期刊文献+
共找到38篇文章
< 1 2 >
每页显示 20 50 100
Solid solution dependence of the deformation behavior in Mg-xZn(x=0,1,2 wt%)alloys:In-situ neutron diffraction and crystal plasticity modeling
1
作者 Huai Wang Soo Yeol Lee +3 位作者 You Sub Kim Huamiao Wang Wanchuck Woo Ke An 《Journal of Magnesium and Alloys》 2025年第2期823-838,共16页
The effects of solid solution on the deformation behavior of binary Mg-xZn(x=0,1,2 wt%)alloys featuring a designated texture that enables extension twinning under tension parallel to the basal pole in most grains,were... The effects of solid solution on the deformation behavior of binary Mg-xZn(x=0,1,2 wt%)alloys featuring a designated texture that enables extension twinning under tension parallel to the basal pole in most grains,were investigated using in-situ neutron diffraction and the EVPSC-TDT model.Neutron diffraction was used to quantitatively track grain-level lattice strains and diffraction intensity changes(related to mechanical twinning)in differently oriented grains of each alloy during cyclic tensile/compressive loadings.These measurements were accurately captured by the model.The stress-strain curves of Mg-1 wt%Zn and Mg-2 wt%Zn alloys show as-expected solid solution strengthening from the addition of Zn compared to pure Mg.The macroscopic yielding and hardening behaviors are explained by alternating slip and twinning modes as calculated by the model.The solid solution's influence on individual deformation modes,including basal〈a〉slip,prismatic〈a〉slip,and extension twinning,was then quantitatively assessed in terms of activity,yielding behavior,and hardening response by combining neutron diffraction results with crystal plasticity predictions.The Mg-1 wt%Zn alloy displays distinct yielding and hardening behavior due to solid solution softening of prismatic〈a〉slip.Additionally,the dependence of extension twinning,in terms of the twinning volume fraction,on Zn content exhibits opposite trends under tensile and compressive loadings. 展开更多
关键词 Magnesium alloy Deformation behavior Solid solution Crystal plasticity modeling Neutron diffraction
在线阅读 下载PDF
Insights into the deformation mechanisms of an Al1Mg0.4Si alloy at cryogenic temperature:An integration of experiments and crystal plasticity modeling 被引量:1
2
作者 Youhong Peng Danyang Li +8 位作者 He Wu Kesong Miao Chenglu Liu Li Wang Wei Liu Chao Xu Lin Geng Peidong Wu Guohua Fan 《Journal of Materials Science & Technology》 CSCD 2024年第33期69-82,共14页
In this work,we investigated the mechanical properties and corresponding deformation mechanisms of an Al1Mg0.4Si alloy,which exhibited significantly higher strength and outstanding strain hardening capacity at 77 K co... In this work,we investigated the mechanical properties and corresponding deformation mechanisms of an Al1Mg0.4Si alloy,which exhibited significantly higher strength and outstanding strain hardening capacity at 77 K compared to its counterparts at 298 K.The deformation mechanisms responsible for the excellent strength-ductility synergy and extraordinary strain hardening capacity at cryogenic temperature were elucidated through a combined experimental and simulation study.The results reveal the presence of numerous slip traces and microbands throughout grain surfaces during deformation at 298 K,whereas at 77 K,vague grain surfaces dominate,indicating the simultaneous operation of multiple slip systems.Transmission electron microscopy(TEM)analysis using the two-beam diffraction technique demonstrates the presence of dislocations with several different Burgers vectors inside a grain at cryogenic temperature,confirming the activation of multiple slip systems.The accumulation of dislocations facilitated by these multiple slip systems,combined with the high dislocation density,contributes to strain hardening and remarkable uniform elongation at 77 K.A modified dislocation density-based crystal plasticity model,incorporating the effect of grain boundary hardening(GBH)and temperature,was developed to gain a better understanding of the underlying mechanisms governing alloy’s strength and plasticity.The GBH effect significantly enhances statistically stored dislocation(SSD)density and screw dislocation proportion,which promote homogeneous deformation and enhance strain hardening capacity at cryogenic temperature.These findings deepen the understanding of plastic deformation at cryogenic temperatures and pave the way for the development of ultrahigh-performance metallic materials for cryogenic applications. 展开更多
关键词 Aluminum alloy Cryogenic temperature Grain boundary hardening effect Deformation mechanism Crystal plasticity modeling
原文传递
Deformation mechanisms of Mg-3Al-1Zn alloy by polycrystal plasticity modeling 被引量:1
