem interactions and offers a scientific basis for long-term ecological monitoring and security planning across the EQTP.展开更多
Walking into the Institute of Plateau Biology(IPB in short)in Lhasa,Xizang,vice director Yang Le exchanged pleasantries with the guard in fluent Tibetan.Originally from Hunan Province,he has worked and lived here in X...Walking into the Institute of Plateau Biology(IPB in short)in Lhasa,Xizang,vice director Yang Le exchanged pleasantries with the guard in fluent Tibetan.Originally from Hunan Province,he has worked and lived here in Xizang for over 20 years."Now I see Xizang as my home,"he said with a smile.展开更多
With an average elevation of over 4,500 meters and spanning 2.5 million square km,the Qinghai-Xizang Plateau is the highest and largest plateau on Earth,earning it the title the"roof of the world".Un surpris...With an average elevation of over 4,500 meters and spanning 2.5 million square km,the Qinghai-Xizang Plateau is the highest and largest plateau on Earth,earning it the title the"roof of the world".Un surprisingly,the plateau is home to exceptional biodiversity,making it one of the most biologically rich geographical regions in the world.展开更多
Understanding how species diverge and adapt is fundamental to unraveling biodiversity.While environmental impacts on species evolution are well-documented,the roles of intrinsic life-history traits remain underexplore...Understanding how species diverge and adapt is fundamental to unraveling biodiversity.While environmental impacts on species evolution are well-documented,the roles of intrinsic life-history traits remain underexplored.The Qinghai-Xizang Plateau,with its harsh conditions and unique biodiversity,offers a natural laboratory for such investigations.Here,we examine two sympatric small mammals—the solitary,low-dispersal plateau zokor(Eospalax baileyi)and the social,high-dispersal plateau pika(Ochotona curzoniae)—to elucidate how life-history traits shape population structures and adaptive strategies.Through whole-genome sequencing and cardiac-blood phenotype analyses,we reveal striking differences in their evolutionary trajectories.Despite enduring similar environmental pressures,plateau zokor populations exhibit pronounced genetic subdivisions,high inbreeding,and distinct local adaptations.In contrast,plateau pika populations display genetic panmixia,widespread diversity,and adaptive uniformity.Demographic inference highlights that plateau zokors experienced severe population bottlenecks and restricted gene flow during glacial periods,underscoring the impact of dispersal capacity on evolutionary outcomes.Our findings demonstrate that intrinsic biological traits,particularly dispersal ability,fundamentally influence genetic architecture,population connectivity,and local adaptation.This study not only provides empirical evidence of how life-history traits shape evolutionary dynamics but also offers a framework for integrating intrinsic and extrinsic factors in understanding biodiversity formation.展开更多
The Tibetan Plateau(TP),known as the“Third Pole of Earth”,and its ecosystem is quite sensitive to climate change(Yao et al.,2012;Qiu,2008).In recent decades,the main TP has experienced warming and humidification(alt...The Tibetan Plateau(TP),known as the“Third Pole of Earth”,and its ecosystem is quite sensitive to climate change(Yao et al.,2012;Qiu,2008).In recent decades,the main TP has experienced warming and humidification(although there has been a drying trend in the southern region),and researchers anticipate that this change will continue in the future(Jiang et al.,2023;Sun et al.,2020;Chen et al.,2015).展开更多
A better understanding of the structure and dynamics of disturbed forests is key for forecasting their future successional trajectories.Despite vulnerability of subalpine forests to warming climate,little is known as ...A better understanding of the structure and dynamics of disturbed forests is key for forecasting their future successional trajectories.Despite vulnerability of subalpine forests to warming climate,little is known as to how their community composition has responded to disturbances and climate warming over decades.Before the 1970s,subalpine forests on the southeastern Qinghai-Tibet Plateau mainly experienced logging and fire,but afterwards they were more impacted by climate warming.Thus,they provide an excellent setting to test whether disturbances and climate warming led to changes in forest structure.Based on the analysis of 3145 forest inventory plots at 4-to 5-year resolution,we found that spruce-fir forests shifted to pine and broadleaved forests since the early 1970s.Such a turnover in species composition mainly occurred in the 1994e1998 period.By strongly altering site conditions,disturbances in concert with climate warming reshuffle community composition to warm-adapted broadleaf-pine species.Thus,moderate disturbances shifted forest composition through a gradual loss of resilience of spruce-fir forests.Shifts in these foundation species will have profound impacts on ecosystem functions and services.In the future,broadleaved forests could expand more rapidly than evergreen needle-leaved forests under moderate warming scenarios.In addition to climate,the effects of anthropogenic disturbances on subalpine forests should be considered in adaptive forest management and in projections of future forest changes.展开更多
Water use efficiency(WUE),as a pivotal indicator of the coupling degree within the carbon–water cycle of ecosystems,holds considerable importance in assessment of the carbon–water balance within terrestrial ecosyste...Water use efficiency(WUE),as a pivotal indicator of the coupling degree within the carbon–water cycle of ecosystems,holds considerable importance in assessment of the carbon–water balance within terrestrial ecosystems.However,in the context of global warming,WUE evolution and its primary drivers on the Tibetan Plateau remain unclear.This study employed the ensemble empirical mode decomposition method and the random forest algorithm to decipher the nonlinear trends and drivers of WUE on the Tibetan Plateau in 2001–2020.Results indicated an annual mean WUE of 0.8088 gC/mm·m^(2)across the plateau,with a spatial gradient reflecting decrease from the southeast toward the northwest.Areas manifesting monotonous trends of increase or decrease in WUE accounted for 23.64%and 9.69%of the total,respectively.Remarkably,66.67%of the region exhibited trend reversals,i.e.,39.94%of the area of the Tibetan Plateau showed transition from a trend of increase to a trend of decrease,and 26.73%of the area demonstrated a shift from a trend of decrease to a trend of increase.Environmental factors accounted for 70.79%of the variability in WUE.The leaf area index and temperature served as the major driving forces of WUE variation.展开更多
