Jasmonic acid is a crucial phytohormone that plays a pivotal role,serving as a regulator to balancing plant development and resistance.However,there are analogous and distinctive characteristics exhibited in JA biosyn...Jasmonic acid is a crucial phytohormone that plays a pivotal role,serving as a regulator to balancing plant development and resistance.However,there are analogous and distinctive characteristics exhibited in JA biosynthesis,perception,and signal transduction pathways in both herbaceous and woody plants.Moreover,the majority of research subjects have predominantly focused on the function of JA in model or herbaceous plants.Consequently,there is a significant paucity of studies investigating JA regulation networks in woody plants,particularly concerning post-transcriptional regulatory events such as alternative splicing(AS).This review article aims to conduct a comprehensive summary of advancements that JA signals regulate plant development across various woody species,comparing the analogous features and regulatory differences to herbaceous counterparts.In addition,we summarized the involvement of AS events including splicing factor(SF)and transcripts in the JA regulatory network,highlighting the effectiveness of high-throughput proteogenomic methods.A better understanding of the JA signaling pathway in woody plants has pivotal implications for forestry production,including optimizing plant management and enhancing secondary metabolite production.展开更多
Cytosine bases of the nuclear genome in higher plants are often extensively methylated.Cytosine methylation has been implicated in the silencing of both transposable elements (TEs) and endogenous genes,and loss of m...Cytosine bases of the nuclear genome in higher plants are often extensively methylated.Cytosine methylation has been implicated in the silencing of both transposable elements (TEs) and endogenous genes,and loss of methylation may have severe functional consequences.The recent methylation profiling of the entire Arabidopsis genome has provided novel insights into the extent and pattern of cytosine methylation and its relationships with gene activity.In addition,the fresh studies also revealed the more dynamic nature of this epigenetic modification across plant development than previously believed.Cytosine methylation of gene promoter regions usually inhibits transcription,but methylation in coding regions (gene-body methylation) does not generally affect gene expression.Active demethylation (though probably act synergistically with passive loss of methylation) of promoters by the 5-methyl cytosine DNA glycosylase or DEMETER (DME) is required for the uni-parental expression of imprinting genes in endosperm,which is essential for seed viability.The opinion that cytosine methylation is indispensible for normal plant development has been reinforced by using single or combinations of diverse loss-of-function mutants for DNA methyltransferases,DNA glycosylases,components involved in siRNA biogenesis and chromatin remodeling factors.Patterns of cytosine methylation in plants are usually faithfully maintained across organismal generations by the concerted action of epigenetic inheritance and progressive correction of strayed patterns.However,some variant methylation patterns may escape from being corrected and hence produce novel epialleles in the affected somatic cells.This,coupled with the unique property of plants to produce germline cells late during development,may enable the newly acquired epialleles to be inherited to future generations,which if visible to selection may contribute to adaptation and evolution.展开更多
Transcriptional regulatory mechanisms that control transcriptional regulators, target genes, and their interactions provide new insights into general development processes throughout the life cycle of the plant. Altho...Transcriptional regulatory mechanisms that control transcriptional regulators, target genes, and their interactions provide new insights into general development processes throughout the life cycle of the plant. Although different molecular mechanisms that regulate plant growth and development have been identified, detailed transcriptional mechanisms that control gene expression, modulate developmental programmes, and determine cell fates in plant development are not fully understood. To increase our understanding on transcriptional mechanisms regulating diverse processes in plant development, we have reviewed the regulation of transcription during the process of development including transcriptional mechanisms regulating root, stem, leaf, flower, seed, embryo, endosperm, ovule, fruit, and chloroplast development. We have summarized the interaction, expression, transport, signaling events of transcriptional regulators and their targets in a number of model plants and highlighted the involvement of hormones and microRNAs in plant development. Understanding the precise transcriptional mechanisms regulating gene expression in plant development will be valuable for plant molecular breeding.展开更多
Pollen germination on the surface of compatible stigmatic tissues is an essential step for plant fertilization. Here we report that the Arabidopsis mutant bcll is male sterile as a result of the failure ofpollen germi...Pollen germination on the surface of compatible stigmatic tissues is an essential step for plant fertilization. Here we report that the Arabidopsis mutant bcll is male sterile as a result of the failure ofpollen germination. We show that the bcll mutant allele cannot be transmitted by male gametophytes and no homozygous bcll mutants were obtained. Analysis of pollen developmental stages indicates that the bcll mutation affects pollen germination but not pollen maturation. Molecular analysis demonstrates that the failure of pollen germination was caused by the disruption of AtBECLIN 1. AtBECLIN 1 is expressed predominantly in mature pollen and encodes a protein with significant homology to Beclin1/Atg6/Vps30 required for the processes of autophagy and vacuolar protein sorting (VPS) in yeast. We also show that AtBECLIN 1 is required for normal plant development, and that genes related to autophagy, VPS and the glycosylphosphatidylinositol anchor system, were affected by the deficiency of AtBECLIN 1.展开更多
The cytochrome P450 (CYP) superfamily is the largest enzymatic protein family in plants, and it also widely exists in mammals, fungi, bacteria, insects and so on. Members of this superfamily are involved in multiple...The cytochrome P450 (CYP) superfamily is the largest enzymatic protein family in plants, and it also widely exists in mammals, fungi, bacteria, insects and so on. Members of this superfamily are involved in multiple metabolic pathways with distinct and complex functions, playing important roles in a vast array of reactions. As a result, numerous secondary metabolites are synthesized that function as growth and developmental signals or protect plants from various biotic and abiotic stresses. Here, we summarize the characterization of CYPs, as well as their phylogenetic classification. We also focus on recent advances in elucidating the roles of CYPs in mediating plant growth and development as well as biotic and abiotic stresses responses, providing insights into their potential utilization in plant breeding.展开更多