3
作者 尹德良 刘金强 吴冰 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第7期2188-2194,共7页
A polycrystal plasticity model was developed to analyze the room-temperature deformation behaviors of Mg-3A1-1Zn alloy(AZ31).The uniaxial tension and compression tests at room temperature were conducted using cast a... A polycrystal plasticity model was developed to analyze the room-temperature deformation behaviors of Mg-3A1-1Zn alloy(AZ31).The uniaxial tension and compression tests at room temperature were conducted using cast and extruded AZ31 rods with different textures and combined with the proposed model to reveal the deformation mechanisms.It is shown that,different flow curves of two specimens under tension and compression tests can be simulated by this model.The flow curves of AZ31 extrusions exhibit different shapes for tension and compression due to different activities of tensile twinning and pyramidalc+a slip.The metallographic and TEM observations showed the equal twinning activities at the initial stage in tension and compression tests and the occurrence of pyramidalc+a slip in compression of as-cast Mg-3A1-1Zn alloy with increasing the strain,which is consistent with the simulated results by the proposed model. 展开更多
关键词 Mg alloy deformation mechanism polycrystal plasticity model TEXTURE
在线阅读 下载PDF
Evaluation of Blast-Resistant Performance Predicted by Damaged Plasticity Model for Concrete 被引量:8
4
作者 还毅 方秦 +1 位作者 陈力 张亚栋 《Transactions of Tianjin University》 EI CAS 2008年第6期414-421,共8页
in order to evaluate the capacity of reinforced concrete (RC) structures subjected to blast Ioadings, the damaged plasticity model for concrete was used in the analysis of the dynamic responses of blast-loaded RC st... in order to evaluate the capacity of reinforced concrete (RC) structures subjected to blast Ioadings, the damaged plasticity model for concrete was used in the analysis of the dynamic responses of blast-loaded RC structures, and all three failure modes were numerically simulated by the finite element software ABAQUS. Simulation results agree with the experimental observations. It is demonstrated that the damaged plasticity model for concrete in the finite element software ABAQUS can predict dynamic responses and typical flexure, flexure-shear and direct shear failure modes of the blast-loaded RC structures. 展开更多
关键词 ABAQUS damaged plasticity model for concrete blast loading reinforced concrete structure failure mode
在线阅读 下载PDF
Origins of high ductility exhibited by an extruded magnesium alloy Mg-1.8Zn-0.2Ca:Experiments and crystal plasticity modeling 被引量:6
5
作者 Jie Wang Gaoming Zhu +5 位作者 Leyun Wang Evgenii Vasilev Jun-Sang Park Gang Sha Xiaoqin Zeng Marko Knezevic 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第25期27-42,共16页
Low ductility and strength are major bottlenecks against Mg alloys’wide applications.In this work,we systematically design the composition and fabrication process for a low-alloyed Mg-Zn-Ca alloy,showing that it can ... Low ductility and strength are major bottlenecks against Mg alloys’wide applications.In this work,we systematically design the composition and fabrication process for a low-alloyed Mg-Zn-Ca alloy,showing that it can be extruded at low temperatures(~250℃)and high speeds(~2 mm/s).After the extrusion,this alloy exhibits a substantially weakened basal texture,relatively small grain size,very high tensile elongation(~30%),and good strength.The origin of the considerably improved ductility was studied using a combination of three-dimensional atom probe tomography(3D-APT),transmission electron microscopy(TEM),electron backscattered diffraction(EBSD)in conjunction with surface slip trace analysis,in-situ synchrotron X-ray diffraction,and elasto-plastic self-consistent(EPSC)modeling.Co-segregation of Zn and Ca atoms at a grain boundary is observed and associated with texture weakening and grain boundary mediated plasticity,both improving the ductility.While basal slip and prismatic slip are identified as the dominant deformation systems in the alloy,the ratio between their slip resistances is substantially reduced relative to pure Mg and most other Mg alloys,significantly contributing to the improved ductility of the alloy.This Mg-Zn-Ca alloy exhibiting excellent mechanical properties and low fabrication cost is a promising candidate for industrial productions. 展开更多
关键词 Mg-Zn-Ca alloy DUCTILITY Deformation mechanisms Crystal plasticity modeling Grain boundary mediated plasticity
原文传递
Fatigue Analysis of Steel Catenary Risers Based on a Plasticity Model 被引量:1
6
作者 Yongqiang Dong Liping Sun 《Journal of Marine Science and Application》 CSCD 2015年第1期76-82,共7页