Tibetan turnip and oilseeds are the most important vegetables cultivated in the Qinghai-Tibet Plateau.Our field observations identified a dominant early-bolting phenotype at the vegetative growth stage in the Tibetan ...Tibetan turnip and oilseeds are the most important vegetables cultivated in the Qinghai-Tibet Plateau.Our field observations identified a dominant early-bolting phenotype at the vegetative growth stage in the Tibetan turnip,which was possibly due to cross-pollination contamination from nearby oilseeds.We performed genetic and molecular experiments to explore the main reason for early bolting.We first analyzed gene expression and genomic sequence variation of turnip and oilseed BraFLC2,a gene that acts as a key repressor of flowering in turnip in a dosage-dependent manner.We found that the differences in flowering time and life habits between turnip and oilseeds were closely correlated with the genetic variations in BraFLC2.We further identified that the early-bolting turnip was the hybrid between turnip and oilseeds by selecting BraFLC2 as a testing gene.Furthermore,using an artificial hybridization experiment,we found that the heterozygote and low levels of BraFLC2 expression promoted early bolting in hybrid plants.These findings indicate that early-bolting in turnip is caused by cross-pollination contamination from oilseeds under human agricultural activities.We propose a strategy of strict seed screening,cultivation isolation and turnip breeding to ensure high quality and yield.展开更多
The Qinghai-Tibet Plateau,with its high altitude and cold climate,is one of the most fragile ecological environments in China and is distinguished by its naturally elevated arsenic(As)levels in the soil,largely due to...The Qinghai-Tibet Plateau,with its high altitude and cold climate,is one of the most fragile ecological environments in China and is distinguished by its naturally elevated arsenic(As)levels in the soil,largely due to its rich mineral and geothermal resources.This review provides a comprehensive analysis of As content,focusing on its distribution,environmental migration,and transformation behavior across the plateau.The review further evaluates the distribution of As in different functional areas,revealing that geothermal fields(107.2 mg/kg),mining areas(53.8 mg/kg),and croplands(39.3 mg/kg)have the highest As concentrations,followed by river and lake sediments and adjacent areas(33.1 mg/kg).These elevated levels are primarily attributed to the presence of As-rich minerals,such as arsenopyrite and pyrite.Additionally,human activities,including mining and geothermal energy production,exacerbate the release of As into the environment.The review also highlights the role of localmicroorganisms,particularly those fromthe phyla Proteobacteria and Actinobacteria,which possess As metabolic genes that facilitate As translocation.Given the unique climatic conditions of the plateau,conventionalmethods for As controlmay not be fully effective.However,the review identifies promising remediation strategies that are environmentally adaptable,such as the use of local microorganisms,specific adsorbents,and integrated technologies,which offer potential solutions for managing and utilizing Ascontaminated soils on the plateau.展开更多
The Qinghai-Tibet Plateau(QTP)has three main grassland types:alpine meadow,alpine steppe,and alpine desert steppe.In this study,we asked how plant productivity and species diversity vary with altitude,longitude and la...The Qinghai-Tibet Plateau(QTP)has three main grassland types:alpine meadow,alpine steppe,and alpine desert steppe.In this study,we asked how plant productivity and species diversity vary with altitude,longitude and latitude in alpine grasslands of the QTP.We then identified the environmental factors that drive these observed patterns of plant productivity and species diversity.We found that although plant productivity and species diversity varied greatly across large-scale longitudinal and latitudinal gradients,these changes were strongest across the longitudinal gradient.This finding indicates that moisture rather than temperature has the greatest impact on plant productivity and species diversity of the alpine grasslands in the QTP.We also found that besides soil and climate factors,partial pressure of carbon dioxide(pCO_(2))also has significant effects on plant productivity,and barometric pressure and partial pressure of oxygen(pO_(2))also have significant effects on species diversity.Furthermore,the relationship between the biomass of grassland-dominant species and species diversity was affected by the spatial scale at which these factors were studied.Our study provides new insights into the interconnections between plant productivity and species diversity and the major factors that influence alpine grasslands.It also provides a scientific basis for the maintenance of plant diversity and ecosystem functions in hypoxic(low-oxygen)regions.展开更多
The Qinghai-Xizang Plateau(QXP)serves as a crucial ecological barrier in China and Asia,exerting profound influences on global climate and biodiversity conservation.Gannan Tibetan Autonomous Prefecture(hereinafter ref...The Qinghai-Xizang Plateau(QXP)serves as a crucial ecological barrier in China and Asia,exerting profound influences on global climate and biodiversity conservation.Gannan Tibetan Autonomous Prefecture(hereinafter referred as Gannan Prefecture),located on the northeastern edge of the QXP,represents a fragile alpine ecosystem in which land use change significantly impacts ecosystem services(ESs).This study established a comprehensive framework,utilizing the Patch-generating Land-Use Simulation(PLUS)model coupled with the Integrated Valuation of Ecosystem Services and Tradeoffs(InVEST)model to predict land use patterns under the natural development scenario,cultivated land protection scenario,and ecological protection scenario for Gannan Prefecture by 2030 and evaluated four critical ESs:habitat quality(HQ),water yield(WY),soil retention(SR),and carbon storage(CS).The primary aim is to elucidate the impacts of dynamic land use change on ESs.The results revealed that,from 2000 to 2020,HQ exhibited minimal variation,whereas CS experienced a slight decline.Conversely,WY and SR showed significant improvements.Under the natural development scenario,construction land was projected to increase by 4247.74 hm^(2),primarily at the expense of forest land.The cultivated land protection scenario anticipated an increase in farmland by 2634.36 hm^(2),which was crucial for maintaining food security.The ecological protection scenario predicted a notable expansion of forest land,accompanied by a restrained development rate of construction land.The ecological protection scenario also showed an increase in the ecosystem service index(ESI),encompassing 26.07%of the region.Forest land and grassland emerged as the primary contributors to ESs,while construction land substantially impacted WY.Water bodies exhibited minimal contribution to ESs.This study enhanced the understanding of land use change impacts on ESs in fragile and high-altitude ecosystems,offering essential theoretical frameworks and practical direction for forthcoming ecological policy and regional planning endeavors.展开更多
