期刊文献+
共找到531篇文章
< 1 2 27 >
每页显示 20 50 100
Plasma current tomography for HL-2A based on Bayesian inference
1
作者 刘自结 王天博 +5 位作者 吴木泉 罗正平 王硕 孙腾飞 肖炳甲 李建刚 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第5期165-173,共9页
An accurate plasma current profile has irreplaceable value for the steady-state operation of the plasma.In this study,plasma current tomography based on Bayesian inference is applied to an HL-2A device and used to rec... An accurate plasma current profile has irreplaceable value for the steady-state operation of the plasma.In this study,plasma current tomography based on Bayesian inference is applied to an HL-2A device and used to reconstruct the plasma current profile.Two different Bayesian probability priors are tried,namely the Conditional Auto Regressive(CAR)prior and the Advanced Squared Exponential(ASE)kernel prior.Compared to the CAR prior,the ASE kernel prior adopts nonstationary hyperparameters and introduces the current profile of the reference discharge into the hyperparameters,which can make the shape of the current profile more flexible in space.The results indicate that the ASE prior couples more information,reduces the probability of unreasonable solutions,and achieves higher reconstruction accuracy. 展开更多
关键词 plasma current tomography Bayesian inference machine learning Gaussian distribution
在线阅读 下载PDF
Microwave preionization and electron cyclotron resonance plasma current startup in the EXL-50 spherical tokamak 被引量:3
2
作者 Bin CHEN Yubao ZHU +8 位作者 Qing ZHOU Jiangbo DING Xianming SONG Shaodong SONG Yuanming YANG Xin ZHAO Enwu YANG Minsheng LIU the EXL-50Team 《Plasma Science and Technology》 SCIE EI CAS CSCD 2022年第1期30-35,共6页
Preionization has been widely employed to create initial plasma and help the toroidal plasma current formation.This research focuses on implementing a simple,economical and practical electron cyclotron resonance(ECR)p... Preionization has been widely employed to create initial plasma and help the toroidal plasma current formation.This research focuses on implementing a simple,economical and practical electron cyclotron resonance(ECR)preionization technique on the newly constructed EXL-50 spherical tokamak,and evaluating the effectiveness on improving the plasma current startup.Two types ECR microwave preionization experiments for the plasma initialization without the central solenoid are reported:(1)2.45 GHz microwave preionization and current startup with2.45 GHz ECR source;(2)2.45 GHz microwave preionization and current startup with 28 GHz ECR source.Application of the 2.45 GHz ECR microwave preionization to the experiments has contributed to(1)getting rid of the plasma breakdown delay;(2)the significant improvement of the discharge quality:the discharge is much longer and more stable while the driven plasma current is larger,compared to the discharge without preionization. 展开更多
关键词 PREIONIZATION MICROWAVE ECR spherical tokamak plasma current startup
在线阅读 下载PDF
Startup of Plasma Current in J-TEXT Tokamak Prompted by the H_α Line Emission Criterion
3
作者 高丽 庄革 +1 位作者 胡希伟 张明 《Plasma Science and Technology》 SCIE EI CAS CSCD 2009年第2期137-141,共5页
An Hα line-emission detection system was developed on the joint texas experimental tokamak (J-TEXT), which is used to determine the Hα emission level during the gas breakdown and hereafter to control the startup o... An Hα line-emission detection system was developed on the joint texas experimental tokamak (J-TEXT), which is used to determine the Hα emission level during the gas breakdown and hereafter to control the startup of the plasma current. The detector consists of an Hα interference filter, a focusing lens, a photodiode and a preamplifier. In the J-TEXT operation, the Hα emission is taken as a monitor signal which is highly sensitive to the generation of a plasma. Furthermore, the power supply control system using the above signal as an input is capable of determining whether and when to fire the Ohmic heating capacitor banks, which are applied to drive the plasma current ramp-up. The experimental results confirm that the Hα emission criterion is acceptable for controlling the plasma current promotion in the J-TEXT tokamak. 展开更多
关键词 J-TEXT tokamak emission CRITERION STARTUP plasma current
在线阅读 下载PDF
Feedback Control of Plasma Current and Horizontal Position in HT-7
4
作者 刘小宁 夏海燕 +1 位作者 付鹏 罗家融 《Plasma Science and Technology》 SCIE EI CAS CSCD 2001年第4期859-863,共5页