The most critical issue in the steel catenary riser design is to evaluate the fatigue damage in the touchdown zone accurately. Appropriate modeling of the riser-soil resistance in the touchdown zone can lead to signif... The most critical issue in the steel catenary riser design is to evaluate the fatigue damage in the touchdown zone accurately. Appropriate modeling of the riser-soil resistance in the touchdown zone can lead to significant cost reduction by optimizing design. This paper presents a plasticity model that can be applied to numerically simulate riser-soil interaction and evaluate dynamic responses and the fatigue damage of a steel catenary riser in the touchdown zone. Utilizing the model, numerous riser-soil elements are attached to the steel catenary riser finite elements, in which each simulates local foundation restraint along the riser touchdown zone. The riser-soil interaction plasticity model accounts for the behavior within an allowable combined loading surface. The model will be represented in this paper, allowing simple numerical implementation. More importantly, it can be incorporated within the structural analysis of a steel catenary riser with the finite element method. The applicability of the model is interpreted theoretically and the results are shown through application to an offshore 8.625 steel catenary riser example. The fatigue analysis results of the liner elastic riser-soil model are also shown. According to the comparison results of the two models, the fatigue life analysis results of the plasticity framework are reasonable and the horizontal effects of the riser-soil interaction can be included. 展开更多
关键词 steel catenary riser fatigue analysis riser-soil interaction plasticity model finite element method
在线阅读 下载PDF
A Three-Dimensional Multi-scale Plasticity Model for Metal-Intermetallic Laminate Composites Containing Phases of the L12 Structure
7
作者 Yana D.Lipatnikova Vladimir A.Starenchenko +1 位作者 Yuliya V.Solov'eva Larisa A.Valuiskaya 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2018年第12期1265-1271,共7页
A three-dimensional plasticity model was developed and applied to metal-intermetallic laminate composites containingphases of the L12 structure. A multi-scale approach that combined the methods of continuum mechanics ... A three-dimensional plasticity model was developed and applied to metal-intermetallic laminate composites containingphases of the L12 structure. A multi-scale approach that combined the methods of continuum mechanics and dislocationkinetics was used. This model takes account of the different mechanisms of self-locking superdislocations, the dislocationsand the dislocation walls' density storage for each type of layer at the micro-scale. At the meso-scale, the solutions to thedislocation kinetics equations, in the form of stress-strain curves, were used to create the properties of a three-dimensionalrepresentative element. The numerical simulation study of the macroscopic deformation was carried out with the finiteelement method using the dynamic model of continuum mechanics, which included the classical conservation laws,constitutive equations and the equation of state. It was shown that the simulation results generated using this model were ingood agreement with the mechanical tests conducted on the single crystals of the L12 structure. The model provides anexcellent description of the high-temperature plastic strain superlocalization effect of single crystal intermetallics of theLI2 structure. This paper describes the numerical results of the study of the tension and compression tests of metal-intermetallic laminate composites containing phases of the L12 structure. The model allows the description of the dis-tribution of the accumulated plastic strain inhomogeneities and is capable of predicting the strengthening properties andplastic behaviour of the metal-intermetallic laminate composites containing phases of the L12 structure. 展开更多
关键词 plasticity model Metal-intermetallic laminate composites Layered composites L12 structure Tension Compression
原文传递
Damage Detection in Reinforced Concrete Berthing Jetty Using a Plasticity Model Approach
8
作者 Srinivasan Chandrasekaran P.T.Ajesh Kumar 《Journal of Marine Science and Application》 CSCD 2019年第4期482-491,共10页