Rationally regulating the porosity of hard carbon(HC),especially the closed pores matching the low potential plateau and the ultra-microporous structure suitable for Na+embedding,has been shown to be the key to improv...Rationally regulating the porosity of hard carbon(HC),especially the closed pores matching the low potential plateau and the ultra-microporous structure suitable for Na+embedding,has been shown to be the key to improving the sodium storage performance and initial coulombic efficiency(ICE).However,the preparation of such HC materials with specific pore structures still faces great challenges.Herein,a simple pre-oxidation strategy is employed to construct abundant closed ultra-microporous structures in soy protein powder-derived HC material,achieving a significant improvement in its ICE and platform capacity.The pre-oxidation process promotes the cross-linking degree of the soy protein,thereby hindering the directional growth of graphite domains during the carbonization process.The optimized HC exhibits ultra-high platform capacity(329 mAh g^(-1))and considerable energy density(148.5 Wh kg^(-1)).Based on the ex-situ Raman and X-ray photoelectron spectroscopy characterization results,the excellent sodium storage capacity of the HC material is attributed to the synergistic effect of adsorption-intercalation/filling.The presented work provides novel insights into the synthesis of other biomass-derived HC materials with abundant closed ultra-micro pores.展开更多
To tackle the issue of notch frequency and center frequency drift of the L(0,1)mode guided wave in ultra⁃sonic guided wave⁃based stress monitoring of prestressed steel strands,a method using higher⁃order mode plateau ...To tackle the issue of notch frequency and center frequency drift of the L(0,1)mode guided wave in ultra⁃sonic guided wave⁃based stress monitoring of prestressed steel strands,a method using higher⁃order mode plateau fre⁃quencies is adopted.First,the correlation between group velocity peaks and phase velocities at these plateau frequen⁃cies is analyzed.This analysis establishes a quantitative rela⁃tionship between phase velocity and stress in the steel strand,providing a theoretical foundation for stress monitor⁃ing.Then the two⁃dimensional Fourier transform is em⁃ployed to separate wave modes.Dynamic programming techniques are applied in the frequency⁃velocity domain to extract higher⁃order modes.By identifying the group veloc⁃ity peaks of these separated higher⁃order modes,the plateau frequencies of guided waves are determined,enabling indi⁃rect measurement of stress in the steel strand.To validate this method,finite element simulations are conducted under three scenarios.Results show that the higher⁃order modes of transient signals from three different positions can be ac⁃curately extracted,leading to successful cable stress moni⁃toring.This approach effectively circumvents the issue of guided wave frequency drift and improves stress monitoring accuracy.Consequently,it significantly improves the appli⁃cation of ultrasonic guided wave technology in structural health monitoring.展开更多
On 19 May 2022, an outbreak of 105 red sprites that occurred over South Asia was fortuitously recorded by two amateurs from a site in the southern Tibetan Plateau(TP), marking the highest number captured over a single...On 19 May 2022, an outbreak of 105 red sprites that occurred over South Asia was fortuitously recorded by two amateurs from a site in the southern Tibetan Plateau(TP), marking the highest number captured over a single thunderstorm in South Asia. Nearly half of these events involved dancing sprites, with an additional 16 uncommon secondary jets and at least four extremely rare green emissions called “ghosts” observed following the associated sprites. Due to the absence of the precise timing needed to identify parent lightning, a method based on satellite motion trajectories and star fields is proposed to infer video frame timestamps within an error of less than one second. After verifying 95 sprites from two videos, our method identified the parent lightning for 66 sprites(~70%). The sprite-producing strokes, mainly of positive polarity with peak currents exceeding +50 k A, occurred in the stratiform region of a mesoscale convective complex(MCC)that spanned the Ganges Plain to the southern TP, with a cloud area over 200 000 km2 and a minimum cloud-top black body temperature near 180 K. This observation confirms that thunderstorms in South Asia, akin to mesoscale convective systems(MCSs) in the Great Plains of the United States or coastal thunderstorms in Europe, can produce numerous sprites,including complex species. Our analysis bears important implications for characterizing thunderstorms above the southern TP and examining their physical and chemical effects on the adjacent regions, as well as the nature of the coupling between the troposphere and middle-upper atmosphere in this region.展开更多
With the implementation of significant national strategies and rapid socioeconomic development,many ultra-long deep tunnels are being constructed in the Qinghai–Xizang Plateau region.However,the extreme complexity an...With the implementation of significant national strategies and rapid socioeconomic development,many ultra-long deep tunnels are being constructed in the Qinghai–Xizang Plateau region.However,the extreme complexity and variability of the environment in this region pose significant challenges to the safe construction and long-term operation of the planned or under-construction ultra-long deep tunnels.To address these complex technical challenges,this paper provides a detailed analysis of the complex climate and geology features of the Qinghai–Xizang Plateau during tunnel construction.The climate characteristics of the Qinghai–Xizang Plateau include severe coldness,low oxygen,and unpredictable weather changes.The geological characteristics include complex stress distributions caused by the intense internal and external dynamic coupling of tectonic plates,widespread active tectonic structures,frequent high-intensity earthquakes,fractured rock masses,and numerous active fault zones.Based on the analysis,this paper elaborates on potential sources of major disasters resulting from the characteristics of ultra-long deep tunnel projects in the Qinghai–Xizang Plateau region.These potential disaster sources include the crossing of active fault zones,high geostress rockbursts,large deformation disasters,high-pressure water surges,geothermal hazards,inadequate long-distance ventilation and oxygen supply,and multi-hazard couplings.In response to these challenges,this paper systematically summarizes the latest research progress and technological achievements in the domestic and international literature,and proposes innovative ideas and future development prospects for disaster monitoring and early warning,mechanized intelligent construction,long-term safety services,and emergency security and rescue.These innovative measures are intended to address the challenges of tunnel disaster prevention and control in the complex environment of the Qinghai–Xizang Plateau,contributing to the safe construction and long-term operation of ultra-long deep tunnels in this region.展开更多
