Precipitation-strengthened HEAs exhibit outstanding integration of strength and toughness at ambient temperature.Nevertheless,precipitates generally reduce the localized corrosion resistance in aggressive solution env...Precipitation-strengthened HEAs exhibit outstanding integration of strength and toughness at ambient temperature.Nevertheless,precipitates generally reduce the localized corrosion resistance in aggressive solution environments.To solve this problem,a strategy of introducing nano-sized L12 precipitates in CoCrFeNiAlTi HEAs has been proposed in this work.Results demonstrate the pitting corrosion potential can be elevated from 258 mVSCE to 603 mVSCE by increasing the precipitate content to 38 wt.%.Such an improvement in localized corrosion resistance can be attributed to two aspects.Firstly,L12 precipitates tend to be dissolved during the corrosion process,which promotes the heterogeneous nucleation of protective Cr2 O3 due to the rapid deposition of oxides/hydroxides of Al/Ti,and improves the passive film stability due to the Crrich FCC matrix.Secondly,the dissolution kinetic inside the pits can be suppressed on account of the enrichment of Cr element in the FCC matrix,thus inhibiting the pitting growth.In summary,the current work not only reveals the mechanisms of the nano-sized L12 precipitates upon the corrosion behavior,but also provides a strategy for designing corrosion-resistant HEA.展开更多
To advance the understanding of the corrosion behavior of stainless steel bellows in marine atmospheric environments and enhance the precision of service life predictions,this study employs finite element simulations ...To advance the understanding of the corrosion behavior of stainless steel bellows in marine atmospheric environments and enhance the precision of service life predictions,this study employs finite element simulations to investigate the pitting corrosion rates and pit morphologies of bellows peaks and troughs under varying electrolyte film thicknesses.The model incorporates localized electrochemical reactions,oxygen concentration,and homogeneous solution reactions.For improved computational accuracy,the fitted polarization curve data were directly applied as nonlinear boundary conditions on the electrode surface via interpolation functions.Simulation results reveal that the peak regions exhibit faster corrosion rates than the trough regions.With increasing electrolyte film thickness(from 10μm to 500μm),corrosion rates at both peaks and troughs decrease progressively,and after 120 hours of simulation,the maximum corrosion rate at the peaks declines from 0.720 mm/a to 0.130 mm/a,and at the troughs from 0.520 mm/a to 0.120 mm/a,with the disparity in corrosion rates diminishing over time.Furthermore,as corrosion progresses,pits propagate deeper into the substrate,exhibiting both vertical penetration and lateral expansion along the passive film interface,ultimately breaching the substrate.This research offers valuable insights into designing corrosion mitigation strategies for stainless steel bellows in marine environments.展开更多
Background As information technology has advanced and been popularized,open pit mining has rapidly developed toward integration and digitization.The three-dimensional reconstruction technology has been successfully ap...Background As information technology has advanced and been popularized,open pit mining has rapidly developed toward integration and digitization.The three-dimensional reconstruction technology has been successfully applied to geological reconstruction and modeling of surface scenes in open pit mines.However,an integrated modeling method for surface and underground mine sites has not been reported.Methods In this study,we propose an integrated modeling method for open pit mines that fuses a real scene on the surface with an underground geological model.Based on oblique photography,a real-scene model was established on the surface.Based on the surface-stitching method proposed,the upper and lower surfaces and sides of the model were constructed in stages to construct a complete underground three-dimensional geological model,and the aboveground and underground models were registered together to build an integrated open pit mine model.Results The oblique photography method used reconstructed a surface model of an open pit mine using a real scene.The surface-stitching algorithm proposed was compared with the ball-pivoting and Poisson algorithms,and the integrity of the reconstructed model was markedly superior to that of the other two reconstruction methods.In addition,the surface-stitching algorithm was applied to the reconstruction of different formation models and showed good stability and reconstruction efficiency.Finally,the aboveground and underground models were accurately fitted after registration to form an integrated model.Conclusions The proposed method can efficiently establish an integrated open pit model.Based on the integrated model,an open pit auxiliary planning system was designed and realized.It supports the functions of mining planning and output calculation,assists users in mining planning and operation management,and improves production efficiency and management levels.展开更多
