Herein,we reported an integrated device that was utilized to directly separate plasma and analyze glucose(Glu),cholesterol(Chol)from whole blood samples.The separating module primarily consists of a porous asymmetric ...Herein,we reported an integrated device that was utilized to directly separate plasma and analyze glucose(Glu),cholesterol(Chol)from whole blood samples.The separating module primarily consists of a porous asymmetric polysulfone membrane.The vertical placement of membrane and the gravity settlement of blood cells can reduce mechanical damage to blood cells and blockage of the membrane,resulting in improved separation efficiency of the membrane.The detection module consists of a smart phone and a ratio fluorescence sensing system based on NH_(2)−MIL-53(Al)and o-phenylenediamine(OPD).The sensing system presents a dual emission response to H_(2)O_(2) the main oxidation product of Glu and Chol.Due to the fluorescence resonance energy transfer(FRET),the response of the fluorescence intensity ratio(F_(574 nm)/F_(434 nm) or F_(554 nm)/F_(434 nm))gradually increases with increasing H_(2)O_(2) concentration,accompanied by a color change from weak to strong.The visual detection of Glu and Chol can be realized through the recognition of RGB values by smart phones.The integrated device has been successfully used to analysis Glu and Chol in real blood samples,which provided a universal platform for sensing biocatalytic processes with H_(2)O_(2) production.展开更多
The design of membrane pore is critical for membrane preparation. Polyvinylidene fluoride(PVDF) membrane exhibits outstanding properties in the water-treatment field. However, it is a huge challenge to prepare PVDF ma...The design of membrane pore is critical for membrane preparation. Polyvinylidene fluoride(PVDF) membrane exhibits outstanding properties in the water-treatment field. However, it is a huge challenge to prepare PVDF macro-pore plasma separation membrane by non-solvent induced phase separation(NIPS). Herein, a facile strategy is proposed to prepare PVDF macro-pore plasma separation membrane via macromolecular interaction. ATR-FTIR and ^(1)H NMR showed that the intermolecular interaction existed between polyethylene oxide(PEO) and polyvinylpyrrolidone(PVP). It could significantly affect the PVDF macro-pore membrane structure. The maximum pore of the PVDF membrane could be effectively adjusted from small-pore/medium-pore to macro-pore by changing the molecular weight of PEO. The PVDF macro-pore membrane was obtained successfully when PEO-200 k existed with PVP. It exhibited higher plasma separation properties than the currently used plasma separation membrane.Moreover, it had excellent hemocompatibility due to the similar plasma effect, hemolysis, prothrombin time, blood effect and complement C_(3a) effect with the current utilized plasma separation membrane,implying its great potential application. The proposed facile strategy in this work provides a new method to prepare PVDF macro-pore plasma separation membrane by NIPS.展开更多
Plasma mass separation requires a lot of diagnostic techniques that not only demonstrate the separation effect but also show the efficiency of the process.During the test experiments,plasma flux to be separated may co...Plasma mass separation requires a lot of diagnostic techniques that not only demonstrate the separation effect but also show the efficiency of the process.During the test experiments,plasma flux to be separated may contain neutral particles that avoid the separation process due to their insensitivity to electromagnetic field.We present the diagnostics of the lost substance in experiments on plasma mass separation.The obtained data of the diagnostics helps determine the law of particle evaporation from the plasma source.We show that neutral flux is unable to distort the result of separation diagnostics.The presented approach can be used in experiments aimed at enhancing the separation effect and achieving target productivity for industry applications.展开更多
Based on the theory of plasma continuous radiation, the relationship between the emission intensity of bremsstrahlung and recombination radiation and the plasma electron temperature is obtained. During the development...Based on the theory of plasma continuous radiation, the relationship between the emission intensity of bremsstrahlung and recombination radiation and the plasma electron temperature is obtained. During the development process of a return stroke of ground flash, the intensity of continuous radiation spectrum is separated on the basis of the spectrums with obviously different luminous intensity at two moments. The electron temperature of the lightning discharge channel is obtained through the curve fitting of the continuous spectrum intensity. It is found that electron temperature increases with the increase of wavelength and begins to reduce after the peak. The peak temperature of the two spectra is close to 25 000 K. To be compared with the result of discrete spectrum, the electron temperature is fitted by the O I line and N II line of the spectrum respectively. The comparison shows that the high temperature value is in good agreement with the temperature of the lightning core current channel obtained from the ion line information, and the low temperature at the high band closes to the calculation result of the atomic line, at a low band is lower than the calculation of the atomic line, which reflects the temperature of the luminous channel of the outer corona.展开更多