As the highest and largest plateau in the world,the Qinghai-Tibet Plateau(QTP)covers wide geological,topographical and climatic gradients and thus acts as a major center for biodiversity and houses a diverse array of ...As the highest and largest plateau in the world,the Qinghai-Tibet Plateau(QTP)covers wide geological,topographical and climatic gradients and thus acts as a major center for biodiversity and houses a diverse array of high elevation ecosystems.Together these factors make the QTP a critical ecological shield for Asia.However,the composition,structure and function of plant diversity in QTP has experienced profound changes in recent decades.Long-term on-site monitoring,fieldexperiments,remote sensing,and simulations have led to significantadvances in our understanding of how plant diversity on the QTP has responded to climate change and human activity.This review synthesizes findingsfrom previous researches on how climate change and human activity have impacted plant diversity on the QTP.We identify gaps in our knowledge and highlight the need for interdisciplinary studies,long-term monitoring networks,and adaptive management strategies to enhance our knowledge and safeguard the QTP’s biodiversity amid accelerating global climate change.展开更多
The characteristics of summertime raindrop size distribution(DSD) and associated relations in the semi-arid region over the Inner Mongolian Plateau(IMP) were investigated,utilizing five-year continuous observations by...The characteristics of summertime raindrop size distribution(DSD) and associated relations in the semi-arid region over the Inner Mongolian Plateau(IMP) were investigated,utilizing five-year continuous observations by a PARSIVEL2disdrometer in East Ujimqin County(EUC),China.It is found that only 7.94% of the 15 664 one-min precipitation samples meet classification criteria as convective rain(CR),but its contribution to the total rainfall amount is 63.87%.Notably,40.72% of the rainfall comes from large-sized raindrops(D> 3 mm),despite the fact that large-sized raindrops account for only 1.73% of the CR total number concentration.Further results show that the mean value of mass-weighted mean diameters(Dm) is larger(2.43 mm) and generalized intercepts(lgN_(W)) is lower(3.19) in CR,aligning with a "continentallike" cluster,which is mainly influenced by the joint impact of in-cloud ice-based processes and the below-cloud environmental background.Also,the empirical relationships of shape-slope(μ-Λ),radar reflectivity-rain rate(Z-R),and rainfall kinetic energy(KE_(time)-Rand KE_(time)-Z) are localized.To quantitatively analyze the impact of DSD parameters on kinetic energy estimation,power-law KE_(time)-R and KE_(time)-Z relationships are derived based on the normalized gamma distribution.N_(W)takes precedence over μ in affecting variabilities of multiplicative coefficients,especially for KE_(time)-R relationship where the multiplicative coefficient is proportional to N_(W)^(-0.287).It should be noted that although the proportion of CR occurring throughout the summer is small,raindrops with lower N_(W) and larger Dmwill generate higher KE_(time),which will bring a higher potential risk of soil erosion in semi-arid regions over IMP.展开更多
In the context of global warming,it is anticipated that both the intensity and the frequency of future global extreme high precipitation(EHP)and extreme high temperature(EHT)events will increase.To evaluate the future...In the context of global warming,it is anticipated that both the intensity and the frequency of future global extreme high precipitation(EHP)and extreme high temperature(EHT)events will increase.To evaluate the future extreme climate changes in the Asian arid region and Tibetan Plateau,this study applied the NASA Earth Exchange Global Daily Downscaled Projections(NEX-GDDP-CMIP6)to assess the changes in EHP(Rx5d and R95pTOT)and EHT(TX90p and TXx)under different emission scenarios in the 21st century.Findings suggest that both the frequency and the intensity of the extreme indices will increase,exhibiting accelerated growth under higher emission scenarios,particularly under the SSP5-8.5 emission scenario.It is suggested that the growth of EHT and EHP in the early subperiod of the 21st century(2026-2045)will be relatively moderate,with small differences between different emission scenarios.However,by the middle subperiod of the 21st century(2041-2060),the differences between different emission scenarios will become larger than the 2035s and the growth will become more intense.In western central Asia,TX90p,TXx,Rx5d,and R95pTOT increase by 9.7%-14.2%(13.3%-24.7%),1.3℃-1.7℃(1.6℃-2.7℃),6.5%-8.9%(8.2%-8.8%),and 18.1%-27.0%(25.6%-30.0%)by the early(middle)subperiod;in eastern central Asia,TX90p,TXx,Rx5d,and R95pTOT increase 8.1%-12.0%(11.3%-21.1%),1.4℃-1.8℃(1.9℃-2.9℃),7.4%-9.7%(10.4%-13.8%),and 20.2%-29.3%(32.0%-40.8%)by the early(middle)subperiod;and over the Tibetan Plateau,TX90p,TXx,Rx5d,and R95pTOT increase 12.5%-17.4%(17.0%-31.0%),1.2℃-1.5℃(1.6℃-2.5℃),7.2%-10.0%(9.9%-15.0%),and 26.6%-33.1%(36.1%-55.3%)by the early(middle)subperiod.展开更多
基金supported by the CAS Pioneer Hundred Talents Program and Second Tibetan Plateau Scientific Expedition Research Program(2019QZKK0708)as well as the Basic Research Program of Qinghai Province:Lithospheric Geomagnetic Field of the Qinghai‒Tibet Plateau and the Relationship with Strong Earthquakes(2021-ZJ-969Q).
文摘The National Geophysical Data Center(NGDC)of the United States has collected aeromagnetic data for input into a series of geomagnetic models to improve model resolution;however,in the Tibetan Plateau region,ground-based observations remain insufficient to clearly reflect the characteristics of the region’s lithospheric magnetism.In this study,we evaluate the lithospheric magnetism of the Tibetan Plateau by using a 3D surface spline model based on observations from>200 newly constructed repeat stations(portable stations)to determine the spatial distribution of plateau geomagnetism,as well as its correlation with the tectonic features of the region.We analyze the relationships between M≥5 earthquakes and lithospheric magnetic field variations on the Tibetan Plateau and identify regions susceptible to strong earthquakes.We compare the geomagnetic results with those from an enhanced magnetic model(EMM2015)developed by the NGDC and provide insights into improving lithospheric magnetic field calculations in the Tibetan Plateau region.Further research reveals that these magnetic anomalies exhibit distinct differences from the magnetic-seismic correlation mechanisms observed in other tectonic settings;here,they are governed primarily by the combined effects of compressional magnetism,thermal magnetism,and deep thermal stress.This study provides new evidence of geomagnetic anomalies on the Tibetan Plateau,interprets them physically,and demonstrates their potential for identifying seismic hazard zones on the Plateau.