The micro-area characterization experiments like scanning Kelvin probe force microscope(SKPFM)and Kernel average misorientation have the defects of complex sample preparation and occasional errors in test results,whic...The micro-area characterization experiments like scanning Kelvin probe force microscope(SKPFM)and Kernel average misorientation have the defects of complex sample preparation and occasional errors in test results,which makes it impossible to accurately and quickly analyze the pitting behavior induced by inclusions in some cases,prompting attempts to turn to simulation calculation research.The method of calculating band structure and work function can be used to replace current-sensing atomic force microscopy and SKPFM to detect the potential and conductivity of the sample.The band structure results show that Al_(2)O_(3) inclusion is an insulator and non-conductive,and it will not form galvanic corrosion with the matrix.Al_(2)O_(3) inclusion does not dissolve because its work function is higher than that of the matrix.Moreover,the stress concentration of the matrix around the inclusion can be characterized by first-principles calculation coupled with finite element simulation.The results show that the stress concentration degree of the matrix around Al_(2)O_(3) inclusion is serious,and the galvanic corrosion is formed between the high and the low stress concentration areas,which can be used to explain the reason of the pitting induced by Al_(2)O_(3) inclusions.展开更多
Colorectal cancer is a common tumor of the digestive system and is the third leading cause of cancer-related death worldwide.The global incidence of colorectal cancer is currently increasing.In some patients,the tumor...Colorectal cancer is a common tumor of the digestive system and is the third leading cause of cancer-related death worldwide.The global incidence of colorectal cancer is currently increasing.In some patients,the tumor has already spread to nearby organs at the time of diagnosis,with the small intestine and bladder being common sites of invasion.[1,2]The diagnosis of colorectal cancer that has spread to the bladder can be challenging.Aside from a few patients who experience urinary symptoms due to invasion of the bladder trigone or the entire bladder wall,there are no distinct clinical signs,which often leads to misdiagnosis.The following case report details one such instance.展开更多
The M-shaped multi-row pile foundation retaining structure represents an enhanced version of conventional multi-row anti-sliding support systems.To date,the implementation of M-shaped pile configurations in foundation...The M-shaped multi-row pile foundation retaining structure represents an enhanced version of conventional multi-row anti-sliding support systems.To date,the implementation of M-shaped pile configurations in foundation pit excavations has not been extensively investigated,with particularly scant research focusing on their load-bearing mechanisms and stress redistribution characteristics.Furthermore,numerical modeling methodologies for such geometrically optimized pile networks remain underdeveloped compared to practical engineering applications,creating a notable research-practice gap in geotechnical engineering.A comparative finite element analysis was systematically conducted using ABAQUS software to establish three distinct excavation support configurations:single-row cantilever retaining structures,three-row cantilever configurations,and M-shaped multi-row pile foundation systems.Subsequent numerical simulations enabled quantitative comparisons of critical performance indicators,including pile stress distribution patterns,lateral displacement profiles,and bending moment diagrams across different structural typologies.The parametric investigation revealed characteristic mechanical responses associated with each configuration,establishing corresponding mechanical principles governing the interaction between pile topology and soil-structure behavior towers.The findings of this study provide critical references for the design optimization of M-shaped multi-row pile foundation retaining systems.展开更多
Pitting corrosion poses a significant challenge to 9Cr18 high-carbon chromium bearing steel in chloride-rich environments,severely compromising its structural integrity.The study systematically investigates the pittin...Pitting corrosion poses a significant challenge to 9Cr18 high-carbon chromium bearing steel in chloride-rich environments,severely compromising its structural integrity.The study systematically investigates the pitting behaviour of 9Cr18 bearing steel under salt spray conditions,focusing on the progressive evolution of surface morphology and cross-sectional characteristics of pits on finished bearings.Scanning electron microscopy,energy-dispersive spectroscopy and X-ray diffraction were employed to examine the surface morphology,elemental composition and phase structure of corrosion products over varying salt spray exposure durations.The results show that 9Cr18 steel exhibits localized pitting with“volcanic crater”-like pits in the early stage of salt spray corrosion.After 48 h,pitting develops into a“multi-point”pattern,marking the initial transition toward uniform corrosion.Until 240 h,corrosion products completely cover the surface,indicating the complete transformation from localized pitting to uniform corrosion.The high carbon and chromium content in 9Cr18 steel promotes carbide precipitation and uneven distribution in the matrix.Cr-depleted regions near the carbide/matrix interface serve as preferential sites for pitting initiation.The low effective utilization of chromium reduces the overall corrosion resistance of 9Cr18.展开更多
As one of the commonly used technologies in modern civil engineering,the construction technology is becoming more and more widely used with the continuous growth of building height.In the construction process of highr...As one of the commonly used technologies in modern civil engineering,the construction technology is becoming more and more widely used with the continuous growth of building height.In the construction process of highrise buildings,the deep foundation pit support provides the necessary stability for the foundation structure of the building project,and more effectively guarantees the quality of the project.Through the reasonable supporting structure,the deep foundation pit technology can effectively prevent the risk of soil collapse,foundation pit deformation and other risks,and improve the safety factor of the whole construction project.Especially in the high-rise buildings,the deep foundation pit support technology can consolidate the foundation for the long-term stability of the project,and significantly prolong the service life of the building.The continuous development of deep foundation pit construction technology is the inevitable demand of high-rise building construction,and also provides a powerful help for the development of civil engineering industry.Based on this,this paper focuses on the application of deep foundation pit construction technology in civil engineering construction.展开更多
