期刊文献+
共找到89,613篇文章
< 1 2 250 >
每页显示 20 50 100
Object-Based vs. Pixel-Based Classification of Mangrove Forest Mapping in Vien An Dong Commune, Ngoc Hien District, Ca Mau Province Using VNREDSat-1 Images 被引量:1
1
作者 Nguyen Thi Quynh Trang Le Quang Toan +2 位作者 Tong Thi Huyen Ai Nguyen Vu Giang Pham Viet Hoa 《Advances in Remote Sensing》 2016年第4期284-295,共12页
Many researches have been performed comparing object-based classification (OBC) and pixel-based classification (PBC), particularly in classifying high-resolution satellite images. VNREDSat-1 is the first optical remot... Many researches have been performed comparing object-based classification (OBC) and pixel-based classification (PBC), particularly in classifying high-resolution satellite images. VNREDSat-1 is the first optical remote sensing satellite of Vietnam with resolution of 2.5 m (Panchromatic) and 10 m (Multispectral). The objective of this research is to compare two classification approaches using VNREDSat-1 image for mapping mangrove forest in Vien An Dong commune, Ngoc Hien district, Ca Mau province. ISODATA algorithm (in PBC method) and membership function classifier (in OBC method) were chosen to classify the same image. The results show that the overall accuracies of OBC and PBC are 73% and 62.16% respectively, and OBC solved the “salt and pepper” which is the main issue of PBC as well. Therefore, OBC is supposed to be the better approach to classify VNREDSat-1 for mapping mangrove forest in Ngoc Hien commune. 展开更多
关键词 Object-Based classification pixel-based classification VNREDSat-1 Mangrove Forest Ca Mau
暂未订购
Urban tree species classification based on multispectral airborne LiDAR 被引量:1
2
作者 HU Pei-Lun CHEN Yu-Wei +3 位作者 Mohammad Imangholiloo Markus Holopainen WANG Yi-Cheng Juha Hyyppä 《红外与毫米波学报》 北大核心 2025年第2期211-216,共6页
Urban tree species provide various essential ecosystem services in cities,such as regulating urban temperatures,reducing noise,capturing carbon,and mitigating the urban heat island effect.The quality of these services... Urban tree species provide various essential ecosystem services in cities,such as regulating urban temperatures,reducing noise,capturing carbon,and mitigating the urban heat island effect.The quality of these services is influenced by species diversity,tree health,and the distribution and the composition of trees.Traditionally,data on urban trees has been collected through field surveys and manual interpretation of remote sensing images.In this study,we evaluated the effectiveness of multispectral airborne laser scanning(ALS)data in classifying 24 common urban roadside tree species in Espoo,Finland.Tree crown structure information,intensity features,and spectral data were used for classification.Eight different machine learning algorithms were tested,with the extra trees(ET)algorithm performing the best,achieving an overall accuracy of 71.7%using multispectral LiDAR data.This result highlights that integrating structural and spectral information within a single framework can improve the classification accuracy.Future research will focus on identifying the most important features for species classification and developing algorithms with greater efficiency and accuracy. 展开更多
关键词 multispectral airborne LiDAR machine learning tree species classification
在线阅读 下载PDF
Impact of classification granularity on interdisciplinary performance assessment of research institutes and organizations 被引量:1
3
作者 Jiandong Zhang Sonia Gruber Rainer Frietsch 《Journal of Data and Information Science》 2025年第2期61-79,共19页
Purpose:Interdisciplinary research has become a critical approach to addressing complex societal,economic,technological,and environmental challenges,driving innovation and integrating scientific knowledge.While interd... Purpose:Interdisciplinary research has become a critical approach to addressing complex societal,economic,technological,and environmental challenges,driving innovation and integrating scientific knowledge.While interdisciplinarity indicators are widely used to evaluate research performance,the impact of classification granularity on these assessments remains underexplored.Design/methodology/approach:This study investigates how different levels of classification granularity-macro,meso,and micro-affect the evaluation of interdisciplinarity in research institutes.Using a dataset of 262 institutes from four major German non-university organizations(FHG,HGF,MPG,WGL)from 2018 to 2022,we examine inconsistencies in interdisciplinarity across levels,analyze ranking changes,and explore the influence of institutional fields and research focus(applied vs.basic).Findings:Our findings reveal significant inconsistencies in interdisciplinarity across classification levels,with rankings varying substantially.Notably,the Fraunhofer Society(FHG),which performs well at the macro level,experiences significant ranking declines at meso and micro levels.Normalizing interdisciplinarity by research field confirmed that these declines persist.The research focus of institutes,whether applied,basic,or mixed,does not significantly explain the observed ranking dynamics.Research limitations:This study has only considered the publication-based dimension of institutional interdisciplinarity and has not explored other aspects.Practical implications:The findings provide insights for policymakers,research managers,and scholars to better interpret interdisciplinarity metrics and support interdisciplinary research effectively.Originality/value:This study underscores the critical role of classification granularity in interdisciplinarity assessment and emphasizes the need for standardized approaches to ensure robust and fair evaluations. 展开更多
