The frequency of any periodic event can be defined in terms of units of Time. Planck constructed a unit of time called the Plank time from other physical constants. Vyasa defined a natural unit of time, kshana, or mom...The frequency of any periodic event can be defined in terms of units of Time. Planck constructed a unit of time called the Plank time from other physical constants. Vyasa defined a natural unit of time, kshana, or moment based on the motion of a fundamental particle. It is the time taken by an elementary particle, to change its direction from east to north. According to Vyasa, kshana is discrete, exceedingly small, indivisible, and is a constant time quantum. When the intrinsic spin angular momentum of an electron was related to the angular momentum of a simple thin circular plate, spherical shell, and solid sphere model of an electron, we found that the value of kshana in seconds was equal to ten to a power of minus twenty-one second. The disc model for the spinning electron provides an accurate value of the number of kshanas per second as determined previously and compared with other spinning models of electrons. These results indicate that the disk-like model of spinning electrons is the correct model for electrons. Vyasa’s definition of kshana opens the possibility of a new foundation for the theory of physical time, and perspectives in theoretical and philosophical research.展开更多
We will be looking at the energy of a graviton, based upon the Stress energy tensor, and from there ascertaining how fluctuations in early universe conditions impact the mass of a graviton. Physically the mass of the ...We will be looking at the energy of a graviton, based upon the Stress energy tensor, and from there ascertaining how fluctuations in early universe conditions impact the mass of a graviton. Physically the mass of the graviton would be shrinking right after Planck time and presumably it would be going to its equilibrium value of about 10<sup>-62</sup> grams, for its present day value. It, graviton mass, would increase up to the Plank time of about 10<sup>-44</sup> seconds. Note that the result that graviton mass shrinks to 10<sup>-62</sup> grams for its present day value works only for relic gravitons.展开更多
文摘The frequency of any periodic event can be defined in terms of units of Time. Planck constructed a unit of time called the Plank time from other physical constants. Vyasa defined a natural unit of time, kshana, or moment based on the motion of a fundamental particle. It is the time taken by an elementary particle, to change its direction from east to north. According to Vyasa, kshana is discrete, exceedingly small, indivisible, and is a constant time quantum. When the intrinsic spin angular momentum of an electron was related to the angular momentum of a simple thin circular plate, spherical shell, and solid sphere model of an electron, we found that the value of kshana in seconds was equal to ten to a power of minus twenty-one second. The disc model for the spinning electron provides an accurate value of the number of kshanas per second as determined previously and compared with other spinning models of electrons. These results indicate that the disk-like model of spinning electrons is the correct model for electrons. Vyasa’s definition of kshana opens the possibility of a new foundation for the theory of physical time, and perspectives in theoretical and philosophical research.
文摘We will be looking at the energy of a graviton, based upon the Stress energy tensor, and from there ascertaining how fluctuations in early universe conditions impact the mass of a graviton. Physically the mass of the graviton would be shrinking right after Planck time and presumably it would be going to its equilibrium value of about 10<sup>-62</sup> grams, for its present day value. It, graviton mass, would increase up to the Plank time of about 10<sup>-44</sup> seconds. Note that the result that graviton mass shrinks to 10<sup>-62</sup> grams for its present day value works only for relic gravitons.