The goal of this research is to develop mine-scale discrete fracture network(DFN)models in which the influence of the spatial heterogeneity of fracture distributions may be investigated on the rock wedge stability of ...The goal of this research is to develop mine-scale discrete fracture network(DFN)models in which the influence of the spatial heterogeneity of fracture distributions may be investigated on the rock wedge stability of an open pit slope.For this purpose,spatially conditioned DFN models were developed for the pit walls at Tasiast mine using comprehensive structural data from the mine.Using Sequential Gaussian Simulation(SGS),volumetric fracture intensities(P32)were modeled across the entire mine site in the form of 3D block models.The simulated P32 block models were used as the input constraints for conditional DFN fracture generation,where the DFN grid dimension is the same as the SGS 3D blocks.The spatially constrained DFN models were further calibrated using aerial fracture intensities(P21)data from the pit walls,obtained by a survey of the pit walls using an unmanned aerial vehicle(UAV)and measured traces of joints from 3D point cloud data.The final DFN model is expected to honor the fracture intensities gathered through different means with optimal model accuracy.Finally,bench-scale and interramp scale rock wedge slope stability analyses were conducted using the calibrated conditional DFN models.This work proves the significance of conditioned DFN models in rock wedge stability analysis.Such models provide detailed information regarding rock wedge stability so that site monitoring and prevention plans can be conducted with higher efficiency.展开更多
We have investigated homoepitaxy of AlN films grown by molecular beam epitaxy on AlN/sapphire templates byadopting both the continuous growth method and the Al modulation epitaxy(AME)growth method.The continuous growt...We have investigated homoepitaxy of AlN films grown by molecular beam epitaxy on AlN/sapphire templates byadopting both the continuous growth method and the Al modulation epitaxy(AME)growth method.The continuous growthmethod encounters significant challenges in controlling the growth mode.As the precise Al/N=1.0 ratio is difficult toachieve,either the excessive Al-rich or N-rich growth mode occurs.In contrast,by adopting the AME growth method,sucha difficulty has been effectively overcome.By manipulating the supply time of the Al and nitrogen sources,we were able toproduce AlN films with much improved surface morphology.The first step of the AME method,only supplying Al atoms,is important to wet the surface and the Al adatoms can act as a surfactant.Optimization of the initial Al supply time caneffectively reduce the pit density on the grown AlN surface.The pits density dropped from 12 pits/μm^(2)to 1 pit/μm^(2)andthe surface roughness reduced from 0.72 nm to 0.3 nm in a 2×2μm^(2)area for the AME AlN film homoepitaxially grownon an AlN template.展开更多
Pitting is a common type of localized corrosion in passive alloys that can cause rapid failure of material or equipment.In the case of stainless steels,non-metallic inclusions have been identified as the most suscepti...Pitting is a common type of localized corrosion in passive alloys that can cause rapid failure of material or equipment.In the case of stainless steels,non-metallic inclusions have been identified as the most susceptible sites for pitting,and have therefore garnered significant attention.This review critically ex-amines the issue of how inclusions induce pitting,with a particular focus on three mechanisms:sponta-neous dissolution of inclusions,active dissolution of Cr-depleted regions,and propagation of microcracks at the inclusion-matrix interface.While researchers have made significant strides in understanding these mechanisms over the past few decades,many gaps and controversies remain.Details such as the ini-tial driving force of inclusion dissolution and factors affecting Cr-depleted regions require further study.Moreover,some old concepts and methods need to be revised to arrive at more credible conclusions.This review aims to delve deeply into these important issues and provide inspiration for future research.展开更多
The transpassivation and pitting corrosion behavior of a high-nitrogen stainless steel(HNS),Fe18Cr15Mn3Mo0.92N,were systematically investigated by electrochemical analysis,morphology observation,and X-ray photoelectro...The transpassivation and pitting corrosion behavior of a high-nitrogen stainless steel(HNS),Fe18Cr15Mn3Mo0.92N,were systematically investigated by electrochemical analysis,morphology observation,and X-ray photoelectron spectroscopy surface analysis.It was surprisingly found that no pitting corrosion occurred in the transpassivation region of HNS.This electrochemical corrosion behavior is untypical for stainless steels,i.e.,the traditional critical pitting potential method was invalid for HNS.Both N and Cr enrichments in the transpassivation film on HNS were found extremely higher than those in the passivation film.The N existed in the form of[CrN]complex,which could stabilize the above both films.Besides,the corrosion product of N was detected as NH_(3) that exhibited an effective corrosion inhibition effect.On this basis,although the transition of Cr from 3-valent to 6-valent was confirmed,the transpassivation film on HNS still maintained it high stability and no pitting was found to occur.Therefore,the real pitting resistance of HNS should be higher than the expected before.And the stable transpassivation film played an important role in its untypical pitting corrosion resistance.展开更多