基金National Key R&D Program of China,No.2022YFF1302401National Natural Science Foundation of China,No.42271007。
文摘Ecosystems along the eastern margin of the Qinghai-Tibet Plateau(EQTP)are highly fragile and extremely sensitive to climate change and human disturbances.To quantitatively assess climate-induced ecosystem responses,this study proposes a Climate-Induced Productivity Index(CIPI)based on the Super Slack-Based Measure(Super-SBM)model using remote sensing data from 2001 to 2020.The results reveal persistently low CIPI values(0.47-0.53)across major ecosystem types,indicating widespread vulnerability to climatic variability.Among these ecosystems,forests exhibit the highest CIPI(0.55),followed by shrublands(0.54),croplands(0.53),grasslands(0.51),and barelands(0.43).The Theil index analysis further demonstrates significant intra-group disparities,suggesting that extreme climatic events amplify CIPI heterogeneity.Moreover,the dominant environmental drivers differ among ecosystem types:the Palmer Drought Severity Index(PDSI)primarily constrains grassland productivity,solar radiation(SRAD)strongly influences shrub and cropland systems,whereas subsurface factors exert greater control in forested regions.This study provides a quantitative framework for evaluating climate-ecosystem interactions and offers a scientific basis for long-term ecological monitoring and security planning across the EQTP.
文摘Walking into the Institute of Plateau Biology(IPB in short)in Lhasa,Xizang,vice director Yang Le exchanged pleasantries with the guard in fluent Tibetan.Originally from Hunan Province,he has worked and lived here in Xizang for over 20 years."Now I see Xizang as my home,"he said with a smile.
文摘With an average elevation of over 4,500 meters and spanning 2.5 million square km,the Qinghai-Xizang Plateau is the highest and largest plateau on Earth,earning it the title the"roof of the world".Un surprisingly,the plateau is home to exceptional biodiversity,making it one of the most biologically rich geographical regions in the world.
基金supported by the Second Tibetan Plateau Scientific Expedition and Research(STEP)Program(2019QZKK05010900 and 2019QZKK05010405)the National Natural Science Foundation of China(32100339 and 32200350)+3 种基金Yunnan Revitalization Talent Support Program Top team(202405AS350022)supported by the Youth Innovation Promotion Association,Chinese Academy of Sciencessupported by Yunnan Fundamental Research Projects(202201AU070208)supported by Yunnan Revitalization Talent Support Program Yunling Scholar Project(XML)。
文摘Understanding how species diverge and adapt is fundamental to unraveling biodiversity.While environmental impacts on species evolution are well-documented,the roles of intrinsic life-history traits remain underexplored.The Qinghai-Xizang Plateau,with its harsh conditions and unique biodiversity,offers a natural laboratory for such investigations.Here,we examine two sympatric small mammals—the solitary,low-dispersal plateau zokor(Eospalax baileyi)and the social,high-dispersal plateau pika(Ochotona curzoniae)—to elucidate how life-history traits shape population structures and adaptive strategies.Through whole-genome sequencing and cardiac-blood phenotype analyses,we reveal striking differences in their evolutionary trajectories.Despite enduring similar environmental pressures,plateau zokor populations exhibit pronounced genetic subdivisions,high inbreeding,and distinct local adaptations.In contrast,plateau pika populations display genetic panmixia,widespread diversity,and adaptive uniformity.Demographic inference highlights that plateau zokors experienced severe population bottlenecks and restricted gene flow during glacial periods,underscoring the impact of dispersal capacity on evolutionary outcomes.Our findings demonstrate that intrinsic biological traits,particularly dispersal ability,fundamentally influence genetic architecture,population connectivity,and local adaptation.This study not only provides empirical evidence of how life-history traits shape evolutionary dynamics but also offers a framework for integrating intrinsic and extrinsic factors in understanding biodiversity formation.
基金supported by the Basic Science Center for Tibetan Plateau Earth System(No.41988101)the Science and Technology Plan Project of the Xizang Autonomous Region(No.XZ202201ZD0005G01)。
文摘The Tibetan Plateau(TP),known as the“Third Pole of Earth”,and its ecosystem is quite sensitive to climate change(Yao et al.,2012;Qiu,2008).In recent decades,the main TP has experienced warming and humidification(although there has been a drying trend in the southern region),and researchers anticipate that this change will continue in the future(Jiang et al.,2023;Sun et al.,2020;Chen et al.,2015).
基金supported by the National Natural Science Foundation of China(42030508)the Second Tibetan Plateau Scientific Expedition and Research(STEP)program(2019QZKK0301)the Key technology research and development projects in Xizang Autonomous Regions(XZ202101ZY0005G).
文摘A better understanding of the structure and dynamics of disturbed forests is key for forecasting their future successional trajectories.Despite vulnerability of subalpine forests to warming climate,little is known as to how their community composition has responded to disturbances and climate warming over decades.Before the 1970s,subalpine forests on the southeastern Qinghai-Tibet Plateau mainly experienced logging and fire,but afterwards they were more impacted by climate warming.Thus,they provide an excellent setting to test whether disturbances and climate warming led to changes in forest structure.Based on the analysis of 3145 forest inventory plots at 4-to 5-year resolution,we found that spruce-fir forests shifted to pine and broadleaved forests since the early 1970s.Such a turnover in species composition mainly occurred in the 1994e1998 period.By strongly altering site conditions,disturbances in concert with climate warming reshuffle community composition to warm-adapted broadleaf-pine species.Thus,moderate disturbances shifted forest composition through a gradual loss of resilience of spruce-fir forests.Shifts in these foundation species will have profound impacts on ecosystem functions and services.In the future,broadleaved forests could expand more rapidly than evergreen needle-leaved forests under moderate warming scenarios.In addition to climate,the effects of anthropogenic disturbances on subalpine forests should be considered in adaptive forest management and in projections of future forest changes.
