期刊文献+
共找到778篇文章
< 1 2 39 >
每页显示 20 50 100
Correlation between metastable pitting and structural heterogeneity in Co-based metallic glasses
1
作者 Haoran Ma Dongxue Han +7 位作者 Chunyang Mu Feixiong Mao Aina He Yaqiang Dong Deren Li Qikui Man Baogen Shen Jiawei Li 《Journal of Materials Science & Technology》 2025年第25期125-136,共12页
By employing micrometer-diameter microelectrodes, the metastable pitting corrosion behavior of Co_(68.15)Fe_(4.35)Si_(12.5)B_(12)Cr_(3) metallic glasses (MGs) exposed to 0.6 mol/L NaCl solution was investigated to cla... By employing micrometer-diameter microelectrodes, the metastable pitting corrosion behavior of Co_(68.15)Fe_(4.35)Si_(12.5)B_(12)Cr_(3) metallic glasses (MGs) exposed to 0.6 mol/L NaCl solution was investigated to clarify the correlation between metastable pitting and structural heterogeneity in MGs. Thermally induced degeneration of structural heterogeneity inhibits the initiation, decelerates the growth kinetics, and accelerates the repassivation kinetics of metastable pits while also decreasing the probability of transition from metastability to stability. This enhanced resistance to pitting corrosion is attributed to a reduction in active pitting precursor sites and a decrease in electrochemical activity caused by the structural homogenization of MGs. 展开更多
关键词 Metallic glasses Structural heterogeneity Metastable pitting pitting kinetics
原文传递
Numerical Simulation of the Pitting Corrosion Behavior of Stainless Steel Bellows Influenced by Varying Liquid Film Thicknesses
2
作者 Lu-Jun Ren Guo-Min Li +2 位作者 Zhen-Xiao Zhu Hai-Yan Xiong Bing Li 《电化学(中英文)》 北大核心 2025年第7期37-51,共15页
To advance the understanding of the corrosion behavior of stainless steel bellows in marine atmospheric environments and enhance the precision of service life predictions,this study employs finite element simulations ... To advance the understanding of the corrosion behavior of stainless steel bellows in marine atmospheric environments and enhance the precision of service life predictions,this study employs finite element simulations to investigate the pitting corrosion rates and pit morphologies of bellows peaks and troughs under varying electrolyte film thicknesses.The model incorporates localized electrochemical reactions,oxygen concentration,and homogeneous solution reactions.For improved computational accuracy,the fitted polarization curve data were directly applied as nonlinear boundary conditions on the electrode surface via interpolation functions.Simulation results reveal that the peak regions exhibit faster corrosion rates than the trough regions.With increasing electrolyte film thickness(from 10μm to 500μm),corrosion rates at both peaks and troughs decrease progressively,and after 120 hours of simulation,the maximum corrosion rate at the peaks declines from 0.720 mm/a to 0.130 mm/a,and at the troughs from 0.520 mm/a to 0.120 mm/a,with the disparity in corrosion rates diminishing over time.Furthermore,as corrosion progresses,pits propagate deeper into the substrate,exhibiting both vertical penetration and lateral expansion along the passive film interface,ultimately breaching the substrate.This research offers valuable insights into designing corrosion mitigation strategies for stainless steel bellows in marine environments. 展开更多
关键词 Finite element method pitting corrosion Stainless steel bellows Electrolyte film thickness
在线阅读 下载PDF
Effect of HAGBs for ultra-high strength stainless steel on pitting/microcrack initiation with synergy between strain and corrosion environment
3
作者 Zhenjiang Zhao Mei Yu +5 位作者 Chao Han Zhong Yang Peng Teng Jinyan Zhong Songmei Li Jianhua Liu 《Journal of Materials Science & Technology》 2025年第29期74-88,共15页