关键词 Interdisciplinarity Paper-level classification system Organization evaluation
在线阅读 下载PDF
YOLOCSP-PEST for Crops Pest Localization and Classification 被引量:1
4
作者 Farooq Ali Huma Qayyum +2 位作者 Kashif Saleem Iftikhar Ahmad Muhammad Javed Iqbal 《Computers, Materials & Continua》 2025年第2期2373-2388,共16页
Preservation of the crops depends on early and accurate detection of pests on crops as they cause several diseases decreasing crop production and quality. Several deep-learning techniques have been applied to overcome... Preservation of the crops depends on early and accurate detection of pests on crops as they cause several diseases decreasing crop production and quality. Several deep-learning techniques have been applied to overcome the issue of pest detection on crops. We have developed the YOLOCSP-PEST model for Pest localization and classification. With the Cross Stage Partial Network (CSPNET) backbone, the proposed model is a modified version of You Only Look Once Version 7 (YOLOv7) that is intended primarily for pest localization and classification. Our proposed model gives exceptionally good results under conditions that are very challenging for any other comparable models especially conditions where we have issues with the luminance and the orientation of the images. It helps farmers working out on their crops in distant areas to determine any infestation quickly and accurately on their crops which helps in the quality and quantity of the production yield. The model has been trained and tested on 2 datasets namely the IP102 data set and a local crop data set on both of which it has shown exceptional results. It gave us a mean average precision (mAP) of 88.40% along with a precision of 85.55% and a recall of 84.25% on the IP102 dataset meanwhile giving a mAP of 97.18% on the local data set along with a recall of 94.88% and a precision of 97.50%. These findings demonstrate that the proposed model is very effective in detecting real-life scenarios and can help in the production of crops improving the yield quality and quantity at the same time. 展开更多
关键词 Deep learning classification of pests YOLOCSP-PEST pest detection
在线阅读 下载PDF
Nondestructive detection and classification of impurities-containing seed cotton based on hyperspectral imaging and one-dimensional convolutional neural network 被引量:1
5
作者 Yeqi Fei Zhenye Li +2 位作者 Tingting Zhu Zengtao Chen Chao Ni 《Digital Communications and Networks》 2025年第2期308-316,共9页
The cleanliness of seed cotton plays a critical role in the pre-treatment of cotton textiles,and the removal of impurity during the harvesting process directly determines the quality and market value of cotton textile... The cleanliness of seed cotton plays a critical role in the pre-treatment of cotton textiles,and the removal of impurity during the harvesting process directly determines the quality and market value of cotton textiles.By fusing band combination optimization with deep learning,this study aims to achieve more efficient and accurate detection of film impurities in seed cotton on the production line.By applying hyperspectral imaging and a one-dimensional deep learning algorithm,we detect and classify impurities in seed cotton after harvest.The main categories detected include pure cotton,conveyor belt,film covering seed cotton,and film adhered to the conveyor belt.The proposed method achieves an impurity detection rate of 99.698%.To further ensure the feasibility and practical application potential of this strategy,we compare our results against existing mainstream methods.In addition,the model shows excellent recognition performance on pseudo-color images of real samples.With a processing time of 11.764μs per pixel from experimental data,it shows a much improved speed requirement while maintaining the accuracy of real production lines.This strategy provides an accurate and efficient method for removing impurities during cotton processing. 展开更多
关键词 Seed cotton Film impurity Hyperspectral imaging Band optimization classification
在线阅读 下载PDF
Multi-Scale Dilated Convolution Network for SPECT-MPI Cardiovascular Disease Classification with Adaptive Denoising and Attenuation Correction
6
作者 A.Robert Singh Suganya Athisayamani +1 位作者 Gyanendra Prasad Joshi Bhanu Shrestha 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期299-327,共29页