基金National Nonprofit Institute Research Grant of CAF,No.CAFYBB2018ZA004,No.CAFYBB2023ZA009Fengyun Application Pioneering Project,No.FY-APP-ZX-2023.02。
文摘Water use efficiency(WUE),as a pivotal indicator of the coupling degree within the carbon–water cycle of ecosystems,holds considerable importance in assessment of the carbon–water balance within terrestrial ecosystems.However,in the context of global warming,WUE evolution and its primary drivers on the Tibetan Plateau remain unclear.This study employed the ensemble empirical mode decomposition method and the random forest algorithm to decipher the nonlinear trends and drivers of WUE on the Tibetan Plateau in 2001–2020.Results indicated an annual mean WUE of 0.8088 gC/mm·m^(2)across the plateau,with a spatial gradient reflecting decrease from the southeast toward the northwest.Areas manifesting monotonous trends of increase or decrease in WUE accounted for 23.64%and 9.69%of the total,respectively.Remarkably,66.67%of the region exhibited trend reversals,i.e.,39.94%of the area of the Tibetan Plateau showed transition from a trend of increase to a trend of decrease,and 26.73%of the area demonstrated a shift from a trend of decrease to a trend of increase.Environmental factors accounted for 70.79%of the variability in WUE.The leaf area index and temperature served as the major driving forces of WUE variation.
基金supported by the National Natural Science Foundation of China(no.32200306,32170385 and 32070362)the Postdoctoral Directional Training Foundation of Yunnan Province,and the Second Tibetan Plateau Scientific Expedition and Research(STEP)program(no.2019QZKK0502).
文摘Tibetan turnip and oilseeds are the most important vegetables cultivated in the Qinghai-Tibet Plateau.Our field observations identified a dominant early-bolting phenotype at the vegetative growth stage in the Tibetan turnip,which was possibly due to cross-pollination contamination from nearby oilseeds.We performed genetic and molecular experiments to explore the main reason for early bolting.We first analyzed gene expression and genomic sequence variation of turnip and oilseed BraFLC2,a gene that acts as a key repressor of flowering in turnip in a dosage-dependent manner.We found that the differences in flowering time and life habits between turnip and oilseeds were closely correlated with the genetic variations in BraFLC2.We further identified that the early-bolting turnip was the hybrid between turnip and oilseeds by selecting BraFLC2 as a testing gene.Furthermore,using an artificial hybridization experiment,we found that the heterozygote and low levels of BraFLC2 expression promoted early bolting in hybrid plants.These findings indicate that early-bolting in turnip is caused by cross-pollination contamination from oilseeds under human agricultural activities.We propose a strategy of strict seed screening,cultivation isolation and turnip breeding to ensure high quality and yield.
基金supported by the Central Public-interest Scientific Institution Basal Research Fund(No.Y2024QC29)the Central Public-interest Scientific Institution Basal Research Fund(Nos.2024-jbkyywf-lwj and 2024-jbkyywf-zyj).
文摘The Qinghai-Tibet Plateau,with its high altitude and cold climate,is one of the most fragile ecological environments in China and is distinguished by its naturally elevated arsenic(As)levels in the soil,largely due to its rich mineral and geothermal resources.This review provides a comprehensive analysis of As content,focusing on its distribution,environmental migration,and transformation behavior across the plateau.The review further evaluates the distribution of As in different functional areas,revealing that geothermal fields(107.2 mg/kg),mining areas(53.8 mg/kg),and croplands(39.3 mg/kg)have the highest As concentrations,followed by river and lake sediments and adjacent areas(33.1 mg/kg).These elevated levels are primarily attributed to the presence of As-rich minerals,such as arsenopyrite and pyrite.Additionally,human activities,including mining and geothermal energy production,exacerbate the release of As into the environment.The review also highlights the role of localmicroorganisms,particularly those fromthe phyla Proteobacteria and Actinobacteria,which possess As metabolic genes that facilitate As translocation.Given the unique climatic conditions of the plateau,conventionalmethods for As controlmay not be fully effective.However,the review identifies promising remediation strategies that are environmentally adaptable,such as the use of local microorganisms,specific adsorbents,and integrated technologies,which offer potential solutions for managing and utilizing Ascontaminated soils on the plateau.
基金supported by the Second Tibetan Plateau Scientific Expedition and Research Program(STEP),Grant No.2019QZKK0606.
文摘The Qinghai-Tibet Plateau(QTP)has three main grassland types:alpine meadow,alpine steppe,and alpine desert steppe.In this study,we asked how plant productivity and species diversity vary with altitude,longitude and latitude in alpine grasslands of the QTP.We then identified the environmental factors that drive these observed patterns of plant productivity and species diversity.We found that although plant productivity and species diversity varied greatly across large-scale longitudinal and latitudinal gradients,these changes were strongest across the longitudinal gradient.This finding indicates that moisture rather than temperature has the greatest impact on plant productivity and species diversity of the alpine grasslands in the QTP.We also found that besides soil and climate factors,partial pressure of carbon dioxide(pCO_(2))also has significant effects on plant productivity,and barometric pressure and partial pressure of oxygen(pO_(2))also have significant effects on species diversity.Furthermore,the relationship between the biomass of grassland-dominant species and species diversity was affected by the spatial scale at which these factors were studied.Our study provides new insights into the interconnections between plant productivity and species diversity and the major factors that influence alpine grasslands.It also provides a scientific basis for the maintenance of plant diversity and ecosystem functions in hypoxic(low-oxygen)regions.
基金funded by the National Natural Science Foundation of China(42101276)the Major Project of Key Research Bases for Humanities and Social Sciences Funded by the Ministry of Education of China(22JJD790015)the Science and Technology Project of Gansu Province,China(20JR5RA529).
文摘The Qinghai-Xizang Plateau(QXP)serves as a crucial ecological barrier in China and Asia,exerting profound influences on global climate and biodiversity conservation.Gannan Tibetan Autonomous Prefecture(hereinafter referred as Gannan Prefecture),located on the northeastern edge of the QXP,represents a fragile alpine ecosystem in which land use change significantly impacts ecosystem services(ESs).This study established a comprehensive framework,utilizing the Patch-generating Land-Use Simulation(PLUS)model coupled with the Integrated Valuation of Ecosystem Services and Tradeoffs(InVEST)model to predict land use patterns under the natural development scenario,cultivated land protection scenario,and ecological protection scenario for Gannan Prefecture by 2030 and evaluated four critical ESs:habitat quality(HQ),water yield(WY),soil retention(SR),and carbon storage(CS).The primary aim is to elucidate the impacts of dynamic land use change on ESs.The results revealed that,from 2000 to 2020,HQ exhibited minimal variation,whereas CS experienced a slight decline.Conversely,WY and SR showed significant improvements.Under the natural development scenario,construction land was projected to increase by 4247.74 hm^(2),primarily at the expense of forest land.The cultivated land protection scenario anticipated an increase in farmland by 2634.36 hm^(2),which was crucial for maintaining food security.The ecological protection scenario predicted a notable expansion of forest land,accompanied by a restrained development rate of construction land.The ecological protection scenario also showed an increase in the ecosystem service index(ESI),encompassing 26.07%of the region.Forest land and grassland emerged as the primary contributors to ESs,while construction land substantially impacted WY.Water bodies exhibited minimal contribution to ESs.This study enhanced the understanding of land use change impacts on ESs in fragile and high-altitude ecosystems,offering essential theoretical frameworks and practical direction for forthcoming ecological policy and regional planning endeavors.