In this work,the effect of high angle grain boundaries(HAGBs),including prior austenite grain boundaries(PAGB),packet grain boundaries(PGB)and block grain boundaries(BGB),on the priority of pitting and microcrack init... In this work,the effect of high angle grain boundaries(HAGBs),including prior austenite grain boundaries(PAGB),packet grain boundaries(PGB)and block grain boundaries(BGB),on the priority of pitting and microcrack initiation for 10Cr13Co13Mo5Ni3W1VE ultra-high strength stainless steel(UHSS)has been clarified.PAGB had the highest carbide distribution coefficient and was the main location where pitting preferentially initiated for the UHSS in 3.5 wt.%NaCl solution without strain.It was shown that nanocarbides were the key factor of pitting initiation for the UHSS without strain.However,BGB was the key factor of pitting/microcrack initiation for the UHSS with strain,which was attributed to the high-density dislocations accumulated at BGB and then enhanced the local electrochemical activity of the UHSS surface.The change of the key factor for the pitting initiation in the UHSS was the result of the synergy between strain and corrosion environment.This study provides guidance for designing advanced UHSS with high service stability and safety. 展开更多
关键词 HAGBs in the UHSS STRAIN Corrosion environment pitting Microcrack initiation
原文传递
Mechanism analysis of pitting induced by Al_(2)O_(3) inclusions: insight from simulation calculation
4
作者 Ting Wang Bi-jun Hua +5 位作者 Xiang-jun Liu Pei-hong Yang Xiao-xia Shi Ji-chun Yang Li Zhou Chang-qiao Yang 《Journal of Iron and Steel Research International》 2025年第4期1061-1072,共12页
The micro-area characterization experiments like scanning Kelvin probe force microscope(SKPFM)and Kernel average misorientation have the defects of complex sample preparation and occasional errors in test results,whic... The micro-area characterization experiments like scanning Kelvin probe force microscope(SKPFM)and Kernel average misorientation have the defects of complex sample preparation and occasional errors in test results,which makes it impossible to accurately and quickly analyze the pitting behavior induced by inclusions in some cases,prompting attempts to turn to simulation calculation research.The method of calculating band structure and work function can be used to replace current-sensing atomic force microscopy and SKPFM to detect the potential and conductivity of the sample.The band structure results show that Al_(2)O_(3) inclusion is an insulator and non-conductive,and it will not form galvanic corrosion with the matrix.Al_(2)O_(3) inclusion does not dissolve because its work function is higher than that of the matrix.Moreover,the stress concentration of the matrix around the inclusion can be characterized by first-principles calculation coupled with finite element simulation.The results show that the stress concentration degree of the matrix around Al_(2)O_(3) inclusion is serious,and the galvanic corrosion is formed between the high and the low stress concentration areas,which can be used to explain the reason of the pitting induced by Al_(2)O_(3) inclusions. 展开更多
关键词 pitting Inclusion phase identification First-principles calculation Phonopy Finite element analysis
原文传递
Pitting corrosion behavior of additively manufactured spherical WC/W_(2)C-reinforced stainless steels in chloride-containing solution
5
作者 Yiqi Zhou Peihu Yuan +8 位作者 Decheng Kong Xiaochang Xu Shuoyang Wang Lili Li Tingting Liu Xiaogang Li Xuanhui Qu Yu Yan Chaofang Dong 《International Journal of Minerals,Metallurgy and Materials》 2025年第12期2988-3001,共14页
An effective approach to enhance the surface degradation characteristics of laser powder bed fusion(LPBF)type 420 stainless steel involves the incorporation of spherical cast WC/W_(2)C to create LPBF metal matrix comp... An effective approach to enhance the surface degradation characteristics of laser powder bed fusion(LPBF)type 420 stainless steel involves the incorporation of spherical cast WC/W_(2)C to create LPBF metal matrix composites(MMCs).However,the corrosion be-havior of stainless steel and cast WC/W_(2)C varies inversely across different pH levels,and the phenomenon of pitting corrosion in LPBF MMCs under varying pH conditions remains insufficiently explored.In LPBF 420+5wt%WC/W_(2)C MMCs,pits form adjacent to cast WC/W_(2)C in acidic and neutral environments,attributed to the presence of chromium-rich carbides and galvanic coupling effects.The dis-solution of the reinforced particles facilitates pit nucleation in alkaline conditions.Notably,in-situ reaction layers exhibit superior corro-sion resistance to the matrix or the reinforced particles across all pH levels.The distinct corrosion mechanisms influence the pitting corro-sion behavior,with the corrosion ranking based on critical pitting potential being neutral>alkaline>acidic,contrasting the observed kin-etics of pit growth(alkaline>acidic>neutral). 展开更多