Based on particle-in-cell simulation, we studied the motions of ions and electrons. The results have shown that electrons are bounded by a magnetic field and only a small number of electrons can pass through the whirl...Based on particle-in-cell simulation, we studied the motions of ions and electrons. The results have shown that electrons are bounded by a magnetic field and only a small number of electrons can pass through the whirler channel. The plasma becomes non-neutral when it is emitted from the whirler, and the spatial charge leads to a beam divergence, which is unfavorable for mass separation. In order to compensate the spatial charge, a cathode is designed to transmit electrons and the quasi-neutral plasma beam. Experiment results have demonstrated that the auxiliary cathode can obviously improve the compensation degree of the spatial charge.展开更多
The azimuthator is an important part of plasma optical mass separation.The existing design for an azimuthator is based on the single particle orbit theory and focused on the movement of ions.In this paper,the particle...The azimuthator is an important part of plasma optical mass separation.The existing design for an azimuthator is based on the single particle orbit theory and focused on the movement of ions.In this paper,the particle simulation method is adopted to study the behavior of plasma crossing an azimuthator.The results show that electrons are bounded at the entrance of the azimuthator and an axial electric field is produced due to the charge separation.In order to better achieve the function of the azimuthator,a cathode is designed to transmit the electrons and to obtain a quasi-neutral plasma beam.展开更多
Centrifugal microfluidic platforms are highly regarded for their potential in multiplexing and automation,as well as their wide range of applications,especially in separating blood plasma and manipulating two-phase fl...Centrifugal microfluidic platforms are highly regarded for their potential in multiplexing and automation,as well as their wide range of applications,especially in separating blood plasma and manipulating two-phase flows.However,the need to use stroboscopes or high-speed cameras for monitoring these tasks hinders the extensive use of these platforms in research and commercial settings.In this study,we introduce an innovative and cost-effective strategy for using an array of light-dependent resistors(LDRs)as optical sensors in microfluidic devices,particularly centrifugal platforms.While LDRs are attractive for their potential use as photodetectors,their bulky size frequently restricts their ability to provide high-resolution detection in microfluidic systems.Here,we use specific waveguides to direct light beams from narrow apertures onto the surface of LDRs.We integrated these LDRs into electrified Lab-on-a-Disc(eLOD)devices,with wireless connectivity to smartphones and laptops.This enables many applications,such as droplet/particle counting and velocity measurement,concentration analysis,fluidic interface detection in multiphase flows,real-time monitoring of sample volume on centrifugal platforms,and detection of blood plasma separation as an alternative to costly stroboscope devices,microscopes,and high-speed imaging.We used numerical simulations to evaluate various fluids and scenarios,which include rotation speeds of up to 50 rad/s and a range of droplet sizes.For the testbed,we used the developed eLOD device to analyze red blood cell(RBC)deformability and improve the automated detection of sickle cell anemia by monitoring differences in RBC deformability during centrifugation using the sensors’signals.In addition to sickle cell anemia,this device has the potential to facilitate low-cost automated detection of other medical conditions characterized by altered RBC deformability,such as thalassemia,malaria,and diabetes.展开更多
基金supported by the National Natural Science Foundation of China(Nos.22274053 and 22274051)the Shanghai Municipal Science and Technology Major Project(“Beyond Limits manufacture”)Natural Science Foundation of Chongqing,China(No.CSTB2023NSCQ-MSX0339).