1.Introduction CO_(2)corrosion of pipelines is one of the major threats in the oil and gas industry[1].Chromium steels(CrSs)and more expen-sive stainless steels(SSs)can mitigate CO_(2)corrosion[2,3].A higher content o...1.Introduction CO_(2)corrosion of pipelines is one of the major threats in the oil and gas industry[1].Chromium steels(CrSs)and more expen-sive stainless steels(SSs)can mitigate CO_(2)corrosion[2,3].A higher content of Cr results in greater uniform corrosion resistance to CO_(2),which is generally attributed to the enrichment of Cr in the corro-sion product film[4,5].The film,which mainly consists of FeCO_(3),Fe(OH)_(3),Cr(OH)_(3),and Cr_(2)O_(3),forms a passive layer on the metal surface,and the enrichment of Cr in this layer helps block corro-sive anions from contacting with the steel surface[6-8].展开更多
The influence of the aluminum content on the pitting corrosion of a 304 stainless steel by a Cl−solution was investigated.The number,area,and composition of non-metallic inclusions were modified by the addition of alu...The influence of the aluminum content on the pitting corrosion of a 304 stainless steel by a Cl−solution was investigated.The number,area,and composition of non-metallic inclusions were modified by the addition of aluminum in the steel,which was responsible for the variation of the corrosion degree of the 304 stainless steel.Inclusions detection,corrosion test,electrochemical test,thermodynamic calculation,and first-principles calculation were performed to evaluate the pitting corrosion of the stainless steel.The initiation of the pitting corrosion by three types of inclusions,including(Mn,Si,Cr,S)O,(Mn,Al,Cr)O,and Al_(2)O_(3)were in-situ observed.After corroding for 880 min,the corrosion index of(Mn,Si,Cr,S)O,(Mn,Al,Cr)O,and Al_(2)O_(3)was 0.38%,0.02%,and 0.00%min−1,respectively.With the increase in aluminum content in the steel,the pitting potential of the stainless steel was 0.131,0.304,and 0.338 V,respectively,indicating that a higher aluminum content in the steel was beneficial to improving the pitting corrosion resistance of the 304 stainless steel.展开更多
The quality and aroma of strong-flavor Baijiu are mainly dependent on Daqu,pit mud(PM),and the interaction of both.However,little is known about how their combination patterns affect the microbiome and metabolome of Z...The quality and aroma of strong-flavor Baijiu are mainly dependent on Daqu,pit mud(PM),and the interaction of both.However,little is known about how their combination patterns affect the microbiome and metabolome of Zaopei,especially the metabolic function of rare taxa.Here,an experiment on industrial size was designed to assess the effects of 6 combinations(3 kinds of Daqu×2 kinds of PM)on the composition and assembly of different taxa,as well as the flavor profile.The results showed that Zaopei's microbiota was composed of a few abundant taxa and enormous rare taxa,and rare bacterial and abundant fungal subcommunities were significantly affected by combination patterns.The assembly processes of abundant/rare taxa and bacterial/fungal communities were distinct,and environmental changes mediated the balance between stochastic and deterministic processes in rare bacteria assembly.Furthermore,specific combination patterns improved the flavor quality of Zaopei by enhancing the interspecies interaction,which was closely related to rare taxa,especially rare bacteria.These findings highlighted that rare bacteria might be the keystone in involving community interaction and maintaining metabolic function,which provided a scientific foundation for better understanding and regulating the brewing microbiota from the viewpoint of microbial ecology.展开更多
Mo has been widely reported as a conducive element for the corrosion resistance of massive alloy sys-tems.However,the mechanism of Mo optimizing the corrosion resistance is complicated,and in-depth studies are still r...Mo has been widely reported as a conducive element for the corrosion resistance of massive alloy sys-tems.However,the mechanism of Mo optimizing the corrosion resistance is complicated,and in-depth studies are still required.The present work comprehensively and quantitatively studied the critical influ-ences of Mo on the passivation and repassivation behavior of CoCrFeNi HEA based on the dissolution-diffusion-deposition model proposed in our previous work.The experimental results indicated that Mo remarkably eliminated the metastable pitting corrosion,significantly improved the breakdown potential and perfectly protected the CoCrFeNiMo_(0.2)HEA from pitting corrosion.The modelling and X-ray photo-electron spectroscopy(XPS)results both show that in the passivation process,MoO_(2)was the last product to deposit,thereby existing in the outer layer of the passive film.Mo addition increased the Cr content by weakening the deposition of Fe_(2)O_(3)and Fe_(3)O_(4)and also improved the Cr_(2)O_(3)/Cr(OH)3 ratio by promot-ing deprotonation of Cr(OH)_(3),thus enhancing the quality of passive film.Besides,when pitting corrosion occurred,MoO_(2),MoO_(3),and FeMoO_(4)were the first products to deposit and accelerated the repassivation process of HEA by timely covering the matrix in the pit cavity,thereby preventing further corrosion of the matrix.展开更多
基金supported by the National Natural Science Foun-dation of China(Nos.U1908219,52171163)the Key Research Program of the Chinese Academy of Sciences(No.ZDRW-CN-2021-2-2)+1 种基金the Applied Basic Research Program of Liaoning Province(grant no.2022JH2/101300005)the Central Guidance for Local Science and Technology Development Funds of Liaoning Province(grant no.2023JH6/100100016).