A conventional method of damage modeling by a reduction in stiffness is insufficient to model the complex non-linear damage characteristics of concrete material accurately.In this research,the concrete damage plastici... A conventional method of damage modeling by a reduction in stiffness is insufficient to model the complex non-linear damage characteristics of concrete material accurately.In this research,the concrete damage plasticity constitutive model is used to develop the numerical model of a deck beam on a berthing jetty in the Abaqus finite element package.The model constitutes a solid section of 3D hexahedral brick elements for concrete material embedded with 2D quadrilateral surface elements as reinforcements.The model was validated against experimental results of a beam of comparable dimensions in a cited literature.The validated beam model is then used in a three-point load test configuration to demonstrate its applicability for preliminary numerical evaluation of damage detection strategy in marine concrete structural health monitoring.The natural frequency was identified to detect the presence of damage and mode shape curvature was found sensitive to the location of damage. 展开更多
关键词 Structural health monitoring Damage detection natural frequency Mode shape CURVATURE Damage parameters Concrete damaged plasticity model Finite element method Numericalmodel
在线阅读 下载PDF
Plastic deformation modelling of tempered martensite steel block structure by a nonlocal crystal plasticity model
9
作者 Martin Boeff Anxin Ma Alexander Hartmaier 《Theoretical & Applied Mechanics Letters》 CAS 2014年第5期44-49,共6页
The plastic deformations of tempered martensite steel representative volume elements with different martensite block structures have been investi- gated by using a nonlocal crystal plasticity model which considers iso... The plastic deformations of tempered martensite steel representative volume elements with different martensite block structures have been investi- gated by using a nonlocal crystal plasticity model which considers isotropic and kinematic hardening produced by plastic strain gradients. It was found that pro- nounced strain gradients occur in the grain boundary region even under homo- geneous loading. The isotropic hardening of strain gradients strongly influences the global stress-strain diagram while the kinematic hardening of strain gradi- ents influences the local deformation behaviour. It is found that the additional strain gradient hardening is not only dependent on the block width but also on the misorientations or the deformation incompatibilities in adjacent blocks. 展开更多
关键词 plastic deformation nonlocal crystal plasticity model representative volumnelement STEEL
在线阅读 下载PDF
3D Crystal Plasticity Finite Element Modeling of the Tensile Deformation of Polycrystalline Ferritic Stainless Steel 被引量:3
10
作者 Chi Zhang Li-Wen Zhang +2 位作者 Wen-Fei Shen Ying-Nan Xia Yu-Tan Yan 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2017年第1期79-88,共10页
A mesoscale model of plastic deformation of ferritic stainless steels (FSSs) is formulated by combining a crystal plasticity finite element model with 3D cellular automaton algorithm. The actual grain orientations o... A mesoscale model of plastic deformation of ferritic stainless steels (FSSs) is formulated by combining a crystal plasticity finite element model with 3D cellular automaton algorithm. The actual grain orientations of FSS cold rolling and annealing sheet have been detected by electron backscatter diffraction and selected to be assigned to the polycrystal model. The simulation results have been validated by comparing the calculated true stress-strain response with the experimental one. For the lack of considering the interactions of dislocations with impurities, there are no upper and lower yield points in the simulation stress-strain curves. However, the calculated yield strength and the stress-strain response after yielding agree well with the real material. The local stress and strain fields show inhomogeneous at mesoscale. The plastic deformations of the grains with typical orientations have been characterized. The analysis reveals that the grains with fiber texture show higher thickness reduction ratio as compared to others. The deformation behaviors of the grains in polycrystal are not only related to the orientations but also to the interactions from adjacent grains. 展开更多
关键词 Ferritic steels Crystallographic orientation Polycrystal plasticity modeling Cellular automaton
原文传递
An enhanced damage plasticity model for predicting the cyclic behavior of plain concrete under multiaxial loading conditions
11
作者 Mohammad Reza AZADI KAKAVAND Ertugrul TACIROGLU 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2020年第6期1531-1544,共14页