Myocardial perfusion imaging(MPI),which uses single-photon emission computed tomography(SPECT),is a well-known estimating tool for medical diagnosis,employing the classification of images to show situations in coronar... Myocardial perfusion imaging(MPI),which uses single-photon emission computed tomography(SPECT),is a well-known estimating tool for medical diagnosis,employing the classification of images to show situations in coronary artery disease(CAD).The automatic classification of SPECT images for different techniques has achieved near-optimal accuracy when using convolutional neural networks(CNNs).This paper uses a SPECT classification framework with three steps:1)Image denoising,2)Attenuation correction,and 3)Image classification.Image denoising is done by a U-Net architecture that ensures effective image denoising.Attenuation correction is implemented by a convolution neural network model that can remove the attenuation that affects the feature extraction process of classification.Finally,a novel multi-scale diluted convolution(MSDC)network is proposed.It merges the features extracted in different scales and makes the model learn the features more efficiently.Three scales of filters with size 3×3 are used to extract features.All three steps are compared with state-of-the-art methods.The proposed denoising architecture ensures a high-quality image with the highest peak signal-to-noise ratio(PSNR)value of 39.7.The proposed classification method is compared with the five different CNN models,and the proposed method ensures better classification with an accuracy of 96%,precision of 87%,sensitivity of 87%,specificity of 89%,and F1-score of 87%.To demonstrate the importance of preprocessing,the classification model was analyzed without denoising and attenuation correction. 展开更多
关键词 SPECT-MPI CAD MSDC DENOISING attenuation correction classification
在线阅读 下载PDF
Automated ECG arrhythmia classification using hybrid CNN-SVM architectures 被引量:1
7
作者 Amine Ben Slama Yessine Amri +1 位作者 Ahmed Fnaiech Hanene Sahli 《Journal of Electronic Science and Technology》 2025年第3期43-55,共13页
Diagnosing cardiac diseases relies heavily on electrocardiogram(ECG)analysis,but detecting myocardial infarction-related arrhythmias remains challenging due to irregular heartbeats and signal variations.Despite advanc... Diagnosing cardiac diseases relies heavily on electrocardiogram(ECG)analysis,but detecting myocardial infarction-related arrhythmias remains challenging due to irregular heartbeats and signal variations.Despite advancements in machine learning,achieving both high accuracy and low computational cost for arrhythmia classification remains a critical issue.Computer-aided diagnosis systems can play a key role in early detection,reducing mortality rates associated with cardiac disorders.This study proposes a fully automated approach for ECG arrhythmia classification using deep learning and machine learning techniques to improve diagnostic accuracy while minimizing processing time.The methodology consists of three stages:1)preprocessing,where ECG signals undergo noise reduction and feature extraction;2)feature Identification,where deep convolutional neural network(CNN)blocks,combined with data augmentation and transfer learning,extract key parameters;3)classification,where a hybrid CNN-SVM model is employed for arrhythmia recognition.CNN-extracted features were fed into a binary support vector machine(SVM)classifier,and model performance was assessed using five-fold cross-validation.Experimental findings demonstrated that the CNN2 model achieved 85.52%accuracy,while the hybrid CNN2-SVM approach significantly improved accuracy to 97.33%,outperforming conventional methods.This model enhances classification efficiency while reducing computational complexity.The proposed approach bridges the gap between accuracy and processing speed in ECG arrhythmia classification,offering a promising solution for real-time clinical applications.Its superior performance compared to nonlinear classifiers highlights its potential for improving automated cardiac diagnosis. 展开更多
关键词 ARRHYTHMIA classification Convolutional neural networks ECG signals Support vector machine
暂未订购
Various classification methods for diabetes mellitus in the management of blood glucose control 被引量:1
8
作者 Qing Jiang Yun Hu Jian-Hua Ma 《World Journal of Diabetes》 2025年第5期1-7,共7页
In the era of precision medicine,the classification of diabetes mellitus has evolved beyond the traditional categories.Various classification methods now account for a multitude of factors,including variations in spec... In the era of precision medicine,the classification of diabetes mellitus has evolved beyond the traditional categories.Various classification methods now account for a multitude of factors,including variations in specific genes,type ofβ-cell impairment,degree of insulin resistance,and clinical characteristics of metabolic profiles.Improved classification methods enable healthcare providers to formulate blood glucose management strategies more precisely.Applying these updated classification systems,will assist clinicians in further optimising treatment plans,including targeted drug therapies,personalized dietary advice,and specific exercise plans.Ultimately,this will facilitate stricter blood glucose control,minimize the risks of hypoglycaemia and hyperglycaemia,and reduce long-term complications associated with diabetes. 展开更多