关键词 additive manufacturing metal matrix composite pH values pitting corrosion bipolar electrochemistry
在线阅读 下载PDF
Enhanced pitting resistance for high-entropy alloys by precipitating nano-size d L12-strengthene d phase
6
作者 Tianrun Li Debin Wang +3 位作者 Jingping Cui Qi Wang Suode Zhang Jianqiang Wang 《Journal of Materials Science & Technology》 2025年第5期53-66,共14页
Precipitation-strengthened HEAs exhibit outstanding integration of strength and toughness at ambient temperature.Nevertheless,precipitates generally reduce the localized corrosion resistance in aggressive solution env... Precipitation-strengthened HEAs exhibit outstanding integration of strength and toughness at ambient temperature.Nevertheless,precipitates generally reduce the localized corrosion resistance in aggressive solution environments.To solve this problem,a strategy of introducing nano-sized L12 precipitates in CoCrFeNiAlTi HEAs has been proposed in this work.Results demonstrate the pitting corrosion potential can be elevated from 258 mVSCE to 603 mVSCE by increasing the precipitate content to 38 wt.%.Such an improvement in localized corrosion resistance can be attributed to two aspects.Firstly,L12 precipitates tend to be dissolved during the corrosion process,which promotes the heterogeneous nucleation of protective Cr2 O3 due to the rapid deposition of oxides/hydroxides of Al/Ti,and improves the passive film stability due to the Crrich FCC matrix.Secondly,the dissolution kinetic inside the pits can be suppressed on account of the enrichment of Cr element in the FCC matrix,thus inhibiting the pitting growth.In summary,the current work not only reveals the mechanisms of the nano-sized L12 precipitates upon the corrosion behavior,but also provides a strategy for designing corrosion-resistant HEA. 展开更多
关键词 High entropy alloys PRECIPITATION Passive films pitting corrosion
原文传递
Pitting Corrosion Behaviour in 9Cr18 Bearing Steel Under Salt Spray Environment
7
作者 Hanqiang Liu Xing Li +3 位作者 Jibo Su Chaoyun Yang Yikun Luan Dianzhong Li 《Acta Metallurgica Sinica(English Letters)》 2025年第7期1237-1245,共9页
Pitting corrosion poses a significant challenge to 9Cr18 high-carbon chromium bearing steel in chloride-rich environments,severely compromising its structural integrity.The study systematically investigates the pittin... Pitting corrosion poses a significant challenge to 9Cr18 high-carbon chromium bearing steel in chloride-rich environments,severely compromising its structural integrity.The study systematically investigates the pitting behaviour of 9Cr18 bearing steel under salt spray conditions,focusing on the progressive evolution of surface morphology and cross-sectional characteristics of pits on finished bearings.Scanning electron microscopy,energy-dispersive spectroscopy and X-ray diffraction were employed to examine the surface morphology,elemental composition and phase structure of corrosion products over varying salt spray exposure durations.The results show that 9Cr18 steel exhibits localized pitting with“volcanic crater”-like pits in the early stage of salt spray corrosion.After 48 h,pitting develops into a“multi-point”pattern,marking the initial transition toward uniform corrosion.Until 240 h,corrosion products completely cover the surface,indicating the complete transformation from localized pitting to uniform corrosion.The high carbon and chromium content in 9Cr18 steel promotes carbide precipitation and uneven distribution in the matrix.Cr-depleted regions near the carbide/matrix interface serve as preferential sites for pitting initiation.The low effective utilization of chromium reduces the overall corrosion resistance of 9Cr18. 展开更多
关键词 pitting corrosion 9Cr18 bearing steel Salt spray corrosion CARBIDE