文摘Herein,we reported an integrated device that was utilized to directly separate plasma and analyze glucose(Glu),cholesterol(Chol)from whole blood samples.The separating module primarily consists of a porous asymmetric polysulfone membrane.The vertical placement of membrane and the gravity settlement of blood cells can reduce mechanical damage to blood cells and blockage of the membrane,resulting in improved separation efficiency of the membrane.The detection module consists of a smart phone and a ratio fluorescence sensing system based on NH_(2)−MIL-53(Al)and o-phenylenediamine(OPD).The sensing system presents a dual emission response to H_(2)O_(2) the main oxidation product of Glu and Chol.Due to the fluorescence resonance energy transfer(FRET),the response of the fluorescence intensity ratio(F_(574 nm)/F_(434 nm) or F_(554 nm)/F_(434 nm))gradually increases with increasing H_(2)O_(2) concentration,accompanied by a color change from weak to strong.The visual detection of Glu and Chol can be realized through the recognition of RGB values by smart phones.The integrated device has been successfully used to analysis Glu and Chol in real blood samples,which provided a universal platform for sensing biocatalytic processes with H_(2)O_(2) production.
基金the National Natural Science Foundation of China (21776216)Tianjin Key Laboratory Project (16PTSYJC00210)+3 种基金Program for Innovative Research Team in University of Tianjin (TD13-5044)Science and technology support project of Tianjin (20YFZCSY00310, 21ZXGWSY00040)State Key Laboratory of Separation Membranes and Membrane Processes (Tiangong University), Youth Science Foundation of Tianjin (21JCQNJC00100)Tianjin Health Science and Technology Project (TJWJ2021MS014)。
文摘The design of membrane pore is critical for membrane preparation. Polyvinylidene fluoride(PVDF) membrane exhibits outstanding properties in the water-treatment field. However, it is a huge challenge to prepare PVDF macro-pore plasma separation membrane by non-solvent induced phase separation(NIPS). Herein, a facile strategy is proposed to prepare PVDF macro-pore plasma separation membrane via macromolecular interaction. ATR-FTIR and ^(1)H NMR showed that the intermolecular interaction existed between polyethylene oxide(PEO) and polyvinylpyrrolidone(PVP). It could significantly affect the PVDF macro-pore membrane structure. The maximum pore of the PVDF membrane could be effectively adjusted from small-pore/medium-pore to macro-pore by changing the molecular weight of PEO. The PVDF macro-pore membrane was obtained successfully when PEO-200 k existed with PVP. It exhibited higher plasma separation properties than the currently used plasma separation membrane.Moreover, it had excellent hemocompatibility due to the similar plasma effect, hemolysis, prothrombin time, blood effect and complement C_(3a) effect with the current utilized plasma separation membrane,implying its great potential application. The proposed facile strategy in this work provides a new method to prepare PVDF macro-pore plasma separation membrane by NIPS.
基金funded by the Russian Science Foundation(No.21-19-00716),https://rscf.ru/en/project/21-19-00716/。
文摘Plasma mass separation requires a lot of diagnostic techniques that not only demonstrate the separation effect but also show the efficiency of the process.During the test experiments,plasma flux to be separated may contain neutral particles that avoid the separation process due to their insensitivity to electromagnetic field.We present the diagnostics of the lost substance in experiments on plasma mass separation.The obtained data of the diagnostics helps determine the law of particle evaporation from the plasma source.We show that neutral flux is unable to distort the result of separation diagnostics.The presented approach can be used in experiments aimed at enhancing the separation effect and achieving target productivity for industry applications.