The leucine-rich repeat(LRR)protein family is involved in a variety of fundamental metabolic and signaling processes in plants,including growth and defense responses.LRR proteins can be divided into two categories:tho...The leucine-rich repeat(LRR)protein family is involved in a variety of fundamental metabolic and signaling processes in plants,including growth and defense responses.LRR proteins can be divided into two categories:those containing LRR domains along with other structural elements,which are further subdivided into five groups,LRR receptor-like kinases,LRR receptor-like proteins,nucleotide-binding site LRR proteins,LRR-extensin proteins,and polygalacturonase-inhibiting proteins,and those containing only LRR domains.Functionally,various LRR proteins are primarily involved in plant development and responses to environmental stress.Notably,the LRR protein family plays a central role in signal transduction pathways related to stress adaptation.In this review,we classify and analyze the functions of LRR proteins in plants.While extensive research has been conducted on the roles of LRR proteins in disease resistance signaling,these proteins also play important roles in abiotic stress responses.This review highlights recent advances in understanding how LRR proteins mediate responses to biotic and abiotic stresses.Building upon these insights,further exploration of the roles of LRR proteins in abiotic stress resistance may aid efforts to develop rice varieties with enhanced stress and disease tolerance.展开更多
NAC(NAM,ATAF1/2,and CUC2)transcription factors(TFs)are a family of plant-specific TFs that play crucial roles in various aspects of plant development and stress responses.Here,we provide an in-depth review of the stru...NAC(NAM,ATAF1/2,and CUC2)transcription factors(TFs)are a family of plant-specific TFs that play crucial roles in various aspects of plant development and stress responses.Here,we provide an in-depth review of the structural characteristics,regulatory mechanisms,and functional roles of NACs in different plant species.One of the key features of NACs is their ability to regulate gene expression through a variety of mechanisms,including binding to DNA sequences in the promoter regions of target genes,interacting with other TFs,and modulating chromatin structure.We discuss these mechanisms in detail,providing insights into the complex regulatory networks that govern the activity of NACs.We explore the diverse functions of these TFs in plant growth and development processes,including embryogenesis,seed development,root and shoot development,floral development and fruit ripening,secondary cell wall formation,and senescence.We also discuss the diverse regulatory roles of NACs in response to various stresses,including drought,flooding,heat,cold,salinity,nutrient deficit,and diseases.Lastly,we emphasize the crosstalk role of NACs between developmental processes and stress responses.This integrated perspective highlights how NACs orchestrate plant growth and resilience.Overall,this review provides a comprehensive overview of the pivotal roles of NACs in plant development and stress responses,emphasizing their potential for engineering stress-resistant crops and enhancing agricultural productivity.展开更多
Polyamines(PAs)are nitrogenous and polycationic compounds containing more than two amine residues.Numerous investigations have demonstrated that cellular PA homeostasis plays a key role in various developmental and ph...Polyamines(PAs)are nitrogenous and polycationic compounds containing more than two amine residues.Numerous investigations have demonstrated that cellular PA homeostasis plays a key role in various developmental and physiological processes.The PA balance,which may be affected by many environmental factors,is finely maintained by the pathways of PA biosynthesis and degradation(catabolism).In this review,the advances in PA transport and distribution and their roles in plants were summarized and discussed.In addition,the interplay between PAs and phytohormones,NO,and H_(2)O_(2)were detailed during plant growth,senescence,fruit repining,as well as response to biotic and abiotic stresses.Moreover,it was elucidated how environmental signals such as light,temperature,and humidity modulate PA accumulation during plant development.Notably,PA has been shown to exert a potential role in shaping the domestication of rice.The present review comprehensively summarizes these latest advances,high-lighting the importance of PAs as endogenous signaling molecules in plants,and as well proposes future perspectives on PA research.展开更多
Plants have developed a multi-layered immune system to cope with pathogens.The receptors on the plasma membrane are controlled by endocytosis to modulate immune signaling,but the regulatory mechanisms of endocytosis i...Plants have developed a multi-layered immune system to cope with pathogens.The receptors on the plasma membrane are controlled by endocytosis to modulate immune signaling,but the regulatory mechanisms of endocytosis in this process remain largely unclear.Here,we uncover that reversible S-acylation of BONZAl1(BON1),a conserved copine-family protein that regulates development-immunity balance in Arabidopsis,contributes to the accurate control of endocytosis.BON1 is targeted by S-acylation,a type of protein lipidation,for its localization on the plasma membrane and its function in development and immunity.Furthermore,the S-acylation status of BON1affects its association with the light-chain clathrin subunitCLC3 and regulates endocytosis.Specifically,PAT14 facilitates the S-acylation of BON1,while ABAPT11 mediates its de-S-acylation.Physiological levels of reversible S-acylation of BON1 are essential for endocytosis and the internalization of immune receptors.Interestingly,salicylic acid enhances ABAPT11-dependent de-S-acylation of BON1 to amplify immune signaling.Collectively,our study reveals that reversible S-acylation of BON1 precisely regulates immune receptor internalization for balancing plant development and immunity,providing potential targets that may be used to improve crop yields and disease resistance.展开更多
Plant-specific transcriptional regulators called TELOMERE REPEAT BINDING proteins(TRBs)combine two DNA-binding domains,the GH1 domain,which binds to linker DNA and is shared with H1 histones,and the Myb/SANT domain,wh...Plant-specific transcriptional regulators called TELOMERE REPEAT BINDING proteins(TRBs)combine two DNA-binding domains,the GH1 domain,which binds to linker DNA and is shared with H1 histones,and the Myb/SANT domain,which specifically recognizes the telobox DNA-binding site motif.TRB1,TRB2,and TRB3 proteins recruit Polycomb group complex 2(PRC2)to deposit H3K27me3 and JMJ14 to remove H3K4me3 at gene promoters containing telobox motifs to repress transcription.Here,we demonstrate that TRB4 and TRB5,two related paralogs belonging to a separate TRB clade conserved in spermatophytes,regulate the transcription of several hundred genes involved in developmental responses to environmental cues.TRB4 binds to several thousand sites in the genome,mainly at transcription start sites and promoter regions of transcriptionally active and H3K4me3-marked genes,but,unlike TRB1,it is not enriched at H3K27me3-marked gene bodies.However,TRB4 can physically interact with the catalytic components of PRC2,SWINGER,and CURLY LEAF(CLF).Unexpectedly,we show that TRB4 and TRB5 are required for distinctive phenotypic traits observed in clf mutant plants and thus function as transcriptional activators of several hundred CLF-controlled genes,including key flowering genes.We further demonstrate that TRB4 shares multiple target genes with TRB1 and physically and genetically interacts with members of both TRB clades.Collectively,these results reveal that TRB proteins engage in both positive and negative interactions with other members of the family to regulate plant development through both PRC2-dependent and-independent mechanisms.展开更多