基金supported by the National Natural Science Foundation of China(42167068,22269020)the Gansu Province Higher Education Industry Support Plan Project(2023CYZC-68)the Central Guidance for Local Science and Technology Development Funds Project(YDZX20216200001007)。
文摘Rationally regulating the porosity of hard carbon(HC),especially the closed pores matching the low potential plateau and the ultra-microporous structure suitable for Na+embedding,has been shown to be the key to improving the sodium storage performance and initial coulombic efficiency(ICE).However,the preparation of such HC materials with specific pore structures still faces great challenges.Herein,a simple pre-oxidation strategy is employed to construct abundant closed ultra-microporous structures in soy protein powder-derived HC material,achieving a significant improvement in its ICE and platform capacity.The pre-oxidation process promotes the cross-linking degree of the soy protein,thereby hindering the directional growth of graphite domains during the carbonization process.The optimized HC exhibits ultra-high platform capacity(329 mAh g^(-1))and considerable energy density(148.5 Wh kg^(-1)).Based on the ex-situ Raman and X-ray photoelectron spectroscopy characterization results,the excellent sodium storage capacity of the HC material is attributed to the synergistic effect of adsorption-intercalation/filling.The presented work provides novel insights into the synthesis of other biomass-derived HC materials with abundant closed ultra-micro pores.
基金The National Natural Science Foundation of China(No.52278303).
文摘To tackle the issue of notch frequency and center frequency drift of the L(0,1)mode guided wave in ultra⁃sonic guided wave⁃based stress monitoring of prestressed steel strands,a method using higher⁃order mode plateau fre⁃quencies is adopted.First,the correlation between group velocity peaks and phase velocities at these plateau frequen⁃cies is analyzed.This analysis establishes a quantitative rela⁃tionship between phase velocity and stress in the steel strand,providing a theoretical foundation for stress monitor⁃ing.Then the two⁃dimensional Fourier transform is em⁃ployed to separate wave modes.Dynamic programming techniques are applied in the frequency⁃velocity domain to extract higher⁃order modes.By identifying the group veloc⁃ity peaks of these separated higher⁃order modes,the plateau frequencies of guided waves are determined,enabling indi⁃rect measurement of stress in the steel strand.To validate this method,finite element simulations are conducted under three scenarios.Results show that the higher⁃order modes of transient signals from three different positions can be ac⁃curately extracted,leading to successful cable stress moni⁃toring.This approach effectively circumvents the issue of guided wave frequency drift and improves stress monitoring accuracy.Consequently,it significantly improves the appli⁃cation of ultrasonic guided wave technology in structural health monitoring.
基金supported by the National Natural Science Foundation of China (Grant No.42394122)CAS Project of Stable Support for Youth Team in Basic Research Field (YSRR-018)+1 种基金the National Key R&D Program of China (2023YFC3007703)the Chinese Meridian Project, and the International Partnership Program of Chinese Academy of Sciences (183311KYSB20200003)。
文摘On 19 May 2022, an outbreak of 105 red sprites that occurred over South Asia was fortuitously recorded by two amateurs from a site in the southern Tibetan Plateau(TP), marking the highest number captured over a single thunderstorm in South Asia. Nearly half of these events involved dancing sprites, with an additional 16 uncommon secondary jets and at least four extremely rare green emissions called “ghosts” observed following the associated sprites. Due to the absence of the precise timing needed to identify parent lightning, a method based on satellite motion trajectories and star fields is proposed to infer video frame timestamps within an error of less than one second. After verifying 95 sprites from two videos, our method identified the parent lightning for 66 sprites(~70%). The sprite-producing strokes, mainly of positive polarity with peak currents exceeding +50 k A, occurred in the stratiform region of a mesoscale convective complex(MCC)that spanned the Ganges Plain to the southern TP, with a cloud area over 200 000 km2 and a minimum cloud-top black body temperature near 180 K. This observation confirms that thunderstorms in South Asia, akin to mesoscale convective systems(MCSs) in the Great Plains of the United States or coastal thunderstorms in Europe, can produce numerous sprites,including complex species. Our analysis bears important implications for characterizing thunderstorms above the southern TP and examining their physical and chemical effects on the adjacent regions, as well as the nature of the coupling between the troposphere and middle-upper atmosphere in this region.
文摘With the implementation of significant national strategies and rapid socioeconomic development,many ultra-long deep tunnels are being constructed in the Qinghai–Xizang Plateau region.However,the extreme complexity and variability of the environment in this region pose significant challenges to the safe construction and long-term operation of the planned or under-construction ultra-long deep tunnels.To address these complex technical challenges,this paper provides a detailed analysis of the complex climate and geology features of the Qinghai–Xizang Plateau during tunnel construction.The climate characteristics of the Qinghai–Xizang Plateau include severe coldness,low oxygen,and unpredictable weather changes.The geological characteristics include complex stress distributions caused by the intense internal and external dynamic coupling of tectonic plates,widespread active tectonic structures,frequent high-intensity earthquakes,fractured rock masses,and numerous active fault zones.Based on the analysis,this paper elaborates on potential sources of major disasters resulting from the characteristics of ultra-long deep tunnel projects in the Qinghai–Xizang Plateau region.These potential disaster sources include the crossing of active fault zones,high geostress rockbursts,large deformation disasters,high-pressure water surges,geothermal hazards,inadequate long-distance ventilation and oxygen supply,and multi-hazard couplings.In response to these challenges,this paper systematically summarizes the latest research progress and technological achievements in the domestic and international literature,and proposes innovative ideas and future development prospects for disaster monitoring and early warning,mechanized intelligent construction,long-term safety services,and emergency security and rescue.These innovative measures are intended to address the challenges of tunnel disaster prevention and control in the complex environment of the Qinghai–Xizang Plateau,contributing to the safe construction and long-term operation of ultra-long deep tunnels in this region.