原文传递
Evaluation of Pitting Behavior on Solution Treated Duplex Stainless Steel UNS S31803 被引量:5
8
作者 Yiming Jiang Tao Sun +1 位作者 Jin Li Jie Xu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2014年第2期179-183,共5页
The pitting corrosion resistance of duplex stainless steels UNS S31803 annealed at different temperatures ranging from 1050 ℃ to 1200 ℃ for 24 h has been investigated by means of potentiostatic critical pitting temp... The pitting corrosion resistance of duplex stainless steels UNS S31803 annealed at different temperatures ranging from 1050 ℃ to 1200 ℃ for 24 h has been investigated by means of potentiostatic critical pitting temperature (CPT). The microstructural evolution and pit morphologies of the specimens were studied through optical microscopy and scanning electron microscopy. The potentiostatic CPT measurements show that the CPT was elevated with the annealing temperature increased from 1050 ℃ to 1150℃ and decreased as the temperature further increased to 1200 ℃. The specimens annealed at 1150 ℃ exhibited the highest CPTand the best pitting corrosion resistance. The pit morphologies show that the pit initiation sites transfer from austenite phase to ferrite phase as the annealing temperature increases. The results were explained by the variation of pitting resistance equivalent number (PREN) of ferrite and austenite phases as the annealing temperature was varied. 展开更多
关键词 Duplex stainless steel Solution treatment pitting corrosion Critical pitting temperature pitting resistance equivalent number
原文传递
Characterization of pitting corrosion of 7A60 aluminum alloy by EN and EIS techniques 被引量:12
9
作者 王学慧 王吉会 付丛伟 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第12期3907-3916,共10页
The pitting corrosion behaviors of 7A60 aluminum alloy in the retrogression and re-aging (RRA) temper were investigated by electrochemical impedance spectroscopy (EIS) and electrochemical noise (EN) techniques, ... The pitting corrosion behaviors of 7A60 aluminum alloy in the retrogression and re-aging (RRA) temper were investigated by electrochemical impedance spectroscopy (EIS) and electrochemical noise (EN) techniques, and the microstructure and the second phase content of the alloy were observed and determined by scanning electron microscopy (SEM) and energy dispersive spectrometer (EDS). The results show that there exist two different corrosion stages for 7A60 alloy in 3.5%NaCl solution, and the corrosion process can be detected by the appearance of EIS spectrum with two capacitive time constants and the wavelet fractal dimension D extracted from EN. SEM and EDS results also demonstrate that severe pitting corrosion in 7A60 alloy is mainly caused by electrochemical active MgZn2 particles, secondly by Al2MgCu and Mg2Si. Al7Cu2Fe particles make little contribution to the pitting corrosion of 7A60 alloy. 展开更多
关键词 7A60 aluminum alloy constituent particles pitting corrosion electrochemical impedance spectroscopy electrochemical noise wavelet fractal dimension
在线阅读 下载PDF
Pitting corrosion and crevice corrosion behaviors of high nitrogen austenitic stainless steels 被引量:16
10
作者 Hua-bing Li Zhou-hua Jiang Yan Yang Yang Cao Zu-rui Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2009年第5期517-524,共8页
Pitting corrosion and crevice corrosion behaviors of high nitrogen austenitic stainless steels (HNSS) were investigated by electrochemical and immersion testing methods in chloride solution, respectively. The chemic... Pitting corrosion and crevice corrosion behaviors of high nitrogen austenitic stainless steels (HNSS) were investigated by electrochemical and immersion testing methods in chloride solution, respectively. The chemical constitution and composition in the depth of passive films formed on HNSS were analyzed by X-ray photoelectron spectrum (XPS). HNSS has excellent pitting and crevice corrosion resistance compared to 316L stainless steel. With increasing the nitrogen content in steels, pitting potentials and critical pitting temperature (CPT) increase, and the maximum, average pit depths and average weight loss decrease. The CPT of HNSS is correlated with the alloying element content through the measure of alloying for resistance to corrosion (MARC). The MARC can be expressed as an equation of CPT=2.55MARC-29. XPS results show that HNSS exhibiting excellent corrosion resistance is attributed to the enrichment of nitrogen on the surface of passive films, which forms ammonium ions increasing the local pH value and facilitating repassivation, and the synergistic effects of molybdenum and nitrogen. 展开更多