基金supported by National Natural Science Foundation of China(Grant No.11647150)Young Talents Program of Gansu Province of China(2016)Scientific Research Program of the Higher Education Institutions of Gansu Province of China(Grant No.2016A-068)
文摘Based on the theory of plasma continuous radiation, the relationship between the emission intensity of bremsstrahlung and recombination radiation and the plasma electron temperature is obtained. During the development process of a return stroke of ground flash, the intensity of continuous radiation spectrum is separated on the basis of the spectrums with obviously different luminous intensity at two moments. The electron temperature of the lightning discharge channel is obtained through the curve fitting of the continuous spectrum intensity. It is found that electron temperature increases with the increase of wavelength and begins to reduce after the peak. The peak temperature of the two spectra is close to 25 000 K. To be compared with the result of discrete spectrum, the electron temperature is fitted by the O I line and N II line of the spectrum respectively. The comparison shows that the high temperature value is in good agreement with the temperature of the lightning core current channel obtained from the ion line information, and the low temperature at the high band closes to the calculation result of the atomic line, at a low band is lower than the calculation of the atomic line, which reflects the temperature of the luminous channel of the outer corona.
基金supported by National Natural Science Foundation of China(No.51177020)
文摘Based on particle-in-cell simulation, we studied the motions of ions and electrons. The results have shown that electrons are bounded by a magnetic field and only a small number of electrons can pass through the whirler channel. The plasma becomes non-neutral when it is emitted from the whirler, and the spatial charge leads to a beam divergence, which is unfavorable for mass separation. In order to compensate the spatial charge, a cathode is designed to transmit electrons and the quasi-neutral plasma beam. Experiment results have demonstrated that the auxiliary cathode can obviously improve the compensation degree of the spatial charge.
基金supported by National Natural Science Foundation of China(Nos.51207033 and 11275034)the International Scientific and Technological Cooperation Projects of China(No.2011DFR60130)+1 种基金Liaoning Province Science and Technology Plan Project of China(No.2011224007)the Fundamental Research Funds for the Central Universities of Ministry of Education of China(No.3132014328)
文摘The azimuthator is an important part of plasma optical mass separation.The existing design for an azimuthator is based on the single particle orbit theory and focused on the movement of ions.In this paper,the particle simulation method is adopted to study the behavior of plasma crossing an azimuthator.The results show that electrons are bounded at the entrance of the azimuthator and an axial electric field is produced due to the charge separation.In order to better achieve the function of the azimuthator,a cathode is designed to transmit the electrons and to obtain a quasi-neutral plasma beam.
基金funding from CONAHCYT in the form of a scholarship as a member of the National System of Researchers(CVU:969467)the financial support of the FEMSA foundation.
文摘Centrifugal microfluidic platforms are highly regarded for their potential in multiplexing and automation,as well as their wide range of applications,especially in separating blood plasma and manipulating two-phase flows.However,the need to use stroboscopes or high-speed cameras for monitoring these tasks hinders the extensive use of these platforms in research and commercial settings.In this study,we introduce an innovative and cost-effective strategy for using an array of light-dependent resistors(LDRs)as optical sensors in microfluidic devices,particularly centrifugal platforms.While LDRs are attractive for their potential use as photodetectors,their bulky size frequently restricts their ability to provide high-resolution detection in microfluidic systems.Here,we use specific waveguides to direct light beams from narrow apertures onto the surface of LDRs.We integrated these LDRs into electrified Lab-on-a-Disc(eLOD)devices,with wireless connectivity to smartphones and laptops.This enables many applications,such as droplet/particle counting and velocity measurement,concentration analysis,fluidic interface detection in multiphase flows,real-time monitoring of sample volume on centrifugal platforms,and detection of blood plasma separation as an alternative to costly stroboscope devices,microscopes,and high-speed imaging.We used numerical simulations to evaluate various fluids and scenarios,which include rotation speeds of up to 50 rad/s and a range of droplet sizes.For the testbed,we used the developed eLOD device to analyze red blood cell(RBC)deformability and improve the automated detection of sickle cell anemia by monitoring differences in RBC deformability during centrifugation using the sensors’signals.In addition to sickle cell anemia,this device has the potential to facilitate low-cost automated detection of other medical conditions characterized by altered RBC deformability,such as thalassemia,malaria,and diabetes.