关键词 Diabetes classification Glycaemic control Personalised treatment Soft clustering Precision medicine
暂未订购
Classification and provenance of exotic impact glasses in Chang’e-5 lunar soil 被引量:1
9
作者 YunHong Fan BiWen Wang +3 位作者 Wei Yang QiuLi Li HuiJuan Zhang ShiTou Wu 《Earth and Planetary Physics》 2025年第6期1099-1112,共14页
Lunar impact glasses have been identified as crucial indicators of geochemical information regarding their source regions. Impact glasses can be categorized as either local or exotic. Those preserving geochemical sign... Lunar impact glasses have been identified as crucial indicators of geochemical information regarding their source regions. Impact glasses can be categorized as either local or exotic. Those preserving geochemical signatures matching local lithologies (e.g., mare basalts or their single minerals) or regolith bulk soil compositions are classified as “local”. Otherwise, they could be defined as “exotic”. The analysis of exotic glasses provides the opportunity to explore previously unsampled lunar areas. This study focuses on the identification of exotic glasses within the Chang’e-5 (CE-5) soil sample by analyzing the trace elements of 28 impact glasses with distinct major element compositions in comparison with the CE-5 bulk soil. However, the results indicate that 18 of the analyzed glasses exhibit trace element compositions comparable to those of the local CE-5 materials. In particular, some of them could match the local single mineral component in major and trace elements, suggesting a local origin. Therefore, it is recommended that the investigation be expanded from using major elements to including nonvolatile trace elements, with a view to enhancing our understanding on the provenance of lunar impact glasses. To achieve a more accurate identification of exotic glasses within the CE-5 soil sample, a novel classification plot of Mg# versus La is proposed. The remaining 10 glasses, which exhibit diverse trace element variations, were identified as exotic. A comparative analysis of their chemical characteristics with remote sensing data indicates that they may have originated from the Aristarchus, Mairan, Sharp, or Pythagoras craters. This study elucidates the classification and possible provenance of exotic materials within the CE-5 soil sample, thereby providing constraints for the enhanced identification of local and exotic components at the CE-5 landing site. 展开更多
关键词 Chang’e-5 impact glass exotic materials classification PROVENANCE
在线阅读 下载PDF
Three-Stage Transfer Learning with AlexNet50 for MRI Image Multi-Class Classification with Optimal Learning Rate
10
作者 Suganya Athisayamani A.Robert Singh +1 位作者 Gyanendra Prasad Joshi Woong Cho 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期155-183,共29页
In radiology,magnetic resonance imaging(MRI)is an essential diagnostic tool that provides detailed images of a patient’s anatomical and physiological structures.MRI is particularly effective for detecting soft tissue... In radiology,magnetic resonance imaging(MRI)is an essential diagnostic tool that provides detailed images of a patient’s anatomical and physiological structures.MRI is particularly effective for detecting soft tissue anomalies.Traditionally,radiologists manually interpret these images,which can be labor-intensive and time-consuming due to the vast amount of data.To address this challenge,machine learning,and deep learning approaches can be utilized to improve the accuracy and efficiency of anomaly detection in MRI scans.This manuscript presents the use of the Deep AlexNet50 model for MRI classification with discriminative learning methods.There are three stages for learning;in the first stage,the whole dataset is used to learn the features.In the second stage,some layers of AlexNet50 are frozen with an augmented dataset,and in the third stage,AlexNet50 with an augmented dataset with the augmented dataset.This method used three publicly available MRI classification datasets:Harvard whole brain atlas(HWBA-dataset),the School of Biomedical Engineering of Southern Medical University(SMU-dataset),and The National Institute of Neuroscience and Hospitals brain MRI dataset(NINS-dataset)for analysis.Various hyperparameter optimizers like Adam,stochastic gradient descent(SGD),Root mean square propagation(RMS prop),Adamax,and AdamW have been used to compare the performance of the learning process.HWBA-dataset registers maximum classification performance.We evaluated the performance of the proposed classification model using several quantitative metrics,achieving an average accuracy of 98%. 展开更多
关键词 MRI TUMORS classification AlexNet50 transfer learning hyperparameter tuning OPTIMIZER
在线阅读 下载PDF
Deep Learning and Artificial Intelligence-Driven Advanced Methods for Acute Lymphoblastic Leukemia Identification and Classification: A Systematic Review 被引量:1