关键词 high nitrogen austenitic stainless steel pitting corrosion crevice corrosion NITROGEN critical pitting temperature syner-gistic effect
在线阅读 下载PDF
Effects of rare earth modifying inclusions on the pitting corrosion of 13Cr4Ni martensitic stainless steel 被引量:19
11
作者 Changgang Wang Rongyao Ma +6 位作者 Yangtao Zhou Yang Liu Enobong Felix Daniel Xiaofang Li Pei Wang Junhua Dong Wei Ke 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第34期232-243,共12页
In this study,the pitting corrosion behavior of 13Cr4Ni martensitic stainless steel(BASE)and that modified with rare earth(REM)in 0.1 mol/L Na Cl solution were characterized.Techniques such as automatic secondary elec... In this study,the pitting corrosion behavior of 13Cr4Ni martensitic stainless steel(BASE)and that modified with rare earth(REM)in 0.1 mol/L Na Cl solution were characterized.Techniques such as automatic secondary electron microscope(ASPEX PSEM detector),scanning electron microscope(SEM),transmission electron microscope(TEM),scanning Kelvin probe force microscope(SKP),potentiodynamic and potentiostatic polarizations were employed.The results obtained indicate that BASE steel contains Al_(2)O_(3)/Mn S,Al_(2)O_(3) and Mn S inclusions,while REM steels contain(La,Ce,Cr,Fe)-O and(La,Ce,Cr,Fe)-O-S inclusions.Compared with BASE steel,REM steel is more susceptible to induce the metastable pitting nucleation and repassivation,whereas it restrains the transition from metastable pitting to stable pitting.Adding 0.021%rare earth element to BASE steel can reduce the number and area of inclusions,while that of 0.058%can increase the number and enlarged the size of inclusions,which is also the reason that pitting corrosion resistance of 58 REM steel is slightly lower than that of 21 REM steel.In the process of pitting corrosion induced by Al_(2)O_(3)/Mn S inclusions,Mn S is preferentially anodic dissolved,and also the matrix contacted with Al_(2)O_(3) is subsequently anodic dissolved.For REM steels,anodic dissolution preferentially occurs at the boundary between inclusions and matrix,while(La,Ce,Cr,Fe)-O inclusions chemically dissolve in local acidic environment or are separated from steel matrix.The chemically dissolved substance(La^(3+) and Ce^(3+))of(La,Ce,Cr,Fe)-O inclusions are concentrated in pitting pits,which inhibits its continuous growth. 展开更多
关键词 13Cr4Ni martensitic stainless steel Rare earth modifying inclusion Al_(2)O_(3)/MnS inclusion Metastable pitting corrosion Stable pitting corrosion
原文传递
Effects of Mo and Mn on Pitting Behavior of Duplex Stainless Steel 被引量:5
12
作者 Li-cong AN Jing CAO +2 位作者 Lin-cai WU Hong-huan MAO Yi-tao YANG 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2016年第12期1333-1341,共9页
Effects of Mo and Mn elements on pitting corrosion resistance of lean duplex stainless steel in C1- media solution have been studied. Gravimetric tests in 6 mass% FeCl3 at 35 ℃ and potentiodynamic analysis in 3.5 mas... Effects of Mo and Mn elements on pitting corrosion resistance of lean duplex stainless steel in C1- media solution have been studied. Gravimetric tests in 6 mass% FeCl3 at 35 ℃ and potentiodynamic analysis in 3.5 mass% NaCI were carried out. The corrosion potential (Ecoor) and the pitting potential (Epit) are shifted to a more noble po tential because of the presence of Mo around the pits. While the presence of Mn could sharply reduce the value of pitting resistance equivalent number (PREn) and the pits can be formed more easily. The pits are found generating at the phase with a lower PREn. The identical tendencies between the Epit and PREn of weaker phase are the same. A corrosion mechanism has been proposed to determinate pitting corrosion behavior based on microstructural observations. 展开更多