Four distinct types of sulfated peptides have been identified in Arabidopsis thaliana.These peptides play crucial roles in regulating plant development and stress adaptation.Recent studies have revealed that Xan-thomon...Four distinct types of sulfated peptides have been identified in Arabidopsis thaliana.These peptides play crucial roles in regulating plant development and stress adaptation.Recent studies have revealed that Xan-thomonas and Meloidogyne can secrete plant-like sulfated peptides,exploiting the plant sulfated peptide signaling pathway to suppress plant immunity.Over the past three decades,receptors for these four types of sulfated peptides have been identified,all of which belong to the leucine-rich repeat receptor-like protein kinase subfamily.A number of regulatory proteins have been demonstrated to play important roles in their corresponding signal transduction pathways.In this review,we comprehensively summarize the discov-eries of sulfated peptides and their receptors,mainly in Arabidopsis thaliana.We also discuss their known biological functions in plant development and stress adaptation.Finally,we put forward a number of ques-tions for reference in future studies.展开更多
Global warming is making plants more susceptible to heat stress.Hence,adjustments to crop production systems are required for global food security.Heat stress(HS)poses a threat to the quality of ecosystems and global ...Global warming is making plants more susceptible to heat stress.Hence,adjustments to crop production systems are required for global food security.Heat stress(HS)poses a threat to the quality of ecosystems and global food security due to its adverse effects on plant development.The degree to which HS affects physiological disruptions,physical harm,and biochemical changes at various growth stages directly correlates with its effects on physiological functions,plant growth,and crop production.One promising approach is soil modification using biochar,which enhances soil health and promotes the development of microbial communities,ultimately improving plant heat tolerance.Biochar enhances soil structure,improves moisture retention,and increases nutrient availability in hot weather,thereby promoting plant growth and enhancing crop yields.Additionally,biochar,with its porous structure and ability to provide a liming effect,increases the diversity and activity of soil microbes,thereby fostering advantageous symbiotic relationships.These microbial communities support nutrient cycling,root growth,and general soil health,strengthening biochar’s position as a long-term solution for climate-resilient farming.Earlier research concentrated on the connection between biochar and heat stress or microbial populations;however,this review uniquely combines all three elements,providing a fresh viewpoint on their interrelated functions in enhancing plant adaptability.Furthermore,this study demonstrates the potential of biochar as a sustainable component for improving soil and supporting crops that adapt to heat stress.It examines the processes underlying these interactions and provides recommendations for future research strategies.展开更多
Glutathione S-transferases (GSTs) represent a large and diverse enzyme family ubiquitously distributed across the plant kingdom. These proteins catalyze the conjugation of glutathione (GSH) with electrophilic substrat...Glutathione S-transferases (GSTs) represent a large and diverse enzyme family ubiquitously distributed across the plant kingdom. These proteins catalyze the conjugation of glutathione (GSH) with electrophilic substrates in response to various stress conditions. Beyond their role in stress adaptation, certain GSTs are integral regulators of plant growth and development, contributing to a range of physiological processes. Most GST proteins exhibit dual enzymatic activities, functioning as both transferases and peroxidases, which enables their involvement in diverse cellular processes, including detoxification and stress responses. Recent advancements, particularly in X-ray crystallography, have enabled detailed structural analysis of GST proteins, significantly enhancing our understanding of their biological functions. This review offers a comprehensive overview of the classification and structural characteristics of GSTs in plants. It also highlights recent findings on their roles in plant growth and development, cell signaling, catalytic transport, and stress tolerance. Furthermore, key scientific challenges related to GSTs are discussed, focusing on their potential applications in agriculture. These insights aim to facilitate the screening of functional GST genes and support molecular breeding efforts across diverse crop species.展开更多
Brassinosteroids play diverse roles in plant growth and development. Plants deficient in brassinosteroid (BR) biosynthesis or defective in signal transduction show many abnormal developmental phenotypes, indicating ...Brassinosteroids play diverse roles in plant growth and development. Plants deficient in brassinosteroid (BR) biosynthesis or defective in signal transduction show many abnormal developmental phenotypes, indicating the importance of both BR biosynthesis and the signaling pathway in regulating these biological processes. Recently, using genetics, proteomics, genomics, cell biology, and many other approaches, more components involved in the BR signaling pathway were identified. Furthermore, the physiological, cellular, and molecular mechanisms by which BRs regulate various aspects of plant development, are being discovered. These include root development, anther and pollen development and formation, stem elongation, vasculature differentiation, and cellulose biosynthesis, suggesting that the biological functions of BRs are far beyond promoting cell elongation, This review will focus on the up-to-date progresses about regulatory mechanisms of the BR signaling pathway and the physiological and molecular mechanisms whereby BRs regulate plant growth and development.展开更多
The Receptor-Like Kinase (RLK) is a vast protein family with over 600 genes in Arabidopsis and 1100 in rice. The Lectin RLK (LecRLK) family is believed to play crucial roles in saccharide signaling as well as stre...The Receptor-Like Kinase (RLK) is a vast protein family with over 600 genes in Arabidopsis and 1100 in rice. The Lectin RLK (LecRLK) family is believed to play crucial roles in saccharide signaling as well as stress perception. All the LecRLKs possess three domains: an N-terminal lectin domain, an intermediate transmembrane domain, and a C-terminal kinase domain. On the basis of lectin domain variability, LecRLKs have been subgrouped into three subclasses: L-, G-, and C-type LecRLKs. While the previous studies on LecRLKs were dedicated to classification, comparative structural analysis and expression analysis by promoter-based studies, most of the recent studies on LecRLKs have laid special emphasis on the potential of this gene family in regulating biotic/abiotic stress and developmental pathways in plants, thus mak- ing the prospects of studying the LecRLK-mediated regulatory mechanism exceptionally promising. In this review, we have described in detail the LecRLK gene family with respect to a historical, evolutionary, and structural point of view. Furthermore, we have laid emphasis on the LecRLKs roles in development, stress conditions, and hormonal response. We have also discussed the exciting research prospects offered by the current knowledge on the LecRLK gene family. The multitude of the LecRLK gene family members and their functional diversity mark these genes as both interesting and worthy candidates for further analysis, especially in the field of crop improvement.展开更多