Some of the current concrete damage plasticity models in the literature employ a single damage variable for both the tension and compression regimes,while a few more advanced models employ two damage variables.Models ... Some of the current concrete damage plasticity models in the literature employ a single damage variable for both the tension and compression regimes,while a few more advanced models employ two damage variables.Models with a single variable have an inherent dificulty in accounting for the damage accrued due to tensile and compressive actions in appropriately different manners,and their mutual dependencies.In the current models that adopt two damage variables,the independence of these damage variables during cyclic loading results in the failure to capture the effects of tensile damage on the compressive behavior of concrete and vice-versa.This study presents a cyclic model established by extending an existing monotonic constitutive model.The model describes the cyclic behavior of concrete under multiaxial loading conditions and considers the influence of tensile/compressive damage on the compressive/tensile response.The proposed model,dubbed the enhanced concrete damage plasticity model(ECDPM),is an extension of an existing model that combines the theories of classical plasticity and continuum damage mechanics.Unlike most prior studies on models in the same category,the performance of the proposed ECDPM is evaluated using experimental data on concrete specimens at the material level obtained under cyclic multiaxial loading conditions including uniaxial tension and confined compression.The performance of the model is observed to be satisfactory.Furthermore,the superiority of ECDPM over three previously proposed constitutive models is demonstrated through comparisons with the results of a uniaxial tension-compression test and a virtual test. 展开更多
关键词 damage plasticity model plain concrete cyclic loading multiaxial loading conditions
原文传递
Texture evolution and slip mode of a Ti-5.5Mo-7.2Al-4.5Zr-2.6Sn-2.1Cr dual-phase alloy during cold rolling based on multiscale crystal plasticity finite element model 被引量:2
12
作者 Duoduo Wang Qunbo Fan +9 位作者 Xingwang Cheng Yu Zhou Ran Shi Yan Qian Le Wang Xinjie Zhu Haichao Gong Kai Chen Jingjiu Yuan Liu Yang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第16期76-87,共12页
The complex micromechanical response among grains remains a persistent challenge to understand the deformation mechanism of titanium alloys during cold rolling.Therefore,in this work,a multiscale crystal plasticity fi... The complex micromechanical response among grains remains a persistent challenge to understand the deformation mechanism of titanium alloys during cold rolling.Therefore,in this work,a multiscale crystal plasticity finite element method of dual-phase alloy was proposed and secondarily developed based on LS-DYNA software.Afterward,the texture evolution and slip mode of a Ti-5.5Mo-7.2Al-4.5Zr-2.6Sn-2.1Cr alloy,based on the realistic 3D microstructure,during cold rolling(20%thickness reduction)were systematically investigated.The relative activity of the■slip system in theαphase gradually increased,and then served as the main slip mode at lower Schmid factor(<0.2).In contrast,the contribution of the■slip system to the overall plastic deformation was relatively limited.For theβphase,the relative activity of the<111>{110}slip system showed an upward tendency,indicating the important role of the critical resolved shear stress relationship in the relative activity evolutions.Furthermore,the abnormally high strain of very fewβgrains was found,which was attributed to their severe rotations compelled by the neighboring pre-deformedαgrains.The calculated pole figures,rotation axes,and compelled rotation behavior exhibited good agreement to the experimental results. 展开更多
关键词 Titanium alloy Multiscale crystal plasticity finite element model Texture evolution Slip mode
原文传递
Analysis of the mechanism of orientations evolution during hot rolling and mechanical properties of TiBw/TA15 composites based on crystal plasticity finite element model
13
作者 Zhenlun Li Qingxin Kang +3 位作者 Xiaochong Sui Xunhu Xu Liqiang Zhan Guofeng Wang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第36期137-151,共15页
An in-depth understanding of the crystal orientation evolution during hot rolling of TiB whisker(TiBw)/TA15 composites and the anisotropy of the as-rolled plates can help fully utilize the material proper-ties.In this... An in-depth understanding of the crystal orientation evolution during hot rolling of TiB whisker(TiBw)/TA15 composites and the anisotropy of the as-rolled plates can help fully utilize the material proper-ties.In this paper,the crystal plasticity finite element models of high-temperature(HT)β-phase and room-temperature(RT)α-phase were constructed from electron backscattering diffraction data.Based on this,the orientation evolution during hot rolling in the single-phase region and