关键词 duplex stainless steel alloying element pitting corrosion pitting resistance equivalent number corrosion mechanism
原文传递
Effect of Solution Annealing Temperature on Pitting Behavior of Duplex Stainless Steel 2204 in Chloride Solutions 被引量:3
13
作者 Liang HE Yan-jun GUO +2 位作者 Xia-yu WU Yi-ming JIANG Jin LI 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2016年第4期357-363,共7页
The effect of solution annealing temperature ranging from 950 to 1 200 ℃ on the microstructure and corrosion performance of duplex stainless steel (DSS) 2204 were investigated. The proportion of the ferrite phase i... The effect of solution annealing temperature ranging from 950 to 1 200 ℃ on the microstructure and corrosion performance of duplex stainless steel (DSS) 2204 were investigated. The proportion of the ferrite phase increased while the austenite phase decreased and the ferrite stabilizing elements diluted in the ferrite phase with the increase of annealing temperature. The critical pitting temperature (CPT) of specimens annealed at 1000℃ was higher than those annealed at 950℃, whereas further increasing the annealing temperature to 1200℃ decreased the CPT. The pitting initiation sites were observed in the austenite phase, at the boundary of ferrite/austenite phase and inside the ferrite phase for specimens annealed at 950, 1000℃ and exceeding 1 100℃, respectively. The evolution trend of the CPT and the pit initiation site were analyzed by the pitting resistance equivalent number. 展开更多
关键词 duplex stainless steel pitting corrosion solution annealing treatment critical pitting temperature
原文传递
THE RELATIONSHIP BETWEEN PITTING SUSCEPTIBILITY AND INCLUSIONS IN CARBON STEELS IN ARTIFICIAL SEAWATER 被引量:1
14
作者 XD. Kong, X.Q. Chen, W.S. Chang, D.B. Chen and J.X. Zheng (Department of Material Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China) (Basic Science Department, Naval University of Engineering, Wuhan 430033, China) 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2001年第3期157-162,共6页
The pittings of five carbon steels have been studied by using anodic polarization test and microscope observation. The results show that pitting susceptibilities are related to the types and shapes of inclusions which... The pittings of five carbon steels have been studied by using anodic polarization test and microscope observation. The results show that pitting susceptibilities are related to the types and shapes of inclusions which are the sites of pitting initiation. The pitting initiating at inclusion needs a potential which is defined as pitting potential and the pitting potential is determined by the type and shape of inclusion. The influence of oxygen content in steel on pitting potential is also discussed. 展开更多
关键词 carbon steel pitting susceptibility pitting potential INCLUSION
在线阅读 下载PDF
A comparison of the pitting corrosion resistances of the 304 and new 200 series of stainless steels by potential dependent critical pitting corrosion temperatures
15
作者 WU Weiwei CHEN Hongxing HU Fan ZHAO Yanliang 《Baosteel Technical Research》 CAS 2009年第2期16-19,共4页
This study researched the relationship between the applied potential and the critical pitting temperature (CPT) of the 304 and new 200 series of stainless steels. The fluctuation about the potential dependent CPT fo... This study researched the relationship between the applied potential and the critical pitting temperature (CPT) of the 304 and new 200 series of stainless steels. The fluctuation about the potential dependent CPT for the stainless steels was investigated and the CPT range was obtained. The difference between the potential dependent CPTs of the 304 and 200 series of stainless steels with an applied potential of 100 mV ( vs SCE), were presented, and by this means the pitting corrosion resistances of them were compared. 展开更多
关键词 200 series stainless steel pitting corrosion critical pitting corrosion temperature
在线阅读 下载PDF
Influence of sulfur on inclusion and pitting resistance of 316L stainless steel
16
作者 CHEN Dexiang QIANG Shaoming 《Baosteel Technical Research》 CAS 2020年第3期31-38,共8页