11
作者 Syed Ijaz Ur Rahman Naveed Abbas +5 位作者 Sikandar Ali Muhammad Salman Ahmed Alkhayat Jawad Khan Dildar Hussain Yeong Hyeon Gu 《Computer Modeling in Engineering & Sciences》 2025年第2期1199-1231,共33页
Automatic detection of Leukemia or blood cancer is one of the most challenging tasks that need to be addressed in the healthcare system.Analysis of white blood cells(WBCs)in the blood or bone marrow microscopic slide ... Automatic detection of Leukemia or blood cancer is one of the most challenging tasks that need to be addressed in the healthcare system.Analysis of white blood cells(WBCs)in the blood or bone marrow microscopic slide images play a crucial part in early identification to facilitate medical experts.For Acute Lymphocytic Leukemia(ALL),the most preferred part of the blood or marrow is to be analyzed by the experts before it spreads in the whole body and the condition becomes worse.The researchers have done a lot of work in this field,to demonstrate a comprehensive analysis few literature reviews have been published focusing on various artificial intelligence-based techniques like machine and deep learning detection of ALL.The systematic review has been done in this article under the PRISMA guidelines which presents the most recent advancements in this field.Different image segmentation techniques were broadly studied and categorized from various online databases like Google Scholar,Science Direct,and PubMed as image processing-based,traditional machine and deep learning-based,and advanced deep learning-based models were presented.Convolutional Neural Networks(CNN)based on traditional models and then the recent advancements in CNN used for the classification of ALL into its subtypes.A critical analysis of the existing methods is provided to offer clarity on the current state of the field.Finally,the paper concludes with insights and suggestions for future research,aiming to guide new researchers in the development of advanced automated systems for detecting life-threatening diseases. 展开更多
关键词 Acute lymphoblastic bone marrow SEGMENTATION classification machine learning deep learning convolutional neural network
暂未订购
TMC-GCN: Encrypted Traffic Mapping Classification Method Based on Graph Convolutional Networks 被引量:1
12
作者 Baoquan Liu Xi Chen +2 位作者 Qingjun Yuan Degang Li Chunxiang Gu 《Computers, Materials & Continua》 2025年第2期3179-3201,共23页
With the emphasis on user privacy and communication security, encrypted traffic has increased dramatically, which brings great challenges to traffic classification. The classification method of encrypted traffic based... With the emphasis on user privacy and communication security, encrypted traffic has increased dramatically, which brings great challenges to traffic classification. The classification method of encrypted traffic based on GNN can deal with encrypted traffic well. However, existing GNN-based approaches ignore the relationship between client or server packets. In this paper, we design a network traffic topology based on GCN, called Flow Mapping Graph (FMG). FMG establishes sequential edges between vertexes by the arrival order of packets and establishes jump-order edges between vertexes by connecting packets in different bursts with the same direction. It not only reflects the time characteristics of the packet but also strengthens the relationship between the client or server packets. According to FMG, a Traffic Mapping Classification model (TMC-GCN) is designed, which can automatically capture and learn the characteristics and structure information of the top vertex in FMG. The TMC-GCN model is used to classify the encrypted traffic. The encryption stream classification problem is transformed into a graph classification problem, which can effectively deal with data from different data sources and application scenarios. By comparing the performance of TMC-GCN with other classical models in four public datasets, including CICIOT2023, ISCXVPN2016, CICAAGM2017, and GraphDapp, the effectiveness of the FMG algorithm is verified. The experimental results show that the accuracy rate of the TMC-GCN model is 96.13%, the recall rate is 95.04%, and the F1 rate is 94.54%. 展开更多
关键词 Encrypted traffic classification deep learning graph neural networks multi-layer perceptron graph convolutional networks
在线阅读 下载PDF
A novel method for clustering cellular data to improve classification
13
作者 Diek W.Wheeler Giorgio A.Ascoli 《Neural Regeneration Research》 SCIE CAS 2025年第9期2697-2705,共9页
