The edge-face chromatic number Xef (G) of a plane graph G is the least number of colors assigned to the edges and faces such that every adjacent or incident pair of them receives different colors. In this article, t...The edge-face chromatic number Xef (G) of a plane graph G is the least number of colors assigned to the edges and faces such that every adjacent or incident pair of them receives different colors. In this article, the authors prove that every 2-connected plane graph G with △(G)≥|G| - 2≥9 has Xef(G) = △(G).展开更多
Melnikov(1975) conjectured that the edges and faces of a plane graph G can be colored with △(G) + 3 colors so that any two adjacent or incident elements receive distinct colors, where △(G) denotes the maximum degree...Melnikov(1975) conjectured that the edges and faces of a plane graph G can be colored with △(G) + 3 colors so that any two adjacent or incident elements receive distinct colors, where △(G) denotes the maximum degree of G. This paper proves the conjecture for the case △(G) ≤4.展开更多
Given a list assignment of L to graph G,assign a list L(υ)of colors to each υ∈V(G).An(L,d)^(*)-coloring is a mapping π that assigns a color π(υ)∈L(υ)to each vertex υ∈V(G)such that at most d neighbors of υ r...Given a list assignment of L to graph G,assign a list L(υ)of colors to each υ∈V(G).An(L,d)^(*)-coloring is a mapping π that assigns a color π(υ)∈L(υ)to each vertex υ∈V(G)such that at most d neighbors of υ receive the color υ.If there exists an(L,d)^(*)-coloring for every list assignment L with|L(υ)|≥k for all υ∈ V(G),then G is called to be(k,d)^(*)-choosable.In this paper,we prove every planar graph G without adjacent k-cycles is(3,1)^(*)-choosable,where k ∈{3,4,5}.展开更多
A k-adjacent strong edge coloring of graph G(V, E) is defined as a proper k-edge coloring f of graph G(V, E) such that f[u] ≠ f[v] for every uv ∈ E(G), where f[u] = {f(uw)|uw ∈ E(G)} and f(uw) denotes the color of ...A k-adjacent strong edge coloring of graph G(V, E) is defined as a proper k-edge coloring f of graph G(V, E) such that f[u] ≠ f[v] for every uv ∈ E(G), where f[u] = {f(uw)|uw ∈ E(G)} and f(uw) denotes the color of uw, and the adjacent strong edge chromatic number is defined as x'as(G) = min{k| there is a k-adjacent strong edge coloring of G}. In this paper, it has been proved that △ ≤ x'as(G) ≤ △ + 1 for outer plane graphs with △(G) ≥ 5, and X'as(G) = △ + 1 if and only if there exist adjacent vertices with maximum degree.展开更多
This paper deals with the problem of labeling the vertices, edges and faces of a plane graph. A weight of a face is the sum of the label of a face and the labels of the vertices and edges surrounding that face. In a s...This paper deals with the problem of labeling the vertices, edges and faces of a plane graph. A weight of a face is the sum of the label of a face and the labels of the vertices and edges surrounding that face. In a super d-antimagic labeling the vertices receive the smallest labels and the weights of all s-sided faces constitute an arithmetic progression of difference d, for each s appearing in the graph. The paper examines the existence of such labelings for plane graphs containing a special Hamilton path.展开更多
This paper deals with the problem of labeling the vertices, edges and faces of a plane graph in such a way that the label of a face and the labels of the vertices and edges surrounding that face add up to a weight of ...This paper deals with the problem of labeling the vertices, edges and faces of a plane graph in such a way that the label of a face and the labels of the vertices and edges surrounding that face add up to a weight of that face, and the weights of all s-sided faces constitute an arithmetic progression of difference d, for each s that appears in the graph. The paper examines the existence of such labelings for disjoint union of plane graphs.展开更多
In this paper, we prove that every plane graph without 5-circuits and without triangles of distance less than 3 is 3-colorable. This improves the main result of Borodin and Raspaud [Borodin, O. V., Raspaud, A.: A suf...In this paper, we prove that every plane graph without 5-circuits and without triangles of distance less than 3 is 3-colorable. This improves the main result of Borodin and Raspaud [Borodin, O. V., Raspaud, A.: A sufficient condition for planar graphs to be 3-colorable. Journal of Combinatorial Theory, Ser. B, 88, 17-27 (2003)], and provides a new upper bound to their conjecture.展开更多
In this paper, we prove that if G is a plane graph without 4-, 5- and 7-circuits and without intersecting triangles, then for each face f of degree at most 11, any 3-coloring of the boundary of f can be extended to G....In this paper, we prove that if G is a plane graph without 4-, 5- and 7-circuits and without intersecting triangles, then for each face f of degree at most 11, any 3-coloring of the boundary of f can be extended to G. This gives a positive support to a conjecture of Borodin and Raspaud which claims that each plane graph without 5-circuits and intersecting triangles is 3-colorable.展开更多
It is known that every triangle-free plane graph is 3-colorable.However,such a triangle-free plane graph may not be 3-choosable.In this paper,we prove that a triangle-free plane graph is 3-choosable if no 4-cycle in i...It is known that every triangle-free plane graph is 3-colorable.However,such a triangle-free plane graph may not be 3-choosable.In this paper,we prove that a triangle-free plane graph is 3-choosable if no 4-cycle in it is adjacent to a 4-or a 5-cycle.This improves some known results in this direction.展开更多