文摘Precipitation-strengthened HEAs exhibit outstanding integration of strength and toughness at ambient temperature.Nevertheless,precipitates generally reduce the localized corrosion resistance in aggressive solution environments.To solve this problem,a strategy of introducing nano-sized L12 precipitates in CoCrFeNiAlTi HEAs has been proposed in this work.Results demonstrate the pitting corrosion potential can be elevated from 258 mVSCE to 603 mVSCE by increasing the precipitate content to 38 wt.%.Such an improvement in localized corrosion resistance can be attributed to two aspects.Firstly,L12 precipitates tend to be dissolved during the corrosion process,which promotes the heterogeneous nucleation of protective Cr2 O3 due to the rapid deposition of oxides/hydroxides of Al/Ti,and improves the passive film stability due to the Crrich FCC matrix.Secondly,the dissolution kinetic inside the pits can be suppressed on account of the enrichment of Cr element in the FCC matrix,thus inhibiting the pitting growth.In summary,the current work not only reveals the mechanisms of the nano-sized L12 precipitates upon the corrosion behavior,but also provides a strategy for designing corrosion-resistant HEA.
基金supported by the National Natural Science Foundation of China(No.52074130)Engineering Research Center of Resource Utilization of Carbon-containing Waste with Carbon Neutrality,Ministry of Education,200237 Shanghai,PR China.
文摘To advance the understanding of the corrosion behavior of stainless steel bellows in marine atmospheric environments and enhance the precision of service life predictions,this study employs finite element simulations to investigate the pitting corrosion rates and pit morphologies of bellows peaks and troughs under varying electrolyte film thicknesses.The model incorporates localized electrochemical reactions,oxygen concentration,and homogeneous solution reactions.For improved computational accuracy,the fitted polarization curve data were directly applied as nonlinear boundary conditions on the electrode surface via interpolation functions.Simulation results reveal that the peak regions exhibit faster corrosion rates than the trough regions.With increasing electrolyte film thickness(from 10μm to 500μm),corrosion rates at both peaks and troughs decrease progressively,and after 120 hours of simulation,the maximum corrosion rate at the peaks declines from 0.720 mm/a to 0.130 mm/a,and at the troughs from 0.520 mm/a to 0.120 mm/a,with the disparity in corrosion rates diminishing over time.Furthermore,as corrosion progresses,pits propagate deeper into the substrate,exhibiting both vertical penetration and lateral expansion along the passive film interface,ultimately breaching the substrate.This research offers valuable insights into designing corrosion mitigation strategies for stainless steel bellows in marine environments.
基金Supported by Liaoning Province Science and Technology Research Project(2021JH1/10400011)National Natural Science Foundation of China(61971118).
文摘Background As information technology has advanced and been popularized,open pit mining has rapidly developed toward integration and digitization.The three-dimensional reconstruction technology has been successfully applied to geological reconstruction and modeling of surface scenes in open pit mines.However,an integrated modeling method for surface and underground mine sites has not been reported.Methods In this study,we propose an integrated modeling method for open pit mines that fuses a real scene on the surface with an underground geological model.Based on oblique photography,a real-scene model was established on the surface.Based on the surface-stitching method proposed,the upper and lower surfaces and sides of the model were constructed in stages to construct a complete underground three-dimensional geological model,and the aboveground and underground models were registered together to build an integrated open pit mine model.Results The oblique photography method used reconstructed a surface model of an open pit mine using a real scene.The surface-stitching algorithm proposed was compared with the ball-pivoting and Poisson algorithms,and the integrity of the reconstructed model was markedly superior to that of the other two reconstruction methods.In addition,the surface-stitching algorithm was applied to the reconstruction of different formation models and showed good stability and reconstruction efficiency.Finally,the aboveground and underground models were accurately fitted after registration to form an integrated model.Conclusions The proposed method can efficiently establish an integrated open pit model.Based on the integrated model,an open pit auxiliary planning system was designed and realized.It supports the functions of mining planning and output calculation,assists users in mining planning and operation management,and improves production efficiency and management levels.
基金supported by the National Natural Science Foundation of China(Nos.52364044 and 52204364)Central Guidance on Local Science and Technology Development Fund Projects of Inner Mongolia Autonomous Region(No.2022ZY0090)Basic Scientific Research Business Expenses of Colleges and Universities in Inner Mongolia Autonomous Region(Nos.2023QNJS011 and 0406082226).