There is a strong magnetic coupling between poloidal field coils of superconducting tokamak HT-7, especially between ohinic heating and vertical field coils. These coils are connected to individual power supply. The c... There is a strong magnetic coupling between poloidal field coils of superconducting tokamak HT-7, especially between ohinic heating and vertical field coils. These coils are connected to individual power supply. The control system for the plasma current and horizontal position control has been designed and showed satisfactory results with the feedback control of multivari- able feedforward-decoupling and var-parameter PID controller to simultaneously modulate power supplies. The design and analysls of the control system is presented. 展开更多
关键词 Feedback Control of plasma current and Horizontal Position in HT-7 HT
在线阅读 下载PDF
Plasma Current Sheath Motion in Coaxial Plasma Discharge
5
作者 Tarek M. Allam Hanaa A. El-Sayed Hanaa M. Soliman 《Energy and Power Engineering》 2011年第4期436-443,共8页
In this paper experiments and theoretical treatments [1] on 1.5 KJ coaxial plasma discharge device have been carried out to show, plasma current sheath, PCS, motion in coaxial plasma discharge by studying: the effect ... In this paper experiments and theoretical treatments [1] on 1.5 KJ coaxial plasma discharge device have been carried out to show, plasma current sheath, PCS, motion in coaxial plasma discharge by studying: the effect of nitrogen gas pressure in the range from 1 to 2.2 Torr and the axial position of PCS along the coaxial electrodes on the modification factor, actual drive parameter, PCS curvature and shape (thickness). Also the dynamics of PCS along the coaxial electrodes due to the combination effect of induced azimuthal and axial magnetic fields induction has been detected experimentally by using a magnetic probe technique. 展开更多
关键词 COAXIAL DISCHARGE plasma current SHEATH DRIVE PARAMETER
在线阅读 下载PDF
Reconnection of magnetic flux ropes driven by two-color Laguerre–Gaussian laser pulses in plasma
6
作者 Yin-Hong Liu Su-Ming Weng Zheng-Ming Sheng 《Matter and Radiation at Extremes》 2025年第4期24-34,共11页
The generation and reconnection of magneticflux ropes in a plasma irradiated by two Laguerre–Gaussian laser pulses with different frequen-cies and opposite topological charges are investigated numerically by particle-... The generation and reconnection of magneticflux ropes in a plasma irradiated by two Laguerre–Gaussian laser pulses with different frequen-cies and opposite topological charges are investigated numerically by particle-in-cell simulations.It is shown that twisted plasma currents and hence magneticflux ropes can be effectively generated as long as the laser frequency difference matches the electron plasma frequency.More importantly,subsequent reconnection of magneticflux ropes can occur.Typical signatures of magnetic reconnection,such as magnetic island formation and plasma heating,are identified in the reconnection of magneticflux ropes.Notably,it is found that a strong axial magneticfield can be generated on the axis,owing to the azimuthal current induced during the reconnection of the ropes.This indicates that in the reconnection of magneticflux ropes,the energy can be transferred not only from the magneticfield to the plasma but also from the plasma current back to the magneticfield.This work opens a new avenue to the study of magneticflux ropes,which helps in understanding magnetic topology changes,and resultant magnetic energy dissipation,plasma heating,and particle acceleration found in solarflares,and magnetic confinement fusion devices. 展开更多
关键词 twisted plasma currents laguerre gaussian laser pulses magnetic islands electron plasma frequency Laguerre Gaussian laser pulses magnetic ux ropes magnetic flux ropes plasma reconnection
在线阅读 下载PDF
Design and experimental study of a field-reversed configuration plasma thruster prototype
7
作者 Yuxuan HUANG Ming ZHANG +5 位作者 Yong YANG Fangwei LYU Xiaopeng YI Chaofan LYU Yisong ZHANG Bo RAO 《Plasma Science and Technology》 2025年第3期118-126,共9页