the effects of the matrix texture on the mechanical properties of the as-rolled plates were analyzed.The effect of TiBw on the anisotropy was studied by the composites finite element model.Results showed that theα-fiber texture of theβ-phase was formed during HT rolling.This texture was converted to the T-texture of theα-phase at RT during cooling according to the Burgers orientation relationships.The TiBw had little effect on the matrix texture composition.The TiBw and matrix texture caused the matrix to have higher strength along the rolling direction and the transverse direction,respectively.The matrix texture dominated the difference in mechanical properties because its effect exceeded that of TiBw.The effect of the matrix on the mechanical properties was caused by the Schmid factors(SFs)and the critical resolved shear stress(CRSS)of the slip system together.The slip mode was influenced by SFs determined by the angular rela-tionship between the crystal orientation and the loading direction.The CRSS of the activated slip system determined the yield strength. 展开更多
关键词 TiBw/TA15 composites Crystal plasticity finite element model ORIENTATION ANISOTROPIC Slip mode
原文传递
Experimental investigation on the macro-mechanical behavior and micromechanical damage model of Xiyu conglomerate with pores and inclusions under triaxial compression
14
作者 Yajun Cao Xuelei Duan +4 位作者 Wei Wang Qizhi Zhu Dengfeng Zhao Long Jiang Qiang Zhang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第11期1529-1549,共21页
The complex and special mechanical properties of Xiyu conglomerate are of great significance to the construction of water conservancy and hydropower engineering.The crack characteristic stress,dilatancy behavior,and f... The complex and special mechanical properties of Xiyu conglomerate are of great significance to the construction of water conservancy and hydropower engineering.The crack characteristic stress,dilatancy behavior,and failure mechanism of Xiyu conglomerate collected from Momoke Water Control Project,southwestern China,were analyzed and discussed based on the experimental results of triaxial compression test and 3D X-ray computed tomography test.The results show that with increasing confining pressure,the deformation characteristics and all characteristic stresses increase monotonically,while the dilation angle and dilatancy index decrease,and exponential function model can accurately describe the evolution rule of dilatancy index with confining pressure.While the porosity is negatively correlated with confining pressure.The failure modes of Xiyu conglomerate include axial tensile cracks,shear cracks,local cross cracks and cracks around gravel.With increasing confining pressure,the failure modes transform from tension cracks to shear cracks.A non-associated micromechanical damage model considering pressure dependent matrix presenting tension-compression asymmetry is proposed and applied to Xiyu conglomerate with pores and a large number of gravels.By comparing numerical calculations and experimental results,the proposed micromechanical plastic damage model is able to describe the mechanical behavior of Xiyu conglomerate. 展开更多
关键词 Xiyu conglomerate Crack characteristic stress Dilation behavior CT observation Micromechanical plastic damage model
在线阅读 下载PDF
Mathematical modeling and full-scale shaking table tests for multi-curve buckling restrained braces 被引量:9
15
作者 C. S. Tsai Yungchang Lin +1 位作者 Wenshin Chen H. C. Su 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2009年第3期359-371,共13页
Buckling restrained braces (BRBs) have been widely applied in seismic mitigation since they were introduced in the 1970s. However, traditional BRBs have several disadvantages caused by using a steel tube to envelope... Buckling restrained braces (BRBs) have been widely applied in seismic mitigation since they were introduced in the 1970s. However, traditional BRBs have several disadvantages caused by using a steel tube to envelope the mortar to prevent the core plate from buckling, such as: complex interfaces between the materials used, uncertain precision, and time consumption during the manufacturing processes. In this study, a new device called the multi-curve buckling restrained brace (MC-BRB) is proposed to overcome these disadvantages. The new device consists of a core plate with multiple neck portions assembled to form multiple energy dissipation segments, and the enlarged segment, lateral support elements and constraining elements to prevent the BRB from buckling. The enlarged segment located in the middle of the core plate can be welded to the lateral support and constraining elements to increase buckling resistance and to prevent them from sliding during earthquakes. Component tests and a series of shaking table tests on a full-scale steel structure equipped with MC-BRBs were carried out to investigate the behavior and capability of this new BRB design for seismic mitigation. The experimental results illustrate that the MC-BRB possesses a stable mechanical behavior under cyclic loadings and provides good protection to structures during earthquakes. Also, a mathematical model has been developed to simulate the mechanical characteristics of BRBs. 展开更多