文摘The micro-area characterization experiments like scanning Kelvin probe force microscope(SKPFM)and Kernel average misorientation have the defects of complex sample preparation and occasional errors in test results,which makes it impossible to accurately and quickly analyze the pitting behavior induced by inclusions in some cases,prompting attempts to turn to simulation calculation research.The method of calculating band structure and work function can be used to replace current-sensing atomic force microscopy and SKPFM to detect the potential and conductivity of the sample.The band structure results show that Al_(2)O_(3) inclusion is an insulator and non-conductive,and it will not form galvanic corrosion with the matrix.Al_(2)O_(3) inclusion does not dissolve because its work function is higher than that of the matrix.Moreover,the stress concentration of the matrix around the inclusion can be characterized by first-principles calculation coupled with finite element simulation.The results show that the stress concentration degree of the matrix around Al_(2)O_(3) inclusion is serious,and the galvanic corrosion is formed between the high and the low stress concentration areas,which can be used to explain the reason of the pitting induced by Al_(2)O_(3) inclusions.
基金supported by the Project of National Natural Science Foundation(82372206)the Project of Jiangsu Provincial Health Commission(H2023107)the Project of Basic and Clinical Research on Cardiac Arrest in the Emergency and Critical Care Department of the Second Affi liated Hospital of Soochow University(XKTJ-XK202408-2).
文摘Colorectal cancer is a common tumor of the digestive system and is the third leading cause of cancer-related death worldwide.The global incidence of colorectal cancer is currently increasing.In some patients,the tumor has already spread to nearby organs at the time of diagnosis,with the small intestine and bladder being common sites of invasion.[1,2]The diagnosis of colorectal cancer that has spread to the bladder can be challenging.Aside from a few patients who experience urinary symptoms due to invasion of the bladder trigone or the entire bladder wall,there are no distinct clinical signs,which often leads to misdiagnosis.The following case report details one such instance.
文摘The M-shaped multi-row pile foundation retaining structure represents an enhanced version of conventional multi-row anti-sliding support systems.To date,the implementation of M-shaped pile configurations in foundation pit excavations has not been extensively investigated,with particularly scant research focusing on their load-bearing mechanisms and stress redistribution characteristics.Furthermore,numerical modeling methodologies for such geometrically optimized pile networks remain underdeveloped compared to practical engineering applications,creating a notable research-practice gap in geotechnical engineering.A comparative finite element analysis was systematically conducted using ABAQUS software to establish three distinct excavation support configurations:single-row cantilever retaining structures,three-row cantilever configurations,and M-shaped multi-row pile foundation systems.Subsequent numerical simulations enabled quantitative comparisons of critical performance indicators,including pile stress distribution patterns,lateral displacement profiles,and bending moment diagrams across different structural typologies.The parametric investigation revealed characteristic mechanical responses associated with each configuration,establishing corresponding mechanical principles governing the interaction between pile topology and soil-structure behavior towers.The findings of this study provide critical references for the design optimization of M-shaped multi-row pile foundation retaining systems.
基金supported by the National Natural Science Foundation of China(No.52404354).
文摘Pitting corrosion poses a significant challenge to 9Cr18 high-carbon chromium bearing steel in chloride-rich environments,severely compromising its structural integrity.The study systematically investigates the pitting behaviour of 9Cr18 bearing steel under salt spray conditions,focusing on the progressive evolution of surface morphology and cross-sectional characteristics of pits on finished bearings.Scanning electron microscopy,energy-dispersive spectroscopy and X-ray diffraction were employed to examine the surface morphology,elemental composition and phase structure of corrosion products over varying salt spray exposure durations.The results show that 9Cr18 steel exhibits localized pitting with“volcanic crater”-like pits in the early stage of salt spray corrosion.After 48 h,pitting develops into a“multi-point”pattern,marking the initial transition toward uniform corrosion.Until 240 h,corrosion products completely cover the surface,indicating the complete transformation from localized pitting to uniform corrosion.The high carbon and chromium content in 9Cr18 steel promotes carbide precipitation and uneven distribution in the matrix.Cr-depleted regions near the carbide/matrix interface serve as preferential sites for pitting initiation.The low effective utilization of chromium reduces the overall corrosion resistance of 9Cr18.
文摘As one of the commonly used technologies in modern civil engineering,the construction technology is becoming more and more widely used with the continuous growth of building height.In the construction process of highrise buildings,the deep foundation pit support provides the necessary stability for the foundation structure of the building project,and more effectively guarantees the quality of the project.Through the reasonable supporting structure,the deep foundation pit technology can effectively prevent the risk of soil collapse,foundation pit deformation and other risks,and improve the safety factor of the whole construction project.Especially in the high-rise buildings,the deep foundation pit support technology can consolidate the foundation for the long-term stability of the project,and significantly prolong the service life of the building.The continuous development of deep foundation pit construction technology is the inevitable demand of high-rise building construction,and also provides a powerful help for the development of civil engineering industry.Based on this,this paper focuses on the application of deep foundation pit construction technology in civil engineering construction.