The field-reversed configuration(FRC)plasma thruster driven by rotating magnetic field(RMF),abbreviated as the RMF-FRC thruster,is a new type of electric propulsion technology that is expected to accelerate the deep s... The field-reversed configuration(FRC)plasma thruster driven by rotating magnetic field(RMF),abbreviated as the RMF-FRC thruster,is a new type of electric propulsion technology that is expected to accelerate the deep space exploration.An experimental prototype,including diagnostic devices,was designed and constructed based on the principles of the RMF-FRC thruster,with an RMF frequency of 210 kHz and a maximum peak current of 2 kA.Under the rated operating conditions,the initial plasma density was measured to be 5×10^(17)m^(-3),and increased to 2.2×10^(19)m^(-3)after the action of RMF.The coupling efficiency of RMF was about 53%,and the plasma current reached 1.9 kA.The axial magnetic field changed in reverse by 155 Gauss,successfully reversing the bias magnetic field of 60 Gauss,which verifies the formation of FRC plasma.After optimization research,it was found that when the bias magnetic field is 100 Gauss,the axial magnetic field reverse variation caused by FRC is the highest at 164 Gauss.The experimental results are discussed and strategies are proposed to improve the performance of the prototype. 展开更多
关键词 rotating magnetic field(RMF) field-reversed configuration(FRC) plasma thrusters plasma current
在线阅读 下载PDF
Three modes of a direct-current plasma jet operated underwater to degrade methylene blue 被引量:5
8
作者 Xuechen LI Biao WANG +3 位作者 Pengying JIA Linwei YANG Yaru LI Jingdi CHU 《Plasma Science and Technology》 SCIE EI CAS CSCD 2017年第11期75-81,共7页
A direct-current air plasma jet operated underwater presents three stable modes including an intermittently-pulsed discharge, a periodically-pulsed discharge and a continuous discharge with increasing the power voltag... A direct-current air plasma jet operated underwater presents three stable modes including an intermittently-pulsed discharge, a periodically-pulsed discharge and a continuous discharge with increasing the power voltage. The three discharge modes have different appearances for the plasma plumes. Moreover, gap voltage-current characteristics indicate that the continuous discharge is in a normal glow regime. Spectral lines from reactive species(OH, N2, N2^+, Hα,and O) have been revealed in the emission spectrum of the plasma jet operated underwater.Spectral intensities emitted from OH radical and oxygen atom increase with increasing the power voltage or the gas flow rate, indicating that reactive species are abundant. These reactive species cause the degradation of the methylene blue dye in solution. Effects of the experimental parameters such as the power voltage, the gas flow rate and the treatment time are investigated on the degradation efficiency. Results indicate that the degradation efficiency increases with increasing the power voltage, the gas flow rate or the treatment time. Compared with degradation in the intermittently-pulsed mode or the periodically-pulsed one, it is more efficient in the continuous mode, reaching 98% after 21 min treatment. 展开更多
关键词 plasma jet direct current glow discharge plasma degradation methylene blue
在线阅读 下载PDF
Numerical simulation of the initial plasma formation and current transfer in single-wire electrical explosion in vacuum 被引量:2
9
作者 王坤 史宗谦 +4 位作者 石元杰 白骏 吴坚 贾申利 邱爱慈 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第7期256-261,共6页
In this paper, a computational model is constructed to investigate the phenomenon of the initial plasma formation and current transfer in the single-wire electrical explosion in a vacuum. The process of the single-wir... In this paper, a computational model is constructed to investigate the phenomenon of the initial plasma formation and current transfer in the single-wire electrical explosion in a vacuum. The process of the single-wire electrical explosion is divided into four stages. Stage Ⅰ: the wire is in solid state. Stage Ⅱ: the melting stage. Stage Ⅲ: the wire melts completely and the initial plasma forms. Stage IV: the core and corona expand separately. The thermodynamic calculation is applied before the wire melts completely in stages Ⅰ and Ⅱ. In stage Ⅲ, a one-dimensional magnetohydrodynamics model comes into play until the instant when the voltage collapse occurs. The temperature, density, and velocity, which are derived from the magnetohydrodynamics calculation, are averaged over the distribution area. The averaged parameters are taken as the initial conditions for stage Ⅳ in which a simplified magnetohydrodynamics model is applied. A wide-range semi-empirical equation of state, which is established based on the Thomas-Fermi-Kirzhnits model, is constructed to describe the phase transition from solid state to plasma state. The initial plasma formation and the phenomenon of current transfer in the electrical explosion of aluminum wire are investigated using the computational model. Experiments of electrical explosion of aluminum wires are carried out to verify this model. Simulation results are also compared with experimental results of the electrical explosion of copper wire. 展开更多