The effect of the sulfur content on the microstructure and inclusions of 316 L stainless steel was studied by optical microscopy,scanning electron microscopy,and image analysis,and the effect of sulfur on the pitting ... The effect of the sulfur content on the microstructure and inclusions of 316 L stainless steel was studied by optical microscopy,scanning electron microscopy,and image analysis,and the effect of sulfur on the pitting corrosion resistance of 316 L stainless steel was studied by conducting ferric chloride immersion test and plotting the electrochemical polarization curves.The results show that the added sulfur is mainly in the form of manganese sulfide inclusions in 316 L stainless steel.With increases in the sulfur content,the grade and percentage of the sulfide in the steel gradually increased,and its distribution became increasingly dense.When the sulfur content exceeded0.1%,the number of sulfide inclusions in the sample increased sharply.When the sulfur content reached 0.199%,the sulfides in the steel were primarily in spindle form,and a large number of spindles were found to refine the grain size of 316 L stainless steel.The pitting corrosion weight loss rate of 316 L stainless steel increased with increases in the sulfur content,while the pitting potential gradually decreased.However,the pitting potential of 316 L stainless steel rebounded when the sulfur content reached 0.199%,which may be related to the grain refinement of the test steel and requires further study. 展开更多
关键词 stainless steel manganese sulfide pitting corrosion resistance pitting potential
在线阅读 下载PDF
A review——Pitting corrosion initiation investigated by TEM 被引量:23
17
作者 B.Zhang X.L.Ma 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2019年第7期1455-1465,共11页
Passive metals have superior resistance to general corrosion but are susceptible to pitting attack in certain aggressive media, leading to material failure with pronounced adverse economic and safety consequences. Ove... Passive metals have superior resistance to general corrosion but are susceptible to pitting attack in certain aggressive media, leading to material failure with pronounced adverse economic and safety consequences. Over the past decades, the mechanism of pitting corrosion has attracted corrosion community striving to study. However, the mechanism at the pitting initiation stage is still controversy, due to the difficulty encountered in obtaining precise experimental information with enough spatial resolution.Tracking the accurate sites where initial dissolution occurs as well as the propagation of the dissolution by means of multi-scale characterization is key to deciphering the link between microstructure and corrosion at the atomic scale and clarifying the pitting initiation mechanism. Here, we review our recent progresses in this issue by summarizing the results in three representative materials of 316F, and Super 304H stainless steel as well as 2024-Al alloy, using in situ ex-environmental TEM technique. 展开更多
关键词 pitting INITIATION DISSOLUTION TEM INCLUSION SECOND phase
原文传递
Comparative study on the corrosion behavior of X52, 3Cr, and 13Cr steel in an O2–H2O–CO2 system: products, reaction kinetics, and pitting sensitivity 被引量:15
18
作者 Bing-wei Luo Jie Zhou +3 位作者 Peng-peng Bai Shu-qi Zheng Teng An Xiang-li Wen 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2017年第6期646-656,共11页
The corrosion behaviors of X52, 3Cr low-alloy steel, and 13Cr stainless steel were investigated in an O_2–H2O–CO_2 environment at various temperatures and O_2–CO_2 partial-pressure ratios. The results showed that t... The corrosion behaviors of X52, 3Cr low-alloy steel, and 13Cr stainless steel were investigated in an O_2–H2O–CO_2 environment at various temperatures and O_2–CO_2 partial-pressure ratios. The results showed that the corrosion rates of X52, 3Cr, and 13Cr steels increased with increasing temperature. The corrosion rates slowly increased at temperatures less than 100°C and increased sharply when the temperature exceeded 100°C. In the absence of O_2, X52, 3Cr, and 13Cr exhibited uniform corrosion morphology and Fe CO3 was the main corrosion product. When O_2 was introduced into the system, various forms of Fe_2O_3 appeared on the surface of the samples. The Cr content strongly influenced the corrosion resistance. The 3Cr steel with a low Cr content was more sensitive to pitting than the X52 or 13Cr steel. Thus, pitting occurred on the surface of 3Cr when 1.25 MPa of O_2 was added; this phenomenon is related to the non-uniform distribution of Crin 3Cr. 展开更多