基金Kinross Gold and MITACS for their financial support(Grant No.FR42880).
文摘The goal of this research is to develop mine-scale discrete fracture network(DFN)models in which the influence of the spatial heterogeneity of fracture distributions may be investigated on the rock wedge stability of an open pit slope.For this purpose,spatially conditioned DFN models were developed for the pit walls at Tasiast mine using comprehensive structural data from the mine.Using Sequential Gaussian Simulation(SGS),volumetric fracture intensities(P32)were modeled across the entire mine site in the form of 3D block models.The simulated P32 block models were used as the input constraints for conditional DFN fracture generation,where the DFN grid dimension is the same as the SGS 3D blocks.The spatially constrained DFN models were further calibrated using aerial fracture intensities(P21)data from the pit walls,obtained by a survey of the pit walls using an unmanned aerial vehicle(UAV)and measured traces of joints from 3D point cloud data.The final DFN model is expected to honor the fracture intensities gathered through different means with optimal model accuracy.Finally,bench-scale and interramp scale rock wedge slope stability analyses were conducted using the calibrated conditional DFN models.This work proves the significance of conditioned DFN models in rock wedge stability analysis.Such models provide detailed information regarding rock wedge stability so that site monitoring and prevention plans can be conducted with higher efficiency.
基金supported by the Innovation Program for Quantum Science and Technology(Grant No.2021ZD0303400)the National Key R&D Program of China(Grant No.2022YFB3605602)+2 种基金the Key R&D Program of Jiangsu Province(Grant Nos.BE2020004-3 and BE2021026)the National Naturaal Science Foundation of China(Grant No.61974065)Jiangsu Special Professorship,Collaborative Innovation Center of Solid-State Lighting and Energysaving Electronics.
文摘We have investigated homoepitaxy of AlN films grown by molecular beam epitaxy on AlN/sapphire templates byadopting both the continuous growth method and the Al modulation epitaxy(AME)growth method.The continuous growthmethod encounters significant challenges in controlling the growth mode.As the precise Al/N=1.0 ratio is difficult toachieve,either the excessive Al-rich or N-rich growth mode occurs.In contrast,by adopting the AME growth method,sucha difficulty has been effectively overcome.By manipulating the supply time of the Al and nitrogen sources,we were able toproduce AlN films with much improved surface morphology.The first step of the AME method,only supplying Al atoms,is important to wet the surface and the Al adatoms can act as a surfactant.Optimization of the initial Al supply time caneffectively reduce the pit density on the grown AlN surface.The pits density dropped from 12 pits/μm^(2)to 1 pit/μm^(2)andthe surface roughness reduced from 0.72 nm to 0.3 nm in a 2×2μm^(2)area for the AME AlN film homoepitaxially grownon an AlN template.
基金supported by The National Natural Science Foundation of China(Nos.52271053 and 52271096)'the Shanghai Rising-Star Program(No.23QA1400500)the Young Elite Scientists Sponsorship Program by CAST(No.2022QNRC001).
文摘Pitting is a common type of localized corrosion in passive alloys that can cause rapid failure of material or equipment.In the case of stainless steels,non-metallic inclusions have been identified as the most susceptible sites for pitting,and have therefore garnered significant attention.This review critically ex-amines the issue of how inclusions induce pitting,with a particular focus on three mechanisms:sponta-neous dissolution of inclusions,active dissolution of Cr-depleted regions,and propagation of microcracks at the inclusion-matrix interface.While researchers have made significant strides in understanding these mechanisms over the past few decades,many gaps and controversies remain.Details such as the ini-tial driving force of inclusion dissolution and factors affecting Cr-depleted regions require further study.Moreover,some old concepts and methods need to be revised to arrive at more credible conclusions.This review aims to delve deeply into these important issues and provide inspiration for future research.
基金financially supported by the National Natural Science Foundation of China(Grant No.51801220).
文摘The transpassivation and pitting corrosion behavior of a high-nitrogen stainless steel(HNS),Fe18Cr15Mn3Mo0.92N,were systematically investigated by electrochemical analysis,morphology observation,and X-ray photoelectron spectroscopy surface analysis.It was surprisingly found that no pitting corrosion occurred in the transpassivation region of HNS.This electrochemical corrosion behavior is untypical for stainless steels,i.e.,the traditional critical pitting potential method was invalid for HNS.Both N and Cr enrichments in the transpassivation film on HNS were found extremely higher than those in the passivation film.The N existed in the form of[CrN]complex,which could stabilize the above both films.Besides,the corrosion product of N was detected as NH_(3) that exhibited an effective corrosion inhibition effect.On this basis,although the transition of Cr from 3-valent to 6-valent was confirmed,the transpassivation film on HNS still maintained it high stability and no pitting was found to occur.Therefore,the real pitting resistance of HNS should be higher than the expected before.And the stable transpassivation film played an important role in its untypical pitting corrosion resistance.