Many fields,such as neuroscience,are experiencing the vast prolife ration of cellular data,underscoring the need fo r organizing and interpreting large datasets.A popular approach partitions data into manageable subse... Many fields,such as neuroscience,are experiencing the vast prolife ration of cellular data,underscoring the need fo r organizing and interpreting large datasets.A popular approach partitions data into manageable subsets via hierarchical clustering,but objective methods to determine the appropriate classification granularity are missing.We recently introduced a technique to systematically identify when to stop subdividing clusters based on the fundamental principle that cells must differ more between than within clusters.Here we present the corresponding protocol to classify cellular datasets by combining datadriven unsupervised hierarchical clustering with statistical testing.These general-purpose functions are applicable to any cellular dataset that can be organized as two-dimensional matrices of numerical values,including molecula r,physiological,and anatomical datasets.We demonstrate the protocol using cellular data from the Janelia MouseLight project to chara cterize morphological aspects of neurons. 展开更多
关键词 cellular data clustering dendrogram data classification Levene's one-tailed statistical test unsupervised hierarchical clustering
在线阅读 下载PDF
Congruent Feature Selection Method to Improve the Efficacy of Machine Learning-Based Classification in Medical Image Processing
14
作者 Mohd Anjum Naoufel Kraiem +2 位作者 Hong Min Ashit Kumar Dutta Yousef Ibrahim Daradkeh 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期357-384,共28页
Machine learning(ML)is increasingly applied for medical image processing with appropriate learning paradigms.These applications include analyzing images of various organs,such as the brain,lung,eye,etc.,to identify sp... Machine learning(ML)is increasingly applied for medical image processing with appropriate learning paradigms.These applications include analyzing images of various organs,such as the brain,lung,eye,etc.,to identify specific flaws/diseases for diagnosis.The primary concern of ML applications is the precise selection of flexible image features for pattern detection and region classification.Most of the extracted image features are irrelevant and lead to an increase in computation time.Therefore,this article uses an analytical learning paradigm to design a Congruent Feature Selection Method to select the most relevant image features.This process trains the learning paradigm using similarity and correlation-based features over different textural intensities and pixel distributions.The similarity between the pixels over the various distribution patterns with high indexes is recommended for disease diagnosis.Later,the correlation based on intensity and distribution is analyzed to improve the feature selection congruency.Therefore,the more congruent pixels are sorted in the descending order of the selection,which identifies better regions than the distribution.Now,the learning paradigm is trained using intensity and region-based similarity to maximize the chances of selection.Therefore,the probability of feature selection,regardless of the textures and medical image patterns,is improved.This process enhances the performance of ML applications for different medical image processing.The proposed method improves the accuracy,precision,and training rate by 13.19%,10.69%,and 11.06%,respectively,compared to other models for the selected dataset.The mean error and selection time is also reduced by 12.56%and 13.56%,respectively,compared to the same models and dataset. 展开更多
关键词 Computer vision feature selection machine learning region detection texture analysis image classification medical images
在线阅读 下载PDF
New classification of gastric polyps:An in-depth analysis and critical evaluation 被引量:1
15
作者 Xiao-Hui Liao Ying-Ming Sun Hong-Bin Chen 《World Journal of Gastroenterology》 2025年第7期149-155,共7页
With the widespread use of upper gastrointestinal endoscopy,more and more gastric polyps(GPs)are being detected.Traditional management strategies often rely on histopathologic examination,which can be time-consuming a... With the widespread use of upper gastrointestinal endoscopy,more and more gastric polyps(GPs)are being detected.Traditional management strategies often rely on histopathologic examination,which can be time-consuming and may not guide immediate clinical decisions.This paper aims to introduce a novel classification system for GPs based on their potential risk of malignant transformation,categorizing them as"good","bad",and"ugly".A review of the literature and clinical case analysis were conducted to explore the clinical implications,management strategies,and the system's application in endoscopic practice.Good polyps,mainly including fundic gland polyps and inflammatory fibrous polyps,have a low risk of malignancy and typically require minimal or no intervention.Bad polyps,mainly including hyperplastic polyps and adenomas,pose an intermediate risk of malignancy,necessitating closer monitoring or removal.Ugly polyps,mainly including type 3 neuroendocrine tumors and early gastric cancer,indicate a high potential for malignancy and require urgent and comprehensive treatment.The new classification system provides a simplified and practical framework for diagnosing and managing GPs,improving diagnostic accuracy,guiding individualized treatment,and promoting advancements in endoscopic techniques.Despite some challenges,such as the risk of misclassification due to similar endoscopic appearances,this system is essential for the standardized management of GPs.It also lays the foundation for future research into biomarkers and the development of personalized medicine. 展开更多