Motivated by the connection with the genus of the corresponding link and its application on DNA polyhedral links,in this paper,we introduce a parameter s_(max)(G),which is the maximum number of circles of states of th...Motivated by the connection with the genus of the corresponding link and its application on DNA polyhedral links,in this paper,we introduce a parameter s_(max)(G),which is the maximum number of circles of states of the link diagram D(G)corresponding to a plane(positive)graph G.We show that s_(max)(G)does not depend on the embedding of G and if G is a 4-edge-connected plane graph then s_(max)(G)is equal to the number of faces of G,which cover the results of S.Y.Liu and H.P.Zhang as special cases.展开更多
In 2003, Borodin and Raspaud proved that if G is a plane graph without 5-circuits and without triangles of distance less than four, then G is 3-colorable. In this paper, we prove that if G is a plane graph without 5- ...In 2003, Borodin and Raspaud proved that if G is a plane graph without 5-circuits and without triangles of distance less than four, then G is 3-colorable. In this paper, we prove that if G is a plane graph without 5- and 6-circuits and without triangles of distance less than 2, then G is 3-colorable.展开更多
A graph G is (a, b)-choosable for nonnegative integers a > b if for any given family {A(v)\v ε V(G)} of sets A(v) of cardinality a there exists a family {B(v)\v ε V(G)} of subsets B(v) A(v) of cardinality b such ...A graph G is (a, b)-choosable for nonnegative integers a > b if for any given family {A(v)\v ε V(G)} of sets A(v) of cardinality a there exists a family {B(v)\v ε V(G)} of subsets B(v) A(v) of cardinality b such that B(u) B(v) =θ whenever uv E(G). It is Proved in this paper that every plane graph in which no two triangles share a common vertex is (4m, m)-choosable for every nonnegative integer m.展开更多
A proper vertex coloring of a graph G is linear if the graph induced by the vertices of any two color classes is the union of vertex-disjoint paths. The linear chromatic number lc(G) of the graph G is the smallest num...A proper vertex coloring of a graph G is linear if the graph induced by the vertices of any two color classes is the union of vertex-disjoint paths. The linear chromatic number lc(G) of the graph G is the smallest number of colors in a linear coloring of G. In this paper, we give some upper bounds on linear chromatic number for plane graphs with respect to their girth, that improve some results of Raspaud and Wang (2009).展开更多
Cycle reversal had been shown as a powerful method to deal with the relation among orientations of a graph since it preserves the out-degree of each vertex and the connectivity of the orientations. A facial cycle reve...Cycle reversal had been shown as a powerful method to deal with the relation among orientations of a graph since it preserves the out-degree of each vertex and the connectivity of the orientations. A facial cycle reversal on an orientation of a plane graph is an operation that reverses all the directions of the edges of a directed facial cycle. An orientation of a graph is called an α-orientation if each vertex admits a prescribed out-degree. In this paper, we give an explicit formula for the minimum number of the facial cycle reversals needed to transform one α-orientation into another for plane graphs.展开更多
In a previous paper by the author joint with Baogang XU published in Discrete Math in 2018, we show that every non-planar toroidal graph can be edge partitioned into a planar graph and an outerplanar graph. This edge ...In a previous paper by the author joint with Baogang XU published in Discrete Math in 2018, we show that every non-planar toroidal graph can be edge partitioned into a planar graph and an outerplanar graph. This edge partition then implies some results in thickness and outerthickness of toroidal graphs. In particular, if each planar graph has outerthickness at most 2(conjectured by Chartrand, Geller and Hedetniemi in 1971 and the confirmation of the conjecture was announced by Gon?calves in 2005), then the outerthickness of toroidal graphs is at most 3 which is the best possible due to K7.In this paper we continue to study the edge partition for projective planar graphs and Klein bottle embeddable graphs. We show that(1) every non-planar but projective planar graph can be edge partitioned into a planar graph and a union of caterpillar trees;and(2) every non-planar Klein bottle embeddable graph can be edge partitioned into a planar graph and a subgraph of two vertex amalgamation of a caterpillar tree with a cycle with pendant edges. As consequences,the thinkness of projective planar graphs and Klein bottle embeddabe graphs are at most 2,which are the best possible, and the outerthickness of these graphs are at most 3.展开更多
The choice number of a graph G,denoted byχl(G) ,is the minimum number k such that if a list of k colors is given to each vertex of G,there is a vertex coloring of G where each vertex receives a color from its own l...The choice number of a graph G,denoted byχl(G) ,is the minimum number k such that if a list of k colors is given to each vertex of G,there is a vertex coloring of G where each vertex receives a color from its own listno matter whatthe lists are.In this paper,itis showed thatχl(G)≤ 3 for each plane graph of girth not less than 4 which contains no 6- ,7- and 9- cycles展开更多
Using the linear space over the binary field that related to a graph G, a sufficient and necessary condition for the chromatic number of G is obtained.