关键词 single-wire electrical explosion plasma formation current transfer
原文传递
Flow separation control over an airfoil using continuous alternating current plasma actuator 被引量:1
10
作者 Jian-Guo Zheng 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第3期346-355,共10页
The flow separation control over an NACA 0015 airfoil using continuous alternating current(AC)dielectric barrier discharge(DBD)plasma actuator is investigated experimentally and numerically.This work is intended to re... The flow separation control over an NACA 0015 airfoil using continuous alternating current(AC)dielectric barrier discharge(DBD)plasma actuator is investigated experimentally and numerically.This work is intended to report some observations made from our experiment,to which little attention is paid in the previous studies,but which is thought to be important to the understanding of control of complex flow separation with AC DBD.To this end,the response of separated flow to AC plasma actuation is visualized through the time-resolved particle image velocimetry(PIV)measurement,whereas numerical simulation is carried out to complement the experiment.The flow control process at chord-based Reynolds number(Re)of 3.31×105 is investigated.It is found that the response of external flow to plasma forcing is delayed for up to tens of milliseconds and the delay time increases with angle of attack increasing.Also observed is that at the intermediate angle of attack near stall,the forced flow features a well re-organized flow pattern.However,for airfoil at high post-stall angle of attack,the already well suppressed flow field can recover to the massively separated flow state and then reattach to airfoil surface with the flow pattern fluctuating between the two states in an irregular manner.This is contrary to one’s first thought that the forced flow at any angles of attack will become well organized and regular,and reflects the complexity of flow separation control. 展开更多
关键词 dielectric barrier discharge plasma actuator alternating current plasma discharge flow separation flow control delayed response
原文传递
Determination of arc pressure pool surface in and current density on the molten plasma arc welding 被引量:2
11
作者 菅晓霞 武传松 《China Welding》 EI CAS 2014年第3期78-82,共5页
A unified numerical model is developed to couple the plasma arc, weld pool and keyhole in a self consistent way. The plasma arc/anode interface and the melt/solid interface are treated specially, the VOF method is use... A unified numerical model is developed to couple the plasma arc, weld pool and keyhole in a self consistent way. The plasma arc/anode interface and the melt/solid interface are treated specially, the VOF method is used to trace the moving keyhole wall, and the fluid flow and heat transfer in both the plasma arc and weld pool are numerically simulated. The distributions of current density and arc pressure on the weld pool surface during the keyhole formation process are analyzed using the coupled model. The predicted arc pressure and current density are compared with the experimentally measured results, and both are in good agreement. 展开更多
关键词 plasma arc welding unified model plasma arc pressure current density
在线阅读 下载PDF
Effect of pulsed current micro plasma arc welding process parameters on fusion zone grain size and ultimate tensile strength of Inconel 625 sheets 被引量:4
12
作者 Kondapalli Siva Prasad Chalamalasetti Srinivasa Rao Damera Nageswara Rao 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2012年第3期179-189,共11页