Light is one of the key environmental signals regulating plant growth and development.Therefore,understanding the mechanisms by which light controls plant development has long been of great interest to plant biologist...Light is one of the key environmental signals regulating plant growth and development.Therefore,understanding the mechanisms by which light controls plant development has long been of great interest to plant biologists.Traditional genetic and molecular approaches have successfully identified key regulatory factors in light signaling,but recent genomic studies have revealed massive reprogramming of plant transcriptomes by light,identified binding sites across the entire genome of several pivotal transcription factors in light signaling,and discovered the involvement of epigenetic regulation in light-regulated gene expression.This review summarizes the key genomic work conducted in the last decade which provides new insights into light control of plant development.展开更多
Phospholipids, including phosphatidic acid (PA), phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylglycerol (PC), phosphatidylserine (PS) and phosphoinositides, have emerged as an importan...Phospholipids, including phosphatidic acid (PA), phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylglycerol (PC), phosphatidylserine (PS) and phosphoinositides, have emerged as an important class of cellular messenger molecules in various cellular and physiological processes, of which PA attracts much attention of researchers. In addition to its effect on stimulating vesicle trafficking, many studies have demonstrated that PA plays a crucial role in various signaling pathways by binding target proteins and regulating their activity and subcellular localization. Here, we summarize the functional mechanisms and target proteins underlying PA-mediated regulation of cellular signaling, development, hormonal responses, and stress responses in plants.展开更多
The various monochromatic Light Emitting Diode(LED)lights are widely used in growth facility for cultivating various plants,particularly horticultural crops because of their higher luminous efficiency,lower radiation ...The various monochromatic Light Emitting Diode(LED)lights are widely used in growth facility for cultivating various plants,particularly horticultural crops because of their higher luminous efficiency,lower radiation and power consumption than the traditional white fluorescent lamp light.However,considerable inconsistent effects have been reported in literature.We conducted a meta-analysis to assess the effects of different colors of LED light on plant growth,development and various traits.Compared to the light from white fluorescent lamps,the red LED light significantly changed 4 out 26 plant characteristics by at least 37%,and blue LED light significantly increased 5 of 26 assessed characteristics by 37%or more.The combination of red/blue LED lights only significantly increased dry weight by 161%among 25 plant characteristics analyzed.Compared to the white LED light,red LED light significantly decreased 2 of 9 plant characteristics by at least 36%,and blue LED light significantly decreased only 1 of 9 plant characteristics,total chlorophyll content,by 42%.In the moderators analyzed,plant taxonomic families significantly influenced the effects of LED lights on shoot dry weight,and plant life cycles and plant taxonomic families significantly affected the effect on stomatal conductance.Through systematic meta-analysis,we found that the effect of LED on plant growth and quality traits was speciesspecific,and the effect was affected by the cultivation conditions.Therefore,we suggest that researchers be more targeted to experiment,and collect traits associated with practical production,especially related to the quality of product data,such as carotenoids,anthocyanin and other antioxidant compounds.This article is to provide more data with practical application,guide the application of LED in horticultural plant factory.展开更多
Tumor necrosis factor receptor-associated factor(TRAF)proteins are conserved in higher eukaryotes and play key roles in transducing cellular signals across different organelles.They are characterized by their C-termin...Tumor necrosis factor receptor-associated factor(TRAF)proteins are conserved in higher eukaryotes and play key roles in transducing cellular signals across different organelles.They are characterized by their C-terminal region(TRAF-C domain)containing seven to eight antiparallelβ-sheets,also known as the meprin and TRAF-C homology(MATH)domain.Over the past few decades,significant progress has been made toward understanding the diverse roles of TRAF proteins in mammals and plants.Compared to other eukaryotic species,the Arabidopsis thaliana and rice(Oryza sativa)genomes encode many more TRAF/MATH domaincontaining proteins;these plant proteins cluster into five classes:TRAF/MATH-only,MATH-BPM,MATH-UBP(ubiquitin protease),Seven in absentia(SINA),and MATH-Filament and MATHPEARLI-4 proteins,suggesting parallel evolution of TRAF proteins in plants.Increasing evidence now indicates that plant TRAF proteins form central signaling networks essential for multiple biological processes,such as vegetative and reproductive development,autophagosome formation,plant immunity,symbiosis,phytohormone signaling,and abiotic stress responses.Here,we summarize recent advances and highlight future prospects for understanding on the molecular mechanisms by which TRAF proteins act in plant development and stress responses.展开更多
Pectins are complex cell wall polysaccharides important for many aspects of plant development. Recent studies have discovered extensive physical interactions between pectins and other cell wall components,implicating ...Pectins are complex cell wall polysaccharides important for many aspects of plant development. Recent studies have discovered extensive physical interactions between pectins and other cell wall components,implicating pectins in new molecular functions. Pectins are often localized in spatially-restricted patterns, and some of these non-uniform pectin distributions contribute to multiple aspects of plant development, including the morphogenesis of cells and organs. Furthermore, a growing number of mutants affecting cell wall composi- tion have begun to reveal the distinct contributions of different pectins to plant development. This review discusses the interactions of pectins with other cell wall components, the functions of pectins in controlling cellular morphology, and how non-uniform pectin composition can be an important determinant of developmental processes.展开更多
基金supported by the Natural Science Foundation of Jiangsu Province(BK20221334)the Jiangsu Agricultural Science and Technology Innovation Fund(CX(21)2023)+2 种基金the Science Technology and Innovation Committee of Shenzhen(JCYJ20210324115408023)the Major Project of Natural Science Research in Colleges of Jiangsu Province(20KJA220001)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX23_1115).