基金This research is supported by NNSF of China(40301037, 10471131)
文摘The edge-face chromatic number Xef (G) of a plane graph G is the least number of colors assigned to the edges and faces such that every adjacent or incident pair of them receives different colors. In this article, the authors prove that every 2-connected plane graph G with △(G)≥|G| - 2≥9 has Xef(G) = △(G).
文摘Melnikov(1975) conjectured that the edges and faces of a plane graph G can be colored with △(G) + 3 colors so that any two adjacent or incident elements receive distinct colors, where △(G) denotes the maximum degree of G. This paper proves the conjecture for the case △(G) ≤4.
文摘Given a list assignment of L to graph G,assign a list L(υ)of colors to each υ∈V(G).An(L,d)^(*)-coloring is a mapping π that assigns a color π(υ)∈L(υ)to each vertex υ∈V(G)such that at most d neighbors of υ receive the color υ.If there exists an(L,d)^(*)-coloring for every list assignment L with|L(υ)|≥k for all υ∈ V(G),then G is called to be(k,d)^(*)-choosable.In this paper,we prove every planar graph G without adjacent k-cycles is(3,1)^(*)-choosable,where k ∈{3,4,5}.
基金National Natural Science Foundation of China (No. 19871036) Qinglan talent Funds of Lanzhou Jiaotong University.
文摘A k-adjacent strong edge coloring of graph G(V, E) is defined as a proper k-edge coloring f of graph G(V, E) such that f[u] ≠ f[v] for every uv ∈ E(G), where f[u] = {f(uw)|uw ∈ E(G)} and f(uw) denotes the color of uw, and the adjacent strong edge chromatic number is defined as x'as(G) = min{k| there is a k-adjacent strong edge coloring of G}. In this paper, it has been proved that △ ≤ x'as(G) ≤ △ + 1 for outer plane graphs with △(G) ≥ 5, and X'as(G) = △ + 1 if and only if there exist adjacent vertices with maximum degree.
文摘This paper deals with the problem of labeling the vertices, edges and faces of a plane graph. A weight of a face is the sum of the label of a face and the labels of the vertices and edges surrounding that face. In a super d-antimagic labeling the vertices receive the smallest labels and the weights of all s-sided faces constitute an arithmetic progression of difference d, for each s appearing in the graph. The paper examines the existence of such labelings for plane graphs containing a special Hamilton path.
文摘This paper deals with the problem of labeling the vertices, edges and faces of a plane graph in such a way that the label of a face and the labels of the vertices and edges surrounding that face add up to a weight of that face, and the weights of all s-sided faces constitute an arithmetic progression of difference d, for each s that appears in the graph. The paper examines the existence of such labelings for disjoint union of plane graphs.
文摘In this paper, we prove that every plane graph without 5-circuits and without triangles of distance less than 3 is 3-colorable. This improves the main result of Borodin and Raspaud [Borodin, O. V., Raspaud, A.: A sufficient condition for planar graphs to be 3-colorable. Journal of Combinatorial Theory, Ser. B, 88, 17-27 (2003)], and provides a new upper bound to their conjecture.
文摘In this paper, we prove that if G is a plane graph without 4-, 5- and 7-circuits and without intersecting triangles, then for each face f of degree at most 11, any 3-coloring of the boundary of f can be extended to G. This gives a positive support to a conjecture of Borodin and Raspaud which claims that each plane graph without 5-circuits and intersecting triangles is 3-colorable.
