The adaptive FEM analysis of the temperature field of the piston in one diesel engine is given by using the ANSYS software. By making full use of the post results provided by the software, the posteriori error estimat...The adaptive FEM analysis of the temperature field of the piston in one diesel engine is given by using the ANSYS software. By making full use of the post results provided by the software, the posteriori error estimation and adaptive accuracy meshing algorithm is developed. So the blindness of the mesh design through experiences can be avoided, and the accuracy requirement is adapted to the relative temperature gradient distribution across the entire domain. Therefore the meshes and solutions can be obtained at the same time. Based on the temperature field analysis, the thermal stress and deformation fields are calculated as well. The results show that the stress concentrates on the edge of the piston pin boss and the inside surface of the first ring groove, and the deformation of the head of the piston is greatest. But the difference between the long and short axes of the bottom cross section is greatest.展开更多
Manufacturing machines converting energy to mechanical work at the molecular level is a vital pathway to ex- plore the microscopic world. A kind of operable molecular engines, composed offl-cyclodextrin (fl-CD), ary...Manufacturing machines converting energy to mechanical work at the molecular level is a vital pathway to ex- plore the microscopic world. A kind of operable molecular engines, composed offl-cyclodextrin (fl-CD), aryl, al- kene and amide moiety was investigated using molecular dynamics simulations combined with free-energy calcula- tions. To understand how the integrated alkene double bond controls the work performed on the engines, two alkene isomers of the prototype were considered as two molecular engines. The free-energy profiles delineating the binding process of the amide (Z)- and (E)-isomers for each alkene isomer with 1-adamantanol indicate that for the alkene (E)-isomer, the apparent work performed on the amide bond is 1.6 kcal/mol, while the alkene (Z)-isomer is incapa- ble to perform work. Direct switch on/off of engines caused by the isomerization of the alkene bond was, therefore, witnessed, in line with experimental measurements. Decomposition of the free-energy profile into different compo- nents and structural analyses suggest that the isomerization of the alkene bond controls the position of the aryl unit relative to the cavity of the CD, resulting in the difference among the free-energy profiles and the stark contrast of the work performed on engines.展开更多
Improving the specific,technical,economic,and environmental characteristics of piston engines(ICE)operating on alternative gaseous fuels is a pressing task for the energy and mechanical engineering industries.The aim ...Improving the specific,technical,economic,and environmental characteristics of piston engines(ICE)operating on alternative gaseous fuels is a pressing task for the energy and mechanical engineering industries.The aim of the study was to optimize the parameters of the ICE working cycle after replacing the base fuel(propane-butane blend)with syngas from wood sawdust to improve its technical and economic performance based on mathematical modeling.The modeling results were verified through experimental studies(differences for key parameters did not exceed 4.0%).The object of the study was an electric generator based on a single-cylinder spark ignition engine with a power of 1 kW.The article describes the main approaches to creating a mathematical model of the engine working cycle,a test bench for modeling verification,physicochemical properties of the base fuel(propane-butane blend),and laboratory syngas.It was shown that replacing the fuel from a propane-butane blend to laboratory syngas caused a decrease in engine efficiency to 33%(the efficiency of the base ICE was 0.179 vs.the efficiency of 0.119 for the converted ICE for the 0.59 kW power mode).Engine efficiency was chosen as the key criterion for optimizing the working cycle.As a result of optimization,the efficiency of the converted syngas engine was 6.1%higher than that of the base engine running on the propane-butane blend,and the power drop did not exceed 8.0%.Thus,careful fine-tuning of the working cycle parameters allows increasing the technical and economic characteristics of the syngas engine to the level of ICEs running on traditional types of fuel.展开更多
Industry and energy continue to require piston engines(PICE)at a high level worldwide.Therefore,science and technology must urgently work on improving the PICE working cycle.Improving the quality of the intake process...Industry and energy continue to require piston engines(PICE)at a high level worldwide.Therefore,science and technology must urgently work on improving the PICE working cycle.Improving the quality of the intake process of theworking fluid into the cylinder is one of the most effective ways to improve the operational performance of PICE.The purpose of the study was to assess the impact of various cylinder head(CylH)designs on the gas-dynamic and heat-exchange qualities of air flows within an engine model’s intake system.Three different CylH designs were studied:the basic configuration and upgraded cylinder