The paper focuses on developing mathematical models to predict grain size and ul- timate tensile strength of pulsed current micro plasma arc welded Inconel 625 nickel alloy. Four factors, five levels, central composit... The paper focuses on developing mathematical models to predict grain size and ul- timate tensile strength of pulsed current micro plasma arc welded Inconel 625 nickel alloy. Four factors, five levels, central composite rotatable design matrix is used to op- timize the number of experiments. The mathematical models have been developed by response surface method. The adequacy of the models is checked by analysis of vari- ance technique. By using the developed mathematical models, grain size and ultimate tensile strength of the joints can be predicted with 99% confidence level. Contour plots are drawn to study the interaction effect of pulsed current micro plasma arc welding parameters on fusion zone grain size and ultimate tensile strength of Inconel 625 weld joints. 展开更多
关键词 Pulsed current Micro plasma arc welding ANOYA Response surface method: Inconel 625
原文传递
Effect of Current Density on Microstructure and Corrosion Behavior of Plasma Electrolytic Oxidation Coated 6063 Aluminum Alloy 被引量:1
13
作者 ZHUANG Junjie SONG Renguo 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2018年第6期1503-1510,共8页
Plasma electrolytic oxidation(PEO) coatings were fabricated on 6063 aluminum alloy in a cheap and convenient electrolyte. The effect of different current densities, i e, 5, 10, 15, and 20 A/dm2on the microstructure an... Plasma electrolytic oxidation(PEO) coatings were fabricated on 6063 aluminum alloy in a cheap and convenient electrolyte. The effect of different current densities, i e, 5, 10, 15, and 20 A/dm2on the microstructure and corrosion behavior of coatings was comprehensively studied by scanning electron microscopy(SEM), stereoscopic microscopy, potentiodynamic polarization and electrochemical impedance spectroscopy(EIS), respectively. It is found that the pore density decreases and the pore size increases with increasing current density. The XRD results show that the coatings are only composed of α-Al2O3and γ-Al2O3. Potentiodynamic polarization test proves that the coating formed under 10 A/dm2possesses the best anticorrosion property. The long time EIS test shows that the coating under 10 A/dm2is able to protect the aluminum alloy substrate after long time of immersion in 0.59 M NaCl solution, which confirms the salt solution immersion test results in 2 M NaCl solution. 展开更多
关键词 COATING 6063 aluminum alloy plasma electrolytic oxidation (PEO) current density corrosion resistance
原文传递
The Relief of Plasma Pressure and Generation of Field-Aligned Currents in the Magnetosphere 被引量:1
14
作者 Pavel Sedykh 《International Journal of Astronomy and Astrophysics》 2011年第2期15-24,共10页
A combined action of plasma convection and pitch-angle diffusion of electrons and protons leads to the formation of plasma pressure distribution in the magnetosphere on the night side, and, as it is known, steady elec... A combined action of plasma convection and pitch-angle diffusion of electrons and protons leads to the formation of plasma pressure distribution in the magnetosphere on the night side, and, as it is known, steady electric bulk currents are connected to distribution of gas pressure. The divergence of these bulk currents brings about a spatial distribution of field-aligned currents, i.e. magnetospheric sources of ionospheric current. The projection (mapping) of the plasma pressure relief onto the ionosphere corresponds to the form and position of the auroral oval. This projection, like the real oval, executes a motion with a change of the convection electric field, and expands with an enhancement of the field. Knowing the distribution (3D) of the plasma pressure we can determine the places of MHD-compressor and MHD-generators location in the magnetosphere. Unfortunately, direct observations of plasma distribution in the magnetosphere are faced with large difficulties, because pressure must be known everywhere in the plasma sheet at high resolution, which in situ satellites have been unable to provide. Modeling of distribution of plasma pressure (on ~ 3-12 Re) is very important, because the data from multisatellite magnetospheric missions for these purposes would be a very expensive project. 展开更多
关键词 MAGNETOSPHERE plasma CONVECTION plasma PRESSURE Field-Aligned currentS
暂未订购
Study on Effect of Welding Speed on Micro Structure and Mechanical Properties of Pulsed Current Micro Plasma Arc Welded Inconel 625 Sheets 被引量:1
15
作者 Chalamalasetti Srinivasa Rao Kondapalli Siva Prasad Damera Nageswara Rao 《Journal of Minerals and Materials Characterization and Engineering》 2012年第10期1027-1033,共7页
