Hydrogen was produced from partial oxidation reforming of DME (dimethyl ether) by spark discharge plasma at atmospheric pressure. A plasma-catalyst reformer was designed. A series of experiments were carried out to ...Hydrogen was produced from partial oxidation reforming of DME (dimethyl ether) by spark discharge plasma at atmospheric pressure. A plasma-catalyst reformer was designed. A series of experiments were carried out to investigate its performance of hydrogen-rich gas production. The effects of reaction temperature, catalyst and flow rate on gas concentrations (volume fraction), hydrogen yield, DME conversion ratio, specific energy consumption and thermal efficiency were investigated, respectively. The experimental results show that hydrogen concentration and the flow rate of produced H2 are improved when temperature increases from 300 ℃ to 700 ℃. Hydrogen yield, hydrogen concentration and the flow rate of produced H2 are substantially improved in the use of Fe-based catalyst at high temperature. Moreover, hydrogen yield and thermal efficiency are improved and change slightly when flow rate increases. When catalyst is 12 g, and flow rate increases from 35 mL/min to 210 mL/min, hydrogen yield decreases from 66.4% to 57.7%, and thermal efficiency decreases from 35.6% to 30.9%. It is anticipated that the results would serve as a good guideline to the application of hydrogen generation from hydrocarbon fuels by plasma reforming onboard.展开更多
镍基催化剂在石油化工产品加氢过程中展现出高效且经济的特性,为保证合成过程中镍基基体的稳定性,实现对杂质元素的精准测定及定量控制,为工艺生产提供数据支持。以具有八级杆反应系统(Octopole Reaction System,ORS)的电感耦合等离子...镍基催化剂在石油化工产品加氢过程中展现出高效且经济的特性,为保证合成过程中镍基基体的稳定性,实现对杂质元素的精准测定及定量控制,为工艺生产提供数据支持。以具有八级杆反应系统(Octopole Reaction System,ORS)的电感耦合等离子体质谱(Inductively Coupled Plasma Mass Spectrometry,ICP-MS)仪为基础,使用盐酸-硝酸-氢氟酸组成的混酸体系对样品进行微波消解,建立了一种混酸消解-ICP-MS法测定反应前后镍基加氢催化剂中金属元素的方法。优化消解条件,应用ORS技术、氦气动能歧视(Kinetic Energy Discrimination,KED)模式对镍基催化剂中的微量金属元素铜、铁、钒和铅进行同时分析检测。四种金属在0~500 ng/mL线性关系良好,R2均大于0.999,检出限分别为0.007、0.025、0.016、0.009 ng/mL。样品测定铜、铁、钒和铅的加标回收率分别为99.0%~100%、97.0%~103%、97.0%~112%、92.0%~115%;反应前样品中Cu、Fe、V、Pb的相对标准偏差(Relative Standard Deviations,RSDs)分别为1.5%、1.0%、1.6%、3.0%,反应后样品中Cu、Fe、V、Pb含量测定的RSD分别为2.0%、1.4%、2.0%、2.9%。方法具有高的准确度、灵敏度、精密度和很小的干扰性等优点,可用来对镍基催化剂的金属负载量和使用性能进行评价,也可作为推测催化反应机理的补充依据。展开更多
为实现铂炭催化剂样品中高含量铂的低成本、准确测定,采用氯铂酸铵重量法测定主量铂,电感耦合等离子体原子发射光谱法(ICP-AES)测定微量铂,并以二者之和计算样品中铂的含量。称取0.200 0 g样品,加入10 m L盐酸和5 m L硝酸,于200℃加热10...为实现铂炭催化剂样品中高含量铂的低成本、准确测定,采用氯铂酸铵重量法测定主量铂,电感耦合等离子体原子发射光谱法(ICP-AES)测定微量铂,并以二者之和计算样品中铂的含量。称取0.200 0 g样品,加入10 m L盐酸和5 m L硝酸,于200℃加热10 min后加入5 m L高氯酸,于280℃加热至样品完全溶解。加入5 m L盐酸,于200℃蒸发至溶液近干,重复该步骤2次。收集残余物,加入2 m L盐酸和8 m L水,再边搅拌边缓慢加入(85±5)℃的饱和氯化铵溶液50 m L,于150℃蒸发至溶液近干。冷却,边搅拌边加水,使残留的氯化铵晶体完全溶解,静置12 h。用定量滤纸过滤,洗涤沉淀,将滤纸包裹着的沉淀转移至已恒重的瓷坩埚中,用电炉在程序升温条件下加热至滤纸完全烘干并灰化,当白色烟雾消失时停止加热,取下瓷坩埚,于900℃灼烧2 h,冷却后称重,计算主量铂的质量分数。将滤液于180℃加热浓缩,待体积变小至有氯化铵晶体析出时,缓慢加入20 m L硝酸,于180℃继续加热以分解氯化铵,重复该步骤直至无氯化铵晶体析出,于180℃加热至溶液剩余约2 m L,加入10 m L盐酸加热至沸,冷却后用水稀释至100 m L,采用ICP-AES在分析谱线214.423 nm下测定微量铂。结果显示,ICP-AES所得铂的质量浓度在20.00 mg·L^(-1)以内和谱线强度呈线性关系,检出限(3s)为0.013 8 mg·L^(-1);实际样品的10次重复测定的相对标准偏差为0.17%,标准加入法所得的铂的回收率为98.9%~103%。展开更多