关键词 Gastric polyps classification Fundic gland polyps Inflammatory fibroid polyps Hyperplastic polyps ADENOMAS Neuroendocrine tumors Early gastric cancer Patient management
暂未订购
Infrared aircraft few-shot classification method based on cross-correlation network
16
作者 HUANG Zhen ZHANG Yong GONG Jin-Fu 《红外与毫米波学报》 北大核心 2025年第1期103-111,共9页
In response to the scarcity of infrared aircraft samples and the tendency of traditional deep learning to overfit,a few-shot infrared aircraft classification method based on cross-correlation networks is proposed.This... In response to the scarcity of infrared aircraft samples and the tendency of traditional deep learning to overfit,a few-shot infrared aircraft classification method based on cross-correlation networks is proposed.This method combines two core modules:a simple parameter-free self-attention and cross-attention.By analyzing the self-correlation and cross-correlation between support images and query images,it achieves effective classification of infrared aircraft under few-shot conditions.The proposed cross-correlation network integrates these two modules and is trained in an end-to-end manner.The simple parameter-free self-attention is responsible for extracting the internal structure of the image while the cross-attention can calculate the cross-correlation between images further extracting and fusing the features between images.Compared with existing few-shot infrared target classification models,this model focuses on the geometric structure and thermal texture information of infrared images by modeling the semantic relevance between the features of the support set and query set,thus better attending to the target objects.Experimental results show that this method outperforms existing infrared aircraft classification methods in various classification tasks,with the highest classification accuracy improvement exceeding 3%.In addition,ablation experiments and comparative experiments also prove the effectiveness of the method. 展开更多
关键词 infrared imaging aircraft classification few-shot learning parameter-free attention cross attention
在线阅读 下载PDF
Experiments on image data augmentation techniques for geological rock type classification with convolutional neural networks 被引量:2
17
作者 Afshin Tatar Manouchehr Haghighi Abbas Zeinijahromi 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第1期106-125,共20页
The integration of image analysis through deep learning(DL)into rock classification represents a significant leap forward in geological research.While traditional methods remain invaluable for their expertise and hist... The integration of image analysis through deep learning(DL)into rock classification represents a significant leap forward in geological research.While traditional methods remain invaluable for their expertise and historical context,DL offers a powerful complement by enhancing the speed,objectivity,and precision of the classification process.This research explores the significance of image data augmentation techniques in optimizing the performance of convolutional neural networks(CNNs)for geological image analysis,particularly in the classification of igneous,metamorphic,and sedimentary rock types from rock thin section(RTS)images.This study primarily focuses on classic image augmentation techniques and evaluates their impact on model accuracy and precision.Results demonstrate that augmentation techniques like Equalize significantly enhance the model's classification capabilities,achieving an F1-Score of 0.9869 for igneous rocks,0.9884 for metamorphic rocks,and 0.9929 for sedimentary rocks,representing improvements compared to the baseline original results.Moreover,the weighted average F1-Score across all classes and techniques is 0.9886,indicating an enhancement.Conversely,methods like Distort lead to decreased accuracy and F1-Score,with an F1-Score of 0.949 for igneous rocks,0.954 for metamorphic rocks,and 0.9416 for sedimentary rocks,exacerbating the performance compared to the baseline.The study underscores the practicality of image data augmentation in geological image classification and advocates for the adoption of DL methods in this domain for automation and improved results.The findings of this study can benefit various fields,including remote sensing,mineral exploration,and environmental monitoring,by enhancing the accuracy of geological image analysis both for scientific research and industrial applications. 展开更多
关键词 Deep learning(DL) Image analysis Image data augmentation Convolutional neural networks(CNNs) Geological image analysis Rock classification Rock thin section(RTS)images
在线阅读 下载PDF
Dual networks with hierarchical attention for fine-grained image classification
18
作者 YANG Tao WANG Gaihua 《中国科学院大学学报(中英文)》 北大核心 2025年第6期806-813,共8页