Nickel alloys had gathered wide acceptance in the fabrication of components which require high temperature resistance and corrosion resistance, such as metallic bellows used in expansion joints used in aircraft, aeros... Nickel alloys had gathered wide acceptance in the fabrication of components which require high temperature resistance and corrosion resistance, such as metallic bellows used in expansion joints used in aircraft, aerospace and petroleum industry. Micro Plasma Arc Welding (MPAW) is one of the important arc welding processes commonly using in fabric- cation of Nickel alloys. In the present paper welding of Inconel 625 sheets using pulsed current micro plasma arc weld- ing was discussed. The paper mainly focuses on studying the weld quality characteristics like weld pool geometry pa- rameters, microstructure, grain size, hardness and tensile properties of Pulsed Current Micro Plasma Arc Welded In- conel 625 sheets at different welding speeds. Results reveals that at a welding speed of 260 mm/minute better weld quality characteristics can be obtained. 展开更多
关键词 Pulsed current MICRO plasma Arc Welding INCONEL 625 GRAIN Size Hardness TENSILE Properties
在线阅读 下载PDF
A theory about induced electric current and heating in plasma
16
作者 Zhiliang Yang Rong Chen 《Natural Science》 2011年第4期275-284,共10页
The traditional generalized Ohm’s law in MHD (Magnetohydrodynamics) does not explicitly present the relation of electric currents and electric fields in fully ionized plasma, and leads to some unexpected concepts, su... The traditional generalized Ohm’s law in MHD (Magnetohydrodynamics) does not explicitly present the relation of electric currents and electric fields in fully ionized plasma, and leads to some unexpected concepts, such as ``the magnetic frozen-in plasma'', magnetic reconnection etc. In the single fluid model, the action between electric current and magnetic field is not considered. In the two-fluid model, the derivation is based on the two dynamic equations of ions and electrons. The electric current in traditional generalized Ohm's law depends on the velocities of the plasma, which should be decided by the two dynamic equations. However, the plasma velocity, eventually not free, is inappropriately considered as free parameter in the traditional generalized Ohm's law. In the present paper, we solve the balance equation that can give exact solution of the velocities of electrons and ions, and then derive the electric current in fully ionized plasma. In the case ignoring boundary condition, there is no electric current in the plane perpendicular to the magnetic field when external forces are ignored. The electric field in the plane perpendicular to magnetic field do not contribute to the electric currents, so do the induced electric field from the motion of the plasma across magnetic field. The lack of induced electric current will keep magnetic field in space unaffected. The velocity of the bulk velocity of the plasma perpendicular to magnetic field is not free, it is decided by electromagnetic field and the external forces. We conclude that the bulk velocity of the fully ionized plasma is not coupled with the magnetic field. The motion of the plasma do not change the magnetic field in space, but the plasma will be confined by magnetic field. Due to the confinement of magnetic field, the plasma kinetic energy will be transformed into plasma thermal energy by the Lamor motion and collisions between the same species of particles inside plasma. Because the electric field perpendicular to magnetic field do not contribute electric current, the variation of magnetic field will transfer energy directly into the plasma thermal energy by induced electric field. The heating of plasma could be from the kinetic energy and the variation of magnetic field. 展开更多
关键词 plasmaS MHD ELECTRIC current plasma HEATING
暂未订购
Electrical Characteristics of an Alternating Current Plasma Igniter in Airflow
17
作者 赵兵兵 何立明 +1 位作者 杜宏亮 张华磊 《Plasma Science and Technology》 SCIE EI CAS CSCD 2014年第4期370-373,共4页