基金supported by the Zhejiang Provincial Natural Science Foundation ofChina (Grant No. Y6090699)National Natural Science Foundation of China (Grant No. 10971198)ZhejiangInnovation Project (Grant No. T200905)
文摘It is known that every triangle-free plane graph is 3-colorable.However,such a triangle-free plane graph may not be 3-choosable.In this paper,we prove that a triangle-free plane graph is 3-choosable if no 4-cycle in it is adjacent to a 4-or a 5-cycle.This improves some known results in this direction.
基金supported by the National Natural Science Foundation of China(Nos 11271307,11171279,11101174)。
文摘Motivated by the connection with the genus of the corresponding link and its application on DNA polyhedral links,in this paper,we introduce a parameter s_(max)(G),which is the maximum number of circles of states of the link diagram D(G)corresponding to a plane(positive)graph G.We show that s_(max)(G)does not depend on the embedding of G and if G is a 4-edge-connected plane graph then s_(max)(G)is equal to the number of faces of G,which cover the results of S.Y.Liu and H.P.Zhang as special cases.
基金Supported by National Natural Science Foundation of China(No.10931003 and 11171160)the Doctoral Fund of Ministry of Education of China
文摘In 2003, Borodin and Raspaud proved that if G is a plane graph without 5-circuits and without triangles of distance less than four, then G is 3-colorable. In this paper, we prove that if G is a plane graph without 5- and 6-circuits and without triangles of distance less than 2, then G is 3-colorable.
基金This research is supported by the Postdoctoral Fund of China and the K.C.W. Education Fund of HongKong.
文摘A graph G is (a, b)-choosable for nonnegative integers a > b if for any given family {A(v)\v ε V(G)} of sets A(v) of cardinality a there exists a family {B(v)\v ε V(G)} of subsets B(v) A(v) of cardinality b such that B(u) B(v) =θ whenever uv E(G). It is Proved in this paper that every plane graph in which no two triangles share a common vertex is (4m, m)-choosable for every nonnegative integer m.
基金supported by National Natural Science Foundation of China (Grant Nos. 10931003, 10801077)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Grant No. 08KJB110008).
文摘A proper vertex coloring of a graph G is linear if the graph induced by the vertices of any two color classes is the union of vertex-disjoint paths. The linear chromatic number lc(G) of the graph G is the smallest number of colors in a linear coloring of G. In this paper, we give some upper bounds on linear chromatic number for plane graphs with respect to their girth, that improve some results of Raspaud and Wang (2009).
基金Supported by National Natural Science Foundation of China(Grant Nos.11471273 and 11561058)
文摘Cycle reversal had been shown as a powerful method to deal with the relation among orientations of a graph since it preserves the out-degree of each vertex and the connectivity of the orientations. A facial cycle reversal on an orientation of a plane graph is an operation that reverses all the directions of the edges of a directed facial cycle. An orientation of a graph is called an α-orientation if each vertex admits a prescribed out-degree. In this paper, we give an explicit formula for the minimum number of the facial cycle reversals needed to transform one α-orientation into another for plane graphs.
文摘In a previous paper by the author joint with Baogang XU published in Discrete Math in 2018, we show that every non-planar toroidal graph can be edge partitioned into a planar graph and an outerplanar graph. This edge partition then implies some results in thickness and outerthickness of toroidal graphs. In particular, if each planar graph has outerthickness at most 2(conjectured by Chartrand, Geller and Hedetniemi in 1971 and the confirmation of the conjecture was announced by Gon?calves in 2005), then the outerthickness of toroidal graphs is at most 3 which is the best possible due to K7.In this paper we continue to study the edge partition for projective planar graphs and Klein bottle embeddable graphs. We show that(1) every non-planar but projective planar graph can be edge partitioned into a planar graph and a union of caterpillar trees;and(2) every non-planar Klein bottle embeddable graph can be edge partitioned into a planar graph and a subgraph of two vertex amalgamation of a caterpillar tree with a cycle with pendant edges. As consequences,the thinkness of projective planar graphs and Klein bottle embeddabe graphs are at most 2,which are the best possible, and the outerthickness of these graphs are at most 3.
基金supported by the National Natural Science Foundation of China(1 0 0 0 1 0 35)
文摘The choice number of a graph G,denoted byχl(G) ,is the minimum number k such that if a list of k colors is given to each vertex of G,there is a vertex coloring of G where each vertex receives a color from its own listno matter whatthe lists are.In this paper,itis showed thatχl(G)≤ 3 for each plane graph of girth not less than 4 which contains no 6- ,7- and 9- cycles
文摘Using the linear space over the binary field that related to a graph G, a sufficient and necessary condition for the chromatic number of G is obtained.