基金Project(21106002)supported by the National Natural Science Foundation of ChinaProject(2010DFA72760)supported by the Collaboration on Cutting-Edge Technology Development of Electric Vehicle,China
文摘Hydrogen was produced from partial oxidation reforming of DME (dimethyl ether) by spark discharge plasma at atmospheric pressure. A plasma-catalyst reformer was designed. A series of experiments were carried out to investigate its performance of hydrogen-rich gas production. The effects of reaction temperature, catalyst and flow rate on gas concentrations (volume fraction), hydrogen yield, DME conversion ratio, specific energy consumption and thermal efficiency were investigated, respectively. The experimental results show that hydrogen concentration and the flow rate of produced H2 are improved when temperature increases from 300 ℃ to 700 ℃. Hydrogen yield, hydrogen concentration and the flow rate of produced H2 are substantially improved in the use of Fe-based catalyst at high temperature. Moreover, hydrogen yield and thermal efficiency are improved and change slightly when flow rate increases. When catalyst is 12 g, and flow rate increases from 35 mL/min to 210 mL/min, hydrogen yield decreases from 66.4% to 57.7%, and thermal efficiency decreases from 35.6% to 30.9%. It is anticipated that the results would serve as a good guideline to the application of hydrogen generation from hydrocarbon fuels by plasma reforming onboard.
文摘镍基催化剂在石油化工产品加氢过程中展现出高效且经济的特性,为保证合成过程中镍基基体的稳定性,实现对杂质元素的精准测定及定量控制,为工艺生产提供数据支持。以具有八级杆反应系统(Octopole Reaction System,ORS)的电感耦合等离子体质谱(Inductively Coupled Plasma Mass Spectrometry,ICP-MS)仪为基础,使用盐酸-硝酸-氢氟酸组成的混酸体系对样品进行微波消解,建立了一种混酸消解-ICP-MS法测定反应前后镍基加氢催化剂中金属元素的方法。优化消解条件,应用ORS技术、氦气动能歧视(Kinetic Energy Discrimination,KED)模式对镍基催化剂中的微量金属元素铜、铁、钒和铅进行同时分析检测。四种金属在0~500 ng/mL线性关系良好,R2均大于0.999,检出限分别为0.007、0.025、0.016、0.009 ng/mL。样品测定铜、铁、钒和铅的加标回收率分别为99.0%~100%、97.0%~103%、97.0%~112%、92.0%~115%;反应前样品中Cu、Fe、V、Pb的相对标准偏差(Relative Standard Deviations,RSDs)分别为1.5%、1.0%、1.6%、3.0%,反应后样品中Cu、Fe、V、Pb含量测定的RSD分别为2.0%、1.4%、2.0%、2.9%。方法具有高的准确度、灵敏度、精密度和很小的干扰性等优点,可用来对镍基催化剂的金属负载量和使用性能进行评价,也可作为推测催化反应机理的补充依据。
文摘为实现铂炭催化剂样品中高含量铂的低成本、准确测定,采用氯铂酸铵重量法测定主量铂,电感耦合等离子体原子发射光谱法(ICP-AES)测定微量铂,并以二者之和计算样品中铂的含量。称取0.200 0 g样品,加入10 m L盐酸和5 m L硝酸,于200℃加热10 min后加入5 m L高氯酸,于280℃加热至样品完全溶解。加入5 m L盐酸,于200℃蒸发至溶液近干,重复该步骤2次。收集残余物,加入2 m L盐酸和8 m L水,再边搅拌边缓慢加入(85±5)℃的饱和氯化铵溶液50 m L,于150℃蒸发至溶液近干。冷却,边搅拌边加水,使残留的氯化铵晶体完全溶解,静置12 h。用定量滤纸过滤,洗涤沉淀,将滤纸包裹着的沉淀转移至已恒重的瓷坩埚中,用电炉在程序升温条件下加热至滤纸完全烘干并灰化,当白色烟雾消失时停止加热,取下瓷坩埚,于900℃灼烧2 h,冷却后称重,计算主量铂的质量分数。将滤液于180℃加热浓缩,待体积变小至有氯化铵晶体析出时,缓慢加入20 m L硝酸,于180℃继续加热以分解氯化铵,重复该步骤直至无氯化铵晶体析出,于180℃加热至溶液剩余约2 m L,加入10 m L盐酸加热至沸,冷却后用水稀释至100 m L,采用ICP-AES在分析谱线214.423 nm下测定微量铂。结果显示,ICP-AES所得铂的质量浓度在20.00 mg·L^(-1)以内和谱线强度呈线性关系,检出限(3s)为0.013 8 mg·L^(-1);实际样品的10次重复测定的相对标准偏差为0.17%,标准加入法所得的铂的回收率为98.9%~103%。