文摘Jasmonic acid is a crucial phytohormone that plays a pivotal role,serving as a regulator to balancing plant development and resistance.However,there are analogous and distinctive characteristics exhibited in JA biosynthesis,perception,and signal transduction pathways in both herbaceous and woody plants.Moreover,the majority of research subjects have predominantly focused on the function of JA in model or herbaceous plants.Consequently,there is a significant paucity of studies investigating JA regulation networks in woody plants,particularly concerning post-transcriptional regulatory events such as alternative splicing(AS).This review article aims to conduct a comprehensive summary of advancements that JA signals regulate plant development across various woody species,comparing the analogous features and regulatory differences to herbaceous counterparts.In addition,we summarized the involvement of AS events including splicing factor(SF)and transcripts in the JA regulatory network,highlighting the effectiveness of high-throughput proteogenomic methods.A better understanding of the JA signaling pathway in woody plants has pivotal implications for forestry production,including optimizing plant management and enhancing secondary metabolite production.
基金supported by the National Natural Science Foundation of China (No. 30870198 and 30870178)the Programme of Introducing Talents of Discipline to Universities of China (No. B07017)
文摘Cytosine bases of the nuclear genome in higher plants are often extensively methylated.Cytosine methylation has been implicated in the silencing of both transposable elements (TEs) and endogenous genes,and loss of methylation may have severe functional consequences.The recent methylation profiling of the entire Arabidopsis genome has provided novel insights into the extent and pattern of cytosine methylation and its relationships with gene activity.In addition,the fresh studies also revealed the more dynamic nature of this epigenetic modification across plant development than previously believed.Cytosine methylation of gene promoter regions usually inhibits transcription,but methylation in coding regions (gene-body methylation) does not generally affect gene expression.Active demethylation (though probably act synergistically with passive loss of methylation) of promoters by the 5-methyl cytosine DNA glycosylase or DEMETER (DME) is required for the uni-parental expression of imprinting genes in endosperm,which is essential for seed viability.The opinion that cytosine methylation is indispensible for normal plant development has been reinforced by using single or combinations of diverse loss-of-function mutants for DNA methyltransferases,DNA glycosylases,components involved in siRNA biogenesis and chromatin remodeling factors.Patterns of cytosine methylation in plants are usually faithfully maintained across organismal generations by the concerted action of epigenetic inheritance and progressive correction of strayed patterns.However,some variant methylation patterns may escape from being corrected and hence produce novel epialleles in the affected somatic cells.This,coupled with the unique property of plants to produce germline cells late during development,may enable the newly acquired epialleles to be inherited to future generations,which if visible to selection may contribute to adaptation and evolution.
文摘Transcriptional regulatory mechanisms that control transcriptional regulators, target genes, and their interactions provide new insights into general development processes throughout the life cycle of the plant. Although different molecular mechanisms that regulate plant growth and development have been identified, detailed transcriptional mechanisms that control gene expression, modulate developmental programmes, and determine cell fates in plant development are not fully understood. To increase our understanding on transcriptional mechanisms regulating diverse processes in plant development, we have reviewed the regulation of transcription during the process of development including transcriptional mechanisms regulating root, stem, leaf, flower, seed, embryo, endosperm, ovule, fruit, and chloroplast development. We have summarized the interaction, expression, transport, signaling events of transcriptional regulators and their targets in a number of model plants and highlighted the involvement of hormones and microRNAs in plant development. Understanding the precise transcriptional mechanisms regulating gene expression in plant development will be valuable for plant molecular breeding.
基金The work was supported by the National Natural Science Foundation of China(Grant No.30470172 and 30221120261)the National Special Projects for R&D of Transgenic Plants(J99-A-001).
文摘Pollen germination on the surface of compatible stigmatic tissues is an essential step for plant fertilization. Here we report that the Arabidopsis mutant bcll is male sterile as a result of the failure ofpollen germination. We show that the bcll mutant allele cannot be transmitted by male gametophytes and no homozygous bcll mutants were obtained. Analysis of pollen developmental stages indicates that the bcll mutation affects pollen germination but not pollen maturation. Molecular analysis demonstrates that the failure of pollen germination was caused by the disruption of AtBECLIN 1. AtBECLIN 1 is expressed predominantly in mature pollen and encodes a protein with significant homology to Beclin1/Atg6/Vps30 required for the processes of autophagy and vacuolar protein sorting (VPS) in yeast. We also show that AtBECLIN 1 is required for normal plant development, and that genes related to autophagy, VPS and the glycosylphosphatidylinositol anchor system, were affected by the deficiency of AtBECLIN 1.
基金financially supported in part by National Natural Science Foundation of China (31171590)funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (010-809001)Jiangsu Collaborative Innovation Center for Modern Crop Production, China (No.10)
文摘The cytochrome P450 (CYP) superfamily is the largest enzymatic protein family in plants, and it also widely exists in mammals, fungi, bacteria, insects and so on. Members of this superfamily are involved in multiple metabolic pathways with distinct and complex functions, playing important roles in a vast array of reactions. As a result, numerous secondary metabolites are synthesized that function as growth and developmental signals or protect plants from various biotic and abiotic stresses. Here, we summarize the characterization of CYPs, as well as their phylogenetic classification. We also focus on recent advances in elucidating the roles of CYPs in mediating plant growth and development as well as biotic and abiotic stresses responses, providing insights into their potential utilization in plant breeding.
基金supported by the National Natural Science Foundation of China(Grant Nos.32072048 and U2004204)National Key Research and Development Program of China(Grant No.2023YFF1001200)+2 种基金China Rice Research Institute Basal Research Fund(Grant No.CPSIBRF-CNRRI-202404)Academician Workstation of National Nanfan Research Institute(Sanya),Chinese Agricultural Academic Science(CAAS),(Grant Nos.YBXM2422 and YBXM2423)Agricultural Science and Technology Innovation Program of CAAS,China.