关键词 buckling restrained brace energy absorption passive control earthquake energy plasticity model structural control multi-curve BRB
在线阅读 下载PDF
Integrated identification method of rheological model of sandstone in Sanmenxia bauxite
16
作者 张春阳 曹平 +2 位作者 蒲成志 刘杰 文丕华 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第6期1859-1865,共7页
Based on the uniaxial compression creep experiments conducted on bauxite sandstone obtained from Sanmenxia,typical creep experiment curves were obtained.From the characteristics of strain component of creep curves,the... Based on the uniaxial compression creep experiments conducted on bauxite sandstone obtained from Sanmenxia,typical creep experiment curves were obtained.From the characteristics of strain component of creep curves,the creep strain is composed of instantaneous elastic strain,ε(me),instantaneous plastic strain,ε(mp),viscoelastic strain,ε(ce),and viscoplastic strain,ε(cp).Based on the characteristics of instantaneous plastic strain,a new element of instantaneous plastic rheology was introduced,instantaneous plastic modulus was defined,and the modified Burgers model was established.Then identification of direct screening method in this model was completed.According to the mechanical properties of rheological elements,one- and three-dimensional creep equations in different stress levels were obtained.One-dimensional model parameters were identified by the method of least squares,and in the process of computation,Gauss-Newton iteration method was applied.Finally,by fitting the experimental curves,the correctness of direct method model was verified,then the examination of posterior exclusive method of the model was accomplished.The results showed that in the improved Burgers models,the rheological characteristics of sandstone are embodied properly,microscopic analysis of creep curves is also achieved,and the correctness of comprehensive identification method of rheological model is verified. 展开更多
关键词 uniaxial compression creep experiments instantaneous plastic rheological model element improved Burgers model direct screening method posterior exclusive method
在线阅读 下载PDF
Elasto-plasticity and pore-pressure coupled analysis on the pullout behaviors of a plate anchor
17
作者 Cun Hu Fu-Ping Gao 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2015年第2期89-92,共4页
A numerical method is proposed for the elasto-plasticity and pore-pressure coupled analysis on the pull- out behaviors of a plate anchor. The bounding-surface plasticity (BSP) model combined with Blot's consol- ida... A numerical method is proposed for the elasto-plasticity and pore-pressure coupled analysis on the pull- out behaviors of a plate anchor. The bounding-surface plasticity (BSP) model combined with Blot's consol- idation theory is employed to simulate the cyclic loading induced elasto-plastic deformation of the soil skeleton and the accompanying generation/dissipation of the excess pore water pressure. The suction force generated around the anchor due to the cyclic variation of the pore water pressure has much effect on the pullout capacity of the plate anchor. The calculated pullout capacity with the proposed method (i.e., the coupled analysis) gets lower than that with the conventional total stress analysis for the case of long-term sustained loading, but slightly higher for the case of short-term monotonic loading. The cyclic loading induced accumulation of pore water pressure may result in an obvious decrease of the stiffness of the soil-Plate anchor svstem. 展开更多
关键词 Plate anchor Bounding-surface plasticity model Pore pressure Coupled analysis
在线阅读 下载PDF
Grain-scale deformation in a Mg-0.8wt% Y alloy using crystal plasticity finite element method 被引量:9
18
作者 Wenxue Li Leyun Wang +2 位作者 Bijin Zhou Chuanlai Liu Xiaoqin Zeng 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2019年第10期2200-2206,共7页