The electrical characteristics of an alternating current (AC) plasma igniter were investigated for a working gas of air at atmospheric pressure. The discharge voltage and current were measured in air in both breakdo... The electrical characteristics of an alternating current (AC) plasma igniter were investigated for a working gas of air at atmospheric pressure. The discharge voltage and current were measured in air in both breakdown and stable combustion processes, respectively, and the current-zero phenomena, voltage-current (V-I) characteristics were studied for different working gas flow rates. The results indicated that the working gas between anode and cathode could be ionized to generate gas discharge when the voltage reached 8 kV, and the maximum current was 33.36 A. When the current came to zero, current-zero phenomena appeared with duration of 2 #s. At the current-zero moment, dynamic resistance between electrodes became extremely high, and the maximum value could reach 445 kf~, which was the main factor to restrain the current. With increasing working gas flow rates, the gradient of V-I characteristic curves was increased, as was the dynamic resistance. At a constant driven power, the discharge voltage increased. 展开更多
关键词 alternating current discharge plasma igniter voltage-current characteristic current-zero phenomena
在线阅读 下载PDF
Study on Weld Quality Characteristics of Pulsed Current Micro Plasma Arc Welding of Inconel625 Sheets 被引量:1
18
作者 K. Siva Prasad Ch.Srinivasa Rao D.Nageswara Rao 《Journal of Minerals and Materials Characterization and Engineering》 2012年第2期133-141,共9页
Nickel alloys had gathered wide acceptance in the fabrication of components which require high temperature resistance and corrosion resistance, such as metallic bellows used in expansion joints used in aircraft, aeros... Nickel alloys had gathered wide acceptance in the fabrication of components which require high temperature resistance and corrosion resistance, such as metallic bellows used in expansion joints used in aircraft, aerospace and petroleum industry. In the present paper an attempt is made to study various weld quality characteristics like weld bead geometry dimensions, micro hardness, microstructure, grain size and tensile properties of Pulsed Current Micro Plasma Welding of Inconel625sheets. Weld joint was prepared by fusing the two parent metals of Inconel625 sheets. Square butt joint is used and welding was carried out using Pulsed DCEN, without filler wire. Peak current, back current, pulse and pulse width are considered as the main influential input variables during the welding. 展开更多
关键词 pulsed current MICRO plasma arc welding Inconel625 WELD BEAD geometry hardness microstructure GRAIN size.
在线阅读 下载PDF
Numerical analysis of weld pool geometry in pulsed current plasma arc welding
19
作者 孙俊华 武传松 《China Welding》 EI CAS 2010年第3期6-10,共5页
Numerical analysis of weld pool shape and size is of great significance for selection and optimization of the process parameters in pulsed current plasma arc welding (PAW). In this paper, a mathematical model and re... Numerical analysis of weld pool shape and size is of great significance for selection and optimization of the process parameters in pulsed current plasma arc welding (PAW). In this paper, a mathematical model and relevant algorithm are developed to determine the temperature profiles and weld pool geometry in pulsed current PAW through employing an adaptive heat source model. The volumetric heat source consists of semi-ellipsoid at upper part and a conic body at lower part along the workpiece thickness direction. The dynamic variation features of weld pool shape during a pulse cycle are numerically simulated. The calculated weld cross-section is consistent with the measure one. 展开更多
关键词 pulsed current plasma arc welding weld pool numerical analysis
在线阅读 下载PDF
Numerical analysis of transient keyhole shape in pulsed current plasma arc welding
20
作者 孙俊华 武传松 《China Welding》 EI CAS 2014年第4期69-75,共7页
Based on the characteristics of "one keyhole in a pulse" in pulsed current plasma arc welding (PAW) , the transient variation process of weld pool in a pulse cycle is simulated through the establishment of corresp... Based on the characteristics of "one keyhole in a pulse" in pulsed current plasma arc welding (PAW) , the transient variation process of weld pool in a pulse cycle is simulated through the establishment of corresponding heat source model. And considering the effects of gravitational force, plasma arc pressure and surface tension on the weld pool surface, the dynamic change features of the keyhole shape in a pulse cycle are calculated by using surface deformation equation. Experiments are conducted and validate that the calctdated weld fusion line is in good agreement with the experimental results. 展开更多
关键词 pulsed current plasma arc welding weld pool KEYHOLE numerical analysis
在线阅读 下载PDF
上一页 1 2 27 下一页 到第
使用帮助 返回顶部