文摘1.Introduction CO_(2)corrosion of pipelines is one of the major threats in the oil and gas industry[1].Chromium steels(CrSs)and more expen-sive stainless steels(SSs)can mitigate CO_(2)corrosion[2,3].A higher content of Cr results in greater uniform corrosion resistance to CO_(2),which is generally attributed to the enrichment of Cr in the corro-sion product film[4,5].The film,which mainly consists of FeCO_(3),Fe(OH)_(3),Cr(OH)_(3),and Cr_(2)O_(3),forms a passive layer on the metal surface,and the enrichment of Cr in this layer helps block corro-sive anions from contacting with the steel surface[6-8].
基金the National Natural Science Foundation of China(Grant No.U22A20171)the High Steel Center(HSC)at North China University of Technology,Yanshan University,and University of Science and Technology Beijing,China.
文摘The influence of the aluminum content on the pitting corrosion of a 304 stainless steel by a Cl−solution was investigated.The number,area,and composition of non-metallic inclusions were modified by the addition of aluminum in the steel,which was responsible for the variation of the corrosion degree of the 304 stainless steel.Inclusions detection,corrosion test,electrochemical test,thermodynamic calculation,and first-principles calculation were performed to evaluate the pitting corrosion of the stainless steel.The initiation of the pitting corrosion by three types of inclusions,including(Mn,Si,Cr,S)O,(Mn,Al,Cr)O,and Al_(2)O_(3)were in-situ observed.After corroding for 880 min,the corrosion index of(Mn,Si,Cr,S)O,(Mn,Al,Cr)O,and Al_(2)O_(3)was 0.38%,0.02%,and 0.00%min−1,respectively.With the increase in aluminum content in the steel,the pitting potential of the stainless steel was 0.131,0.304,and 0.338 V,respectively,indicating that a higher aluminum content in the steel was beneficial to improving the pitting corrosion resistance of the 304 stainless steel.
基金supported by the Cooperation Project of Luzhou Laojiao Co.,Ltd.Sichuan University (21H0997)。
文摘The quality and aroma of strong-flavor Baijiu are mainly dependent on Daqu,pit mud(PM),and the interaction of both.However,little is known about how their combination patterns affect the microbiome and metabolome of Zaopei,especially the metabolic function of rare taxa.Here,an experiment on industrial size was designed to assess the effects of 6 combinations(3 kinds of Daqu×2 kinds of PM)on the composition and assembly of different taxa,as well as the flavor profile.The results showed that Zaopei's microbiota was composed of a few abundant taxa and enormous rare taxa,and rare bacterial and abundant fungal subcommunities were significantly affected by combination patterns.The assembly processes of abundant/rare taxa and bacterial/fungal communities were distinct,and environmental changes mediated the balance between stochastic and deterministic processes in rare bacteria assembly.Furthermore,specific combination patterns improved the flavor quality of Zaopei by enhancing the interspecies interaction,which was closely related to rare taxa,especially rare bacteria.These findings highlighted that rare bacteria might be the keystone in involving community interaction and maintaining metabolic function,which provided a scientific foundation for better understanding and regulating the brewing microbiota from the viewpoint of microbial ecology.
基金funded by the National Natural Science Foun-dation of China(Grant Nos.U1960203,52004060,52325406,and 52174308)Science Fund for Distinguished Young Scholars of Liaon-ing Province(Grant No.2023JH6/100500008)Fundamental Re-search Funds for the Central Universities(Grant Nos.N2125017 and N2225031).Special thanks are due to the instrumental analysis from the Analytical and Testing Centre,Northeastern University.
文摘Mo has been widely reported as a conducive element for the corrosion resistance of massive alloy sys-tems.However,the mechanism of Mo optimizing the corrosion resistance is complicated,and in-depth studies are still required.The present work comprehensively and quantitatively studied the critical influ-ences of Mo on the passivation and repassivation behavior of CoCrFeNi HEA based on the dissolution-diffusion-deposition model proposed in our previous work.The experimental results indicated that Mo remarkably eliminated the metastable pitting corrosion,significantly improved the breakdown potential and perfectly protected the CoCrFeNiMo_(0.2)HEA from pitting corrosion.The modelling and X-ray photo-electron spectroscopy(XPS)results both show that in the passivation process,MoO_(2)was the last product to deposit,thereby existing in the outer layer of the passive film.Mo addition increased the Cr content by weakening the deposition of Fe_(2)O_(3)and Fe_(3)O_(4)and also improved the Cr_(2)O_(3)/Cr(OH)3 ratio by promot-ing deprotonation of Cr(OH)_(3),thus enhancing the quality of passive film.Besides,when pitting corrosion occurred,MoO_(2),MoO_(3),and FeMoO_(4)were the first products to deposit and accelerated the repassivation process of HEA by timely covering the matrix in the pit cavity,thereby preventing further corrosion of the matrix.