文摘The leucine-rich repeat(LRR)protein family is involved in a variety of fundamental metabolic and signaling processes in plants,including growth and defense responses.LRR proteins can be divided into two categories:those containing LRR domains along with other structural elements,which are further subdivided into five groups,LRR receptor-like kinases,LRR receptor-like proteins,nucleotide-binding site LRR proteins,LRR-extensin proteins,and polygalacturonase-inhibiting proteins,and those containing only LRR domains.Functionally,various LRR proteins are primarily involved in plant development and responses to environmental stress.Notably,the LRR protein family plays a central role in signal transduction pathways related to stress adaptation.In this review,we classify and analyze the functions of LRR proteins in plants.While extensive research has been conducted on the roles of LRR proteins in disease resistance signaling,these proteins also play important roles in abiotic stress responses.This review highlights recent advances in understanding how LRR proteins mediate responses to biotic and abiotic stresses.Building upon these insights,further exploration of the roles of LRR proteins in abiotic stress resistance may aid efforts to develop rice varieties with enhanced stress and disease tolerance.
基金supported by the National Natural Science Foundation of China(U21A20207,32272041,31821005,and 31930080)the Major Projects in Agricultural Biological Breeding(2022ZD04004)+3 种基金the Natural Science Foundation of Hubei Province(2024AFB714)the Fundamental Research Funds for the Central Universities(2662022SKQD003)the Innovative Project of Hubei Hongshan Laboratory(2022hszd015)the Earmarked Fund for China Agriculture Research System(CARS-01)。
文摘NAC(NAM,ATAF1/2,and CUC2)transcription factors(TFs)are a family of plant-specific TFs that play crucial roles in various aspects of plant development and stress responses.Here,we provide an in-depth review of the structural characteristics,regulatory mechanisms,and functional roles of NACs in different plant species.One of the key features of NACs is their ability to regulate gene expression through a variety of mechanisms,including binding to DNA sequences in the promoter regions of target genes,interacting with other TFs,and modulating chromatin structure.We discuss these mechanisms in detail,providing insights into the complex regulatory networks that govern the activity of NACs.We explore the diverse functions of these TFs in plant growth and development processes,including embryogenesis,seed development,root and shoot development,floral development and fruit ripening,secondary cell wall formation,and senescence.We also discuss the diverse regulatory roles of NACs in response to various stresses,including drought,flooding,heat,cold,salinity,nutrient deficit,and diseases.Lastly,we emphasize the crosstalk role of NACs between developmental processes and stress responses.This integrated perspective highlights how NACs orchestrate plant growth and resilience.Overall,this review provides a comprehensive overview of the pivotal roles of NACs in plant development and stress responses,emphasizing their potential for engineering stress-resistant crops and enhancing agricultural productivity.
基金supported by the National Key Research and Development Program of China(2022YFD1200503)grants from the Open Competition Program of Top Ten Critical Priorities of Agricultural Science and Technology Innovation for the 14th Five-Year Plan of Guangdong Province(2022SDZG05)+1 种基金the National Natural Science Foundation of China(91535101,32272644,32330095)the Natural Science Foundation of Guangdong Province(2023A1515010439)。
文摘Polyamines(PAs)are nitrogenous and polycationic compounds containing more than two amine residues.Numerous investigations have demonstrated that cellular PA homeostasis plays a key role in various developmental and physiological processes.The PA balance,which may be affected by many environmental factors,is finely maintained by the pathways of PA biosynthesis and degradation(catabolism).In this review,the advances in PA transport and distribution and their roles in plants were summarized and discussed.In addition,the interplay between PAs and phytohormones,NO,and H_(2)O_(2)were detailed during plant growth,senescence,fruit repining,as well as response to biotic and abiotic stresses.Moreover,it was elucidated how environmental signals such as light,temperature,and humidity modulate PA accumulation during plant development.Notably,PA has been shown to exert a potential role in shaping the domestication of rice.The present review comprehensively summarizes these latest advances,high-lighting the importance of PAs as endogenous signaling molecules in plants,and as well proposes future perspectives on PA research.
基金supported by National Natural Science Foundation of China(32270752,32270292,and 32400227)Major Program of Guangdong Basic and Applied Research(2019B030302006)+3 种基金Natural Science Foundation of Guangdong,China(2024A1515011071 and 2023A1515110948)Guangdong Modern Agro-industry Technology Research System(2023KJ114)the Program for Changjiang Scholars,the China Post doctoral Science Foundation(2023M741236)the Postdoctoral Fellowship Program of CPSF(GZB20240238).
文摘Plants have developed a multi-layered immune system to cope with pathogens.The receptors on the plasma membrane are controlled by endocytosis to modulate immune signaling,but the regulatory mechanisms of endocytosis in this process remain largely unclear.Here,we uncover that reversible S-acylation of BONZAl1(BON1),a conserved copine-family protein that regulates development-immunity balance in Arabidopsis,contributes to the accurate control of endocytosis.BON1 is targeted by S-acylation,a type of protein lipidation,for its localization on the plasma membrane and its function in development and immunity.Furthermore,the S-acylation status of BON1affects its association with the light-chain clathrin subunitCLC3 and regulates endocytosis.Specifically,PAT14 facilitates the S-acylation of BON1,while ABAPT11 mediates its de-S-acylation.Physiological levels of reversible S-acylation of BON1 are essential for endocytosis and the internalization of immune receptors.Interestingly,salicylic acid enhances ABAPT11-dependent de-S-acylation of BON1 to amplify immune signaling.Collectively,our study reveals that reversible S-acylation of BON1 precisely regulates immune receptor internalization for balancing plant development and immunity,providing potential targets that may be used to improve crop yields and disease resistance.
