期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Auto-Segmentation on Liver with U-Net and Pixel De-Convolutional Network
1
作者 Huan Yao Jenghwa Chang 《International Journal of Medical Physics, Clinical Engineering and Radiation Oncology》 2021年第2期81-93,共13页
<strong>Purpose</strong><span style="font-family:;" "=""><span style="font-family:Verdana;"><strong>: </strong></span><span style=&q... <strong>Purpose</strong><span style="font-family:;" "=""><span style="font-family:Verdana;"><strong>: </strong></span><span style="font-family:Verdana;">To improve the liver auto-segmentation performance of three-</span><span style="font-family:Verdana;">dimensional (3D) U-net by replacing the conventional up-sampling convolution layers with the Pixel De-convolutional Network (PDN) that considers spatial features. </span><b><span style="font-family:Verdana;">Methods</span></b><span style="font-family:Verdana;">: The U-net was originally developed to segment neuronal structure with outstanding performance but suffered serious artifacts from indirectly unrelated adjacent pixels in its up-sampling layers. The hypothesis of this study was that the segmentation quality of </span></span><span style="font-family:Verdana;">the </span><span style="font-family:Verdana;">liver could be improved with PDN in which the up-sampling layer was replaced by a pixel de-convolution layer (PDL). Seventy</span><span style="font-family:Verdana;">-</span><span style="font-family:;" "=""><span style="font-family:Verdana;">eight plans of abdominal cancer patients were anonymized and exported. Sixty-two were chosen for training two networks: 1) 3D U-Net, and 2) 3D PDN, by minimizing the Dice loss function. The other sixteen plans were used to test the performance. The similarity Dice and Average Hausdorff Distance (AHD) were calculated and compared between these two networks. </span><b><span style="font-family:Verdana;">Results</span></b><span style="font-family:Verdana;">: The computation time for 62 training cases and 200 training epochs was about 30 minutes for both networks. The segmentation performance was evaluated using the remaining 16 cases. For the Dice score, the mean ± standard deviation were 0.857 ± 0.011 and 0.858 ± 0.015 for the PDN and U-Net, respectively. For the AHD, the mean ± standard deviation were 1.575 ± 0.373 and 1.675 ± 0.769, respectively, corresponding to an improvement of 6.0% and 51.5% of mean and standard deviation for the PDN. </span><b><span style="font-family:Verdana;">Conclusion</span></b><span style="font-family:Verdana;">: The PDN has outperformed the U-Net on liver auto-segmentation. The predicted contours of PDN are more conformal and smoother when compared with</span></span><span style="font-family:Verdana;"> the</span><span style="font-family:Verdana;"> U-Net.</span> 展开更多
关键词 Liver Auto-Segmentation Deep-Learning U-Net pixel-deconvolutional Network
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部