heads with a square valve and a square valve port.These designs are innovative.Laboratory conditions were used to conduct the studies for stationary air flow.The experiments covered the range of Reynolds numbers from 8500 to 96,000.The intake system’s gas dynamics and heat transfer were determined using the thermal anemometry method,which was based on constant-temperature hot-wire anemometers.It has been established that the use of upgraded CylHs causes an increase in the turbulence number of flow by an average of 13.5%.Additionally,itwas found that the increase in the turbulence number of flowin the cylinder is about 19%when installing new CylH designs.It was shown that therewas an increase in the heat transfer coefficient in the intake pipe by 10%–40%when installing modernized CylH designs in the intake system.The article focused on the problems of increasing the turbulence level and intensifying the heat transfer of stationary air flow in the intake system,specifically in PICEs.The study’s findings are novel in the areas of applied gas dynamics and PICEs.展开更多
Owing to their rolling friction,two-dimensional piston pumps are highly suitable as power components for electro-hydrostatic actuators(EHAs).These pumps are particularly advantageous for applications requiring high ef...Owing to their rolling friction,two-dimensional piston pumps are highly suitable as power components for electro-hydrostatic actuators(EHAs).These pumps are particularly advantageous for applications requiring high efficiency and reliability.However,the ambiguity surrounding the output flow characteristics of individual two-dimensional pumps poses a significant challenge in achieving precise closed-loop control of the EHA positions.To address this issue,this study established a comprehensive numerical model that included gap leakage to analyze the impact of leakage on the output flow characteristics of a two-dimensional piston pump.The validity of the numerical analysis was indirectly confirmed through meticulous measurements of the leakage and volumetric efficiency,ensuring robust results.The research findings indicated that,at lower pump speeds,leakage significantly affected the output flow rate,leading to potential inefficiencies in the system.Conversely,at higher rotational speeds,the impact of leakage was less pronounced,implying that the influence of leakage on the pump outlet flow must be carefully considered and managed for EHAs to perform position servo control.Additionally,the research demonstrates that two-dimensional motion does not have a unique or additional effect on pump leakage,thus simplifying the design considerations.Finally,the study concluded that maintaining an oil-filled leakage environment is beneficial because it helps reduce the impact of leakage and enhances the overall volumetric efficiency of the pump system.展开更多
The in-cylinder gas exchange process is crucial to the power performance of two-stroke aircraft piston engines,which is easily influenced by complex factors such as high-altitude performance variation and in-cylinder ...The in-cylinder gas exchange process is crucial to the power performance of two-stroke aircraft piston engines,which is easily influenced by complex factors such as high-altitude performance variation and in-cylinder flow characteristics.This paper reviews the development history and characteristics of gas exchange types,as well as the current state of theory and the validation methods of gas exchange technology,while also discusses the trends of cutting-edge technologies in the field.This paper provides a theoretical foundation for the optimization and engineering design of gas exchange systems and,more importantly,points out that the innovation of gas exchange types,the modification of theoretical models,and the technology of variable airflow organization are the key future research directions in this field.展开更多
Effects of ultrasonic vibration(UV)and mechanical vibration(MV)on the Mn-rich phase modification and mechanical properties of Al−12Si−4Cu−1Ni−1Mg−2Mn piston alloys were investigated.The results show that the UV and UV...Effects of ultrasonic vibration(UV)and mechanical vibration(MV)on the Mn-rich phase modification and mechanical properties of Al−12Si−4Cu−1Ni−1Mg−2Mn piston alloys were investigated.The results show that the UV and UV+MV treatments can significantly refine and fragmentize the microstructures.In addition,UV treatment can significantly passivate the primary Mn-rich Al15Mn3Si2 intermetallics.The formation mechanisms of refinement and passivation of the grains and non-dendrite particles were discussed.Compared with the gravity die-cast alloys,the UV and UV+MV treated alloys exhibit improved tensile and creep resistance at room and elevated temperatures.These results can be attributed to the refinement of theα(Al)grains and the secondary intermetallics,the increased proportion of refined heat-resistant precipitates,and the formation of nano-sized Si particles.The ultimate tensile strength of the UV treated alloys at 350℃ exceeds that of commercial piston alloys.This indicates the high application potential of the developed piston alloys in density diesel engines.展开更多