关键词 corrosion oxygen carbon dioxide IRON CARBONATE IRON oxide pitting sensitivity
在线阅读 下载PDF
Pitting corrosion of 2Cr13 stainless steel in deep-sea environment 被引量:17
19
作者 Xinhua Wang Lin Fan +4 位作者 Kangkang Ding Likun Xu Weimin Guo Jian Hou Tigang Duan 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第5期187-194,共8页
Pitting corrosion of 2Cr13 stainless steel was investigated by deep-sea exposure test at various depths of 500 m,800 m and 1200 m in the South China Sea for 4 months.With the aid of electrochemical measurements in sim... Pitting corrosion of 2Cr13 stainless steel was investigated by deep-sea exposure test at various depths of 500 m,800 m and 1200 m in the South China Sea for 4 months.With the aid of electrochemical measurements in simulated deep-sea environments and grey relational analysis,the influence of deepsea environments on passive film and the mechanism of pitting corrosion were discussed.The results indicated that with the increase of sea depth,pitting depth of 2Cr13 stainless steel increased,which can be attributed to the change of chemical composition and the degradation of pitting resistance of passive film.Film growth was greatly retarded in the condition of low seawater temperature and low dissolved oxygen content of deep sea,resulting in an unstable and vulnerable film.Pitting depth was most influenced by hydrostatic pressure,which can increase the adsorption and penetration of Cl-ion,and promote the proliferation of point defects in passive film,leading to rapid deconstruction of protective oxides of the film.Pitting sensitivity of 2Cr13 stainless steel increased eventually with the combination of accelerated dissolution and suppressed self-healing of passive film in deep sea. 展开更多
关键词 Stainless steel Deep sea pitting corrosion Passive film Grey relational analysis
原文传递
Phase Transformation and Its Effects on Mechanical Properties and Pitting Corrosion Resistance of 2205 Duplex Stainless Steel 被引量:18
20
作者 ZOU De-ning HAN Ying +1 位作者 ZHANG Wei FAN Guang-wei 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2010年第11期67-72,共6页
The effects of phase transformation on mechanical properties and pitting corrosion of 2205 duplex stainless steel were investigated. The amount of a phase in the test specimen varied up to a maximum of 6 % by thermal ... The effects of phase transformation on mechanical properties and pitting corrosion of 2205 duplex stainless steel were investigated. The amount of a phase in the test specimen varied up to a maximum of 6 % by thermal treatment at 850 ℃ for up to 60 min. The results showed that ~ phase markedly increased the hardness and decreased the impact toughness of the test steel. But the increasing tendency of the ultimate tensile strength and the yield strength was not obvious, while the total elongation abruptly decreased with the aging time from 5 to 60 min. SEM impact microfractograph analysis revealed that the types of impact fracture changed from ductile mode to transcrystalline mode when the specimens were aged for 5-60 min. Furthermore, the extent of pitting potential reducing was found to be strongly temperature dependent, more pronounced at the higher temperature. During the incubation period of σ phase nucleation, the pitting corrosion test temperature and the aging time had collaborative effects on evidently displacing the pitting potential towards less noble values. After 15 min, the higher temperature contributed more to decreasing the pitting potential than the aging time. 展开更多
关键词 duplex stainless steel phase transformation mechanical property pitting corrosion
原文传递
上一页 1 2 39 下一页 到第
使用帮助 返回顶部