In this paper,we propose hierarchical attention dual network(DNet)for fine-grained image classification.The DNet can randomly select pairs of inputs from the dataset and compare the differences between them through hi... In this paper,we propose hierarchical attention dual network(DNet)for fine-grained image classification.The DNet can randomly select pairs of inputs from the dataset and compare the differences between them through hierarchical attention feature learning,which are used simultaneously to remove noise and retain salient features.In the loss function,it considers the losses of difference in paired images according to the intra-variance and inter-variance.In addition,we also collect the disaster scene dataset from remote sensing images and apply the proposed method to disaster scene classification,which contains complex scenes and multiple types of disasters.Compared to other methods,experimental results show that the DNet with hierarchical attention is robust to different datasets and performs better. 展开更多
关键词 dual network(DNet) fine-grained image classification hierarchical attention features
在线阅读 下载PDF
Audiovisual Art Event Classification and Outreach Based on Web Extracted Data
19
作者 Andreas Giannakoulopoulos Minas Pergantis +1 位作者 Aristeidis Lamprogeorgos Stella Lampoura 《Journal of Software Engineering and Applications》 2025年第1期24-43,共20页
The World Wide Web provides a wealth of information about everything, including contemporary audio and visual art events, which are discussed on media outlets, blogs, and specialized websites alike. This information m... The World Wide Web provides a wealth of information about everything, including contemporary audio and visual art events, which are discussed on media outlets, blogs, and specialized websites alike. This information may become a robust source of real-world data, which may form the basis of an objective data-driven analysis. In this study, a methodology for collecting information about audio and visual art events in an automated manner from a large array of websites is presented in detail. This process uses cutting edge Semantic Web, Web Search and Generative AI technologies to convert website documents into a collection of structured data. The value of the methodology is demonstrated by creating a large dataset concerning audiovisual events in Greece. The collected information includes event characteristics, estimated metrics based on their text descriptions, outreach metrics based on the media that reported them, and a multi-layered classification of these events based on their type, subjects and methods used. This dataset is openly provided to the general and academic public through a Web application. Moreover, each event’s outreach is evaluated using these quantitative metrics, the results are analyzed with an emphasis on classification popularity and useful conclusions are drawn concerning the importance of artistic subjects, methods, and media. 展开更多
关键词 Web Data Extraction Art Events classification Artistic Outreach Online Media
在线阅读 下载PDF
Domain-independent adaptive histogram-based features for pomegranate fruit and leaf diseases classification
20
作者 Mohanmuralidhar Prajwala Prabhuswamy Prajwal Kumar +3 位作者 Shanubhog Maheshwarappa Gopinath Shivakumara Palaiahnakote Mahadevappa Basavanna Daniel P.Lopresti 《CAAI Transactions on Intelligence Technology》 2025年第2期317-336,共20页
Disease identification for fruits and leaves in the field of agriculture is important for estimating production,crop yield,and earnings for farmers.In the specific case of pomegranates,this is challenging because of t... Disease identification for fruits and leaves in the field of agriculture is important for estimating production,crop yield,and earnings for farmers.In the specific case of pomegranates,this is challenging because of the wide range of possible diseases and their effects on the plant and the crop.This study presents an adaptive histogram-based method for solving this problem.Our method describe is domain independent in the sense that it can be easily and efficiently adapted to other similar smart agriculture tasks.The approach explores colour spaces,namely,Red,Green,and Blue along with Grey.The histograms of colour spaces and grey space are analysed based on the notion that as the disease changes,the colour also changes.The proximity between the histograms of grey images with individual colour spaces is estimated to find the closeness of images.Since the grey image is the average of colour spaces(R,G,and B),it can be considered a reference image.For estimating the distance between grey and colour spaces,the proposed approach uses a Chi-Square distance measure.Further,the method uses an Artificial Neural Network for classification.The effectiveness of our approach is demonstrated by testing on a dataset of fruit and leaf images affected by different diseases.The results show that the method outperforms existing techniques in terms of average classification rate. 展开更多
关键词 color spaces distance measure fruit classification leaf classification plant disease classification
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部