基金the Second Tibetan Plateau Scientific Expedition and Research program(2024QZKK0200)the Key Projects of the Joint Fund of the National Natural Science Foundation of China(U23A20149)+2 种基金Yunnan Key R&D Program(202403AC00028)for supporting the fieldexcursion,samples collections and ecological experiment in QTP.Rest co-authors acknowledge the Yunnan Innovation Team Project(202305AS350004 to Yang Yang)the Young Academic and Technical Leader Raising Foundation of Yunnan Province(202205AC160053 to Jianguo Chen)the CAS“Light of West China”Program(xbzg-zdsys-202319 to Bo Song),Yunnan Revitalization Talent Support Program“Young Talent”Project(to Yazhou Zhang),National Youth Talent Support Program(to Yang Niu)and Postdoctoral(oversea)Fund of Ministry of Education of China(to Zihan Jiang)。
文摘As the highest and largest plateau in the world,the Qinghai-Tibet Plateau(QTP)covers wide geological,topographical and climatic gradients and thus acts as a major center for biodiversity and houses a diverse array of high elevation ecosystems.Together these factors make the QTP a critical ecological shield for Asia.However,the composition,structure and function of plant diversity in QTP has experienced profound changes in recent decades.Long-term on-site monitoring,fieldexperiments,remote sensing,and simulations have led to significantadvances in our understanding of how plant diversity on the QTP has responded to climate change and human activity.This review synthesizes findingsfrom previous researches on how climate change and human activity have impacted plant diversity on the QTP.We identify gaps in our knowledge and highlight the need for interdisciplinary studies,long-term monitoring networks,and adaptive management strategies to enhance our knowledge and safeguard the QTP’s biodiversity amid accelerating global climate change.
基金supported by the National Natural Science Foundation of China(Grant Nos.42325503,42075063,42075066,and 42021004)the Hubei Provincial Natural Science Foundation and the Meteorological Innovation and Development Project of China(Grant No.2023AFD096)the Beijige Foundation of NJIAS(Grant No.BJG202304).
文摘The characteristics of summertime raindrop size distribution(DSD) and associated relations in the semi-arid region over the Inner Mongolian Plateau(IMP) were investigated,utilizing five-year continuous observations by a PARSIVEL2disdrometer in East Ujimqin County(EUC),China.It is found that only 7.94% of the 15 664 one-min precipitation samples meet classification criteria as convective rain(CR),but its contribution to the total rainfall amount is 63.87%.Notably,40.72% of the rainfall comes from large-sized raindrops(D> 3 mm),despite the fact that large-sized raindrops account for only 1.73% of the CR total number concentration.Further results show that the mean value of mass-weighted mean diameters(Dm) is larger(2.43 mm) and generalized intercepts(lgN_(W)) is lower(3.19) in CR,aligning with a "continentallike" cluster,which is mainly influenced by the joint impact of in-cloud ice-based processes and the below-cloud environmental background.Also,the empirical relationships of shape-slope(μ-Λ),radar reflectivity-rain rate(Z-R),and rainfall kinetic energy(KE_(time)-Rand KE_(time)-Z) are localized.To quantitatively analyze the impact of DSD parameters on kinetic energy estimation,power-law KE_(time)-R and KE_(time)-Z relationships are derived based on the normalized gamma distribution.N_(W)takes precedence over μ in affecting variabilities of multiplicative coefficients,especially for KE_(time)-R relationship where the multiplicative coefficient is proportional to N_(W)^(-0.287).It should be noted that although the proportion of CR occurring throughout the summer is small,raindrops with lower N_(W) and larger Dmwill generate higher KE_(time),which will bring a higher potential risk of soil erosion in semi-arid regions over IMP.
基金supported by the Second Tibetan Plateau Scientific Expedition and Research Program[grant number 2019QZKK0101]。
文摘In the context of global warming,it is anticipated that both the intensity and the frequency of future global extreme high precipitation(EHP)and extreme high temperature(EHT)events will increase.To evaluate the future extreme climate changes in the Asian arid region and Tibetan Plateau,this study applied the NASA Earth Exchange Global Daily Downscaled Projections(NEX-GDDP-CMIP6)to assess the changes in EHP(Rx5d and R95pTOT)and EHT(TX90p and TXx)under different emission scenarios in the 21st century.Findings suggest that both the frequency and the intensity of the extreme indices will increase,exhibiting accelerated growth under higher emission scenarios,particularly under the SSP5-8.5 emission scenario.It is suggested that the growth of EHT and EHP in the early subperiod of the 21st century(2026-2045)will be relatively moderate,with small differences between different emission scenarios.However,by the middle subperiod of the 21st century(2041-2060),the differences between different emission scenarios will become larger than the 2035s and the growth will become more intense.In western central Asia,TX90p,TXx,Rx5d,and R95pTOT increase by 9.7%-14.2%(13.3%-24.7%),1.3℃-1.7℃(1.6℃-2.7℃),6.5%-8.9%(8.2%-8.8%),and 18.1%-27.0%(25.6%-30.0%)by the early(middle)subperiod;in eastern central Asia,TX90p,TXx,Rx5d,and R95pTOT increase 8.1%-12.0%(11.3%-21.1%),1.4℃-1.8℃(1.9℃-2.9℃),7.4%-9.7%(10.4%-13.8%),and 20.2%-29.3%(32.0%-40.8%)by the early(middle)subperiod;and over the Tibetan Plateau,TX90p,TXx,Rx5d,and R95pTOT increase 12.5%-17.4%(17.0%-31.0%),1.2℃-1.5℃(1.6℃-2.5℃),7.2%-10.0%(9.9%-15.0%),and 26.6%-33.1%(36.1%-55.3%)by the early(middle)subperiod.