文摘Plant-specific transcriptional regulators called TELOMERE REPEAT BINDING proteins(TRBs)combine two DNA-binding domains,the GH1 domain,which binds to linker DNA and is shared with H1 histones,and the Myb/SANT domain,which specifically recognizes the telobox DNA-binding site motif.TRB1,TRB2,and TRB3 proteins recruit Polycomb group complex 2(PRC2)to deposit H3K27me3 and JMJ14 to remove H3K4me3 at gene promoters containing telobox motifs to repress transcription.Here,we demonstrate that TRB4 and TRB5,two related paralogs belonging to a separate TRB clade conserved in spermatophytes,regulate the transcription of several hundred genes involved in developmental responses to environmental cues.TRB4 binds to several thousand sites in the genome,mainly at transcription start sites and promoter regions of transcriptionally active and H3K4me3-marked genes,but,unlike TRB1,it is not enriched at H3K27me3-marked gene bodies.However,TRB4 can physically interact with the catalytic components of PRC2,SWINGER,and CURLY LEAF(CLF).Unexpectedly,we show that TRB4 and TRB5 are required for distinctive phenotypic traits observed in clf mutant plants and thus function as transcriptional activators of several hundred CLF-controlled genes,including key flowering genes.We further demonstrate that TRB4 shares multiple target genes with TRB1 and physically and genetically interacts with members of both TRB clades.Collectively,these results reveal that TRB proteins engage in both positive and negative interactions with other members of the family to regulate plant development through both PRC2-dependent and-independent mechanisms.
基金supported by the National Natural Science Foundation of China(no.32030005).
文摘Four distinct types of sulfated peptides have been identified in Arabidopsis thaliana.These peptides play crucial roles in regulating plant development and stress adaptation.Recent studies have revealed that Xan-thomonas and Meloidogyne can secrete plant-like sulfated peptides,exploiting the plant sulfated peptide signaling pathway to suppress plant immunity.Over the past three decades,receptors for these four types of sulfated peptides have been identified,all of which belong to the leucine-rich repeat receptor-like protein kinase subfamily.A number of regulatory proteins have been demonstrated to play important roles in their corresponding signal transduction pathways.In this review,we comprehensively summarize the discov-eries of sulfated peptides and their receptors,mainly in Arabidopsis thaliana.We also discuss their known biological functions in plant development and stress adaptation.Finally,we put forward a number of ques-tions for reference in future studies.
文摘Global warming is making plants more susceptible to heat stress.Hence,adjustments to crop production systems are required for global food security.Heat stress(HS)poses a threat to the quality of ecosystems and global food security due to its adverse effects on plant development.The degree to which HS affects physiological disruptions,physical harm,and biochemical changes at various growth stages directly correlates with its effects on physiological functions,plant growth,and crop production.One promising approach is soil modification using biochar,which enhances soil health and promotes the development of microbial communities,ultimately improving plant heat tolerance.Biochar enhances soil structure,improves moisture retention,and increases nutrient availability in hot weather,thereby promoting plant growth and enhancing crop yields.Additionally,biochar,with its porous structure and ability to provide a liming effect,increases the diversity and activity of soil microbes,thereby fostering advantageous symbiotic relationships.These microbial communities support nutrient cycling,root growth,and general soil health,strengthening biochar’s position as a long-term solution for climate-resilient farming.Earlier research concentrated on the connection between biochar and heat stress or microbial populations;however,this review uniquely combines all three elements,providing a fresh viewpoint on their interrelated functions in enhancing plant adaptability.Furthermore,this study demonstrates the potential of biochar as a sustainable component for improving soil and supporting crops that adapt to heat stress.It examines the processes underlying these interactions and provides recommendations for future research strategies.
基金funded by National Natural Science Foundation of China(grant no.32301870 to Chen Lin)Natural Science Foundation of Jiangsu Province(grant no.BK20230568 to Chen Lin)+3 种基金the Jiangsu Provincial Agricultural Science and Technology Independent Innovation Fund(grant no.CX(24)3124 to Chen Lin)Outstanding Ph.D.Programin Yangzhou(grant no.YZLYJFJH2022YXBS147 to Chen Lin)the General Project of Basic Scientific Research to colleges and universities in Jiangsu Province(grant no.22KJB210019 toChen Lin)the Priority Academic Program Development of Jiangsu Higher Education Institutions is greatly acknowledged.
文摘Glutathione S-transferases (GSTs) represent a large and diverse enzyme family ubiquitously distributed across the plant kingdom. These proteins catalyze the conjugation of glutathione (GSH) with electrophilic substrates in response to various stress conditions. Beyond their role in stress adaptation, certain GSTs are integral regulators of plant growth and development, contributing to a range of physiological processes. Most GST proteins exhibit dual enzymatic activities, functioning as both transferases and peroxidases, which enables their involvement in diverse cellular processes, including detoxification and stress responses. Recent advancements, particularly in X-ray crystallography, have enabled detailed structural analysis of GST proteins, significantly enhancing our understanding of their biological functions. This review offers a comprehensive overview of the classification and structural characteristics of GSTs in plants. It also highlights recent findings on their roles in plant growth and development, cell signaling, catalytic transport, and stress tolerance. Furthermore, key scientific challenges related to GSTs are discussed, focusing on their potential applications in agriculture. These insights aim to facilitate the screening of functional GST genes and support molecular breeding efforts across diverse crop species.
文摘Brassinosteroids play diverse roles in plant growth and development. Plants deficient in brassinosteroid (BR) biosynthesis or defective in signal transduction show many abnormal developmental phenotypes, indicating the importance of both BR biosynthesis and the signaling pathway in regulating these biological processes. Recently, using genetics, proteomics, genomics, cell biology, and many other approaches, more components involved in the BR signaling pathway were identified. Furthermore, the physiological, cellular, and molecular mechanisms by which BRs regulate various aspects of plant development, are being discovered. These include root development, anther and pollen development and formation, stem elongation, vasculature differentiation, and cellulose biosynthesis, suggesting that the biological functions of BRs are far beyond promoting cell elongation, This review will focus on the up-to-date progresses about regulatory mechanisms of the BR signaling pathway and the physiological and molecular mechanisms whereby BRs regulate plant growth and development.