Magnesium(Mg) alloys with hexagonal close-packed(HCP) structure usually have a poor ductility at room temperature. The addition of yttrium(Y) can improve the ductility of Mg alloys. To understand the underlying mechan... Magnesium(Mg) alloys with hexagonal close-packed(HCP) structure usually have a poor ductility at room temperature. The addition of yttrium(Y) can improve the ductility of Mg alloys. To understand the underlying mechanism, crystal plasticity finite element method(CPFEM) was employed to simulate the tensile deformation of a Mg-0.8 wt% Y alloy. The simulated stress–strain curve and the grain-scale slip activities were compared with an in-situ tensile test conducted in a scanning electron microscope.According to the CPFEM result, basal slip is the dominant deformation mode in the plastic deformation stage, accounting for about 50% of total strain. Prismatic slip and pyramidal a slip are responsible for about 25% and 20% of the total strain, respectively. Pyramidal c + a slip and twinning, on the other hand,accommodate much less strain. 展开更多
关键词 Magnesium alloys CRYSTAL plasticity finite element modeling EBSD DISLOCATION Mechanical Behavior
原文传递
Constitutive Modeling of Slip, Twinning and Detwinning for Mg Alloy and Inhomogeneous Evolution of Microstructure 被引量:5
19
作者 Yuan Chen Guijuan Hu +2 位作者 Yongting Lan Keshi Zhang Ganwei Cai 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2018年第4期493-511,共19页
To investigate the relationship between macro-plastic behavior and meso-deformation mechanism of Mg alloy AZ31, the mathematical models for various deformation mechanisms of slip, twinning and detwinning are establish... To investigate the relationship between macro-plastic behavior and meso-deformation mechanism of Mg alloy AZ31, the mathematical models for various deformation mechanisms of slip, twinning and detwinning are established, respectively. Furthermore, in order to capture the Bauschinger effect under cyclic loading, the back stress is introduced into the three independent deformation mechanisms, respectively. Finally, using the above-mentioned model, a new cyclic plastic constitutive model based on the constitutive theory of crystal deformation for magnesium alloy is established. On this basis, the numerical simulation for AZ31 under cyclic loading with the axial strain amplitude of 1.2% is carried out in accordance with the aforementioned crystal plas- ticity theory associated with the representative volume element model. The comparison between the stress-strain curves obtained from the simulation and the experiments shows that the macro- scopic mechanical responses predicted using the proposed model are in good agreement with the experimental results. In particular, the unique characteristics of cyclic macro-plastic behavior observed in the experiments can be satisfactorily captured by the presented crystal plasticity model. At the mesoscale, these features are caused by the alternate occurrence of twinning and detwinning mechanisms. The further analysis of meso-plastic behavior shows that there are het- erogeneous distributions of twinning, stress-strain and stress triaxiality in polycrystal under cyclic loading. 展开更多
关键词 Cyclic plastic constitutive model Mg alloy AZ31 Detwinning deformation Rep-resentative volume element Back stress
原文传递
A CONSTITUTIVE MODEL FOR TRANSFORMATION, REORIENTATION AND PLASTIC DEFORMATION OF SHAPE MEMORY ALLOYS 被引量:4
20
作者 Xianghe Peng Bin Chen +2 位作者 Xiang Chen Jun Wang Huyi Wang 《Acta Mechanica Solida Sinica》 SCIE EI 2012年第3期285-298,共14页
A constitutive model is developed for the transformation, reorientation and plastic deformation of shape memory alloys (SMAs). It is based on the concept that an SMA is a mixture composed of austenite and martensite... A constitutive model is developed for the transformation, reorientation and plastic deformation of shape memory alloys (SMAs). It is based on the concept that an SMA is a mixture composed of austenite and martensite, the volume fraction of each phase is transformable with the change of applied thermal-mechanical loading, and the constitutive behavior of the SMA is the combination of the individual behavior of its two phases. The deformation of the martensite is separated into elastic, thermal, reorientation and plastic parts, and that of the austenite is separated into elastic, thermal and plastic parts. Making use of the Tanaka's transformation rule modified by taking into account the effect of plastic deformation, the constitutive model of the SMA is obtained. The ferroelasticity, pseudoelastieity and shape memory effect of SMA Au-47.5 at.%Cd, and the pseudoelasticity and shape memory effect as well as plastic deformation and its effect of an NiTi SMA, are analyzed and compared with experimental results. 展开更多
关键词 shape memory alloys two-phase mixture TRANSFORMATION REORIENTATION plasticity constitutive model
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部