文摘The Receptor-Like Kinase (RLK) is a vast protein family with over 600 genes in Arabidopsis and 1100 in rice. The Lectin RLK (LecRLK) family is believed to play crucial roles in saccharide signaling as well as stress perception. All the LecRLKs possess three domains: an N-terminal lectin domain, an intermediate transmembrane domain, and a C-terminal kinase domain. On the basis of lectin domain variability, LecRLKs have been subgrouped into three subclasses: L-, G-, and C-type LecRLKs. While the previous studies on LecRLKs were dedicated to classification, comparative structural analysis and expression analysis by promoter-based studies, most of the recent studies on LecRLKs have laid special emphasis on the potential of this gene family in regulating biotic/abiotic stress and developmental pathways in plants, thus mak- ing the prospects of studying the LecRLK-mediated regulatory mechanism exceptionally promising. In this review, we have described in detail the LecRLK gene family with respect to a historical, evolutionary, and structural point of view. Furthermore, we have laid emphasis on the LecRLKs roles in development, stress conditions, and hormonal response. We have also discussed the exciting research prospects offered by the current knowledge on the LecRLK gene family. The multitude of the LecRLK gene family members and their functional diversity mark these genes as both interesting and worthy candidates for further analysis, especially in the field of crop improvement.
基金the National Basic Research Program of China(973 Program)(Grant No.2012CB910900)National Institutes of Health of the USA(GM47850)+1 种基金the National Science Foundation(NSF)Plant Genome Program of the USA(DBI0922604)the Ministry of Agriculture of China(No.2010ZX08010-003).
文摘Light is one of the key environmental signals regulating plant growth and development.Therefore,understanding the mechanisms by which light controls plant development has long been of great interest to plant biologists.Traditional genetic and molecular approaches have successfully identified key regulatory factors in light signaling,but recent genomic studies have revealed massive reprogramming of plant transcriptomes by light,identified binding sites across the entire genome of several pivotal transcription factors in light signaling,and discovered the involvement of epigenetic regulation in light-regulated gene expression.This review summarizes the key genomic work conducted in the last decade which provides new insights into light control of plant development.
基金supported by the National Natural Science Foundation of China(31721001 and 31400261)the“Ten Thousand Talent Program”Collaborative Innovation Center of Crop Stress Biology,Henan Province
文摘Phospholipids, including phosphatidic acid (PA), phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylglycerol (PC), phosphatidylserine (PS) and phosphoinositides, have emerged as an important class of cellular messenger molecules in various cellular and physiological processes, of which PA attracts much attention of researchers. In addition to its effect on stimulating vesicle trafficking, many studies have demonstrated that PA plays a crucial role in various signaling pathways by binding target proteins and regulating their activity and subcellular localization. Here, we summarize the functional mechanisms and target proteins underlying PA-mediated regulation of cellular signaling, development, hormonal responses, and stress responses in plants.
基金the National Natural Science Foundation of China(Grant No.31972460)in part by the Priority Academic Program Development of Modern Horticulture Science in Jiangsu Province,China(Grant No.130809005)。
文摘The various monochromatic Light Emitting Diode(LED)lights are widely used in growth facility for cultivating various plants,particularly horticultural crops because of their higher luminous efficiency,lower radiation and power consumption than the traditional white fluorescent lamp light.However,considerable inconsistent effects have been reported in literature.We conducted a meta-analysis to assess the effects of different colors of LED light on plant growth,development and various traits.Compared to the light from white fluorescent lamps,the red LED light significantly changed 4 out 26 plant characteristics by at least 37%,and blue LED light significantly increased 5 of 26 assessed characteristics by 37%or more.The combination of red/blue LED lights only significantly increased dry weight by 161%among 25 plant characteristics analyzed.Compared to the white LED light,red LED light significantly decreased 2 of 9 plant characteristics by at least 36%,and blue LED light significantly decreased only 1 of 9 plant characteristics,total chlorophyll content,by 42%.In the moderators analyzed,plant taxonomic families significantly influenced the effects of LED lights on shoot dry weight,and plant life cycles and plant taxonomic families significantly affected the effect on stomatal conductance.Through systematic meta-analysis,we found that the effect of LED on plant growth and quality traits was speciesspecific,and the effect was affected by the cultivation conditions.Therefore,we suggest that researchers be more targeted to experiment,and collect traits associated with practical production,especially related to the quality of product data,such as carotenoids,anthocyanin and other antioxidant compounds.This article is to provide more data with practical application,guide the application of LED in horticultural plant factory.
基金supported by the Key Realm R&D Program of Guangdong Province(Project 2020B0202090001)the National Natural Science Foundation of China(projects 31725004 and 31800217)+1 种基金the Natural Science Foundation of Guangdong Province(Project 2018A030313210)China Postdoctoral Science Foundation(Project 2021M693667)。
文摘Tumor necrosis factor receptor-associated factor(TRAF)proteins are conserved in higher eukaryotes and play key roles in transducing cellular signals across different organelles.They are characterized by their C-terminal region(TRAF-C domain)containing seven to eight antiparallelβ-sheets,also known as the meprin and TRAF-C homology(MATH)domain.Over the past few decades,significant progress has been made toward understanding the diverse roles of TRAF proteins in mammals and plants.Compared to other eukaryotic species,the Arabidopsis thaliana and rice(Oryza sativa)genomes encode many more TRAF/MATH domaincontaining proteins;these plant proteins cluster into five classes:TRAF/MATH-only,MATH-BPM,MATH-UBP(ubiquitin protease),Seven in absentia(SINA),and MATH-Filament and MATHPEARLI-4 proteins,suggesting parallel evolution of TRAF proteins in plants.Increasing evidence now indicates that plant TRAF proteins form central signaling networks essential for multiple biological processes,such as vegetative and reproductive development,autophagosome formation,plant immunity,symbiosis,phytohormone signaling,and abiotic stress responses.Here,we summarize recent advances and highlight future prospects for understanding on the molecular mechanisms by which TRAF proteins act in plant development and stress responses.
基金the NSF (MCB-1615387)a Yale University Brown Fellowship for funding
文摘Pectins are complex cell wall polysaccharides important for many aspects of plant development. Recent studies have discovered extensive physical interactions between pectins and other cell wall components,implicating pectins in new molecular functions. Pectins are often localized in spatially-restricted patterns, and some of these non-uniform pectin distributions contribute to multiple aspects of plant development, including the morphogenesis of cells and organs. Furthermore, a growing number of mutants affecting cell wall composi- tion have begun to reveal the distinct contributions of different pectins to plant development. This review discusses the interactions of pectins with other cell wall components, the functions of pectins in controlling cellular morphology, and how non-uniform pectin composition can be an important determinant of developmental processes.