The isobaric energy recovery device can significantly reduce the energy consumption of the seawater reverse osmosis system by recycling the residual pressure energy of high-pressure concentrated brine.Three-cylinder v...The isobaric energy recovery device can significantly reduce the energy consumption of the seawater reverse osmosis system by recycling the residual pressure energy of high-pressure concentrated brine.Three-cylinder valve-controlled energy recovery device(TC-ERD)solves the fluid pulsation of traditional two-cylinder devices,but the use of a“liquid piston”exacerbates the mixing between brine and seawater.Herein,the evolutionary law of“liquid piston”and the relationship between volumetric mixing degree and operating conditions are explored.The results show that the“liquid piston”first axially expands and then gradually stabilizes,isolating the brine and seawater.Additionally,as long as the volume utilization ratio(U_(R))of the pressure exchange cylinder remains constant,there will not be much difference in the volumetric mixing degree after stabilization of the“liquid piston”(Vm-max)regardless of changes in the processing capacity(Q)and cycle time(T_(0)).Therefore,the equation for Vm-max with respect to the operating parameters(Q,T_(0))is derived,which can not only predict the Vm-max of the TCERD,but also provide an empirical reference for the design of other valve-controlled devices with“liquid piston”.When the Vm-max is 6%,the efficiency of the TC-ERD at design conditions(30 m^(3)·h^(-1),5.0 MPa)is 97.53%.展开更多
In this article,we consider the numerical prediction of the noise emission from a wheelset in laboratory conditions.We focus on the fluid-structure interaction leading to sound emission in the fluid domain by analyzin...In this article,we consider the numerical prediction of the noise emission from a wheelset in laboratory conditions.We focus on the fluid-structure interaction leading to sound emission in the fluid domain by analyzing three different methods to account for acoustic sources.These are a discretized baffled piston using the discrete calculation method(DCM),a closed cylindrical volume using the boundary element method(BEM)and radiating elastic disks in a cubic enclosure solved with the finite element method(FEM).We provide the validation of the baffled piston and the BEM using measurements of the noise emission of a railway wheel by considering ground reflections in the numerical models.Selected space-resolved waveforms are compared with experimental results as well as with a fluid-structure interaction finite element model.The computational advantage of a discretized disk mounted on a baffle and BEM compared to FEM is highlighted,and the baffled pistons limitations caused by a lack of edge radiation effects are investigated.展开更多
Heavy-fuel engines are widely used in UAVs(Unmanned Autonomous Vehicles)because of their reliability and high-power density.In this study,a combustion model for an in-cylinder direct injection engine has been imple-me...Heavy-fuel engines are widely used in UAVs(Unmanned Autonomous Vehicles)because of their reliability and high-power density.In this study,a combustion model for an in-cylinder direct injection engine has been imple-mented using the AVL FIRE software.The effects of the angle of nozzle inclination on fuel evaporation,mixture distribution,and combustion in the engine cylinder have been systematically studied at 5500 r/min and consider-ing full load cruise conditions.According to the results,as the angle of nozzle inclination increases,the maximum combustion explosion pressure in the cylinderfirst increases and then it decreases.When the angle of nozzle incli-nation is less than 45°,the quality of the mixture in the cylinder and the combustion performance can be improved by increasing the angle.When the angle of nozzle inclination is greater than 45°,however,the mixture unevenness increases slightly with the angle,leading to a deterioration of the combustion performances.When the angle of nozzle inclination is between 35°and 55°,the overall combustion performance of the engine is rela-tively good.When the angle of nozzle inclination is 45°,the combustion chamber’s geometry and the cylinder’s airflow are well matched with the fuel spray,and the mixture quality is the best.Compared with 25°,the peak heat release rate increases by 20%,and the maximum combustion burst pressure increases by 5.5%.展开更多
The main objective of this research was to examine the suitability of aluminium alloy to design a piston of an internal combustion engine for improvement in weight and cost reduction. The piston was modelled using Aut...The main objective of this research was to examine the suitability of aluminium alloy to design a piston of an internal combustion engine for improvement in weight and cost reduction. The piston was modelled using Autodesk Inventor 2017 software. The modelled piston was then imported into Ansys for further analysis. Static structural and thermal analysis were carried out on the pistons of the four different materials namely: Al 413 alloy, Al 384 alloy, Al 390 alloy and Al332 alloy to determine the total deformation, equivalent Von Mises stress, maximum shear stress, and the safety factor. The results of the study revealed that, aluminium 332 alloy piston deformed less compared to the deformations of aluminium 390 alloy piston, aluminium 384 alloy piston and aluminium 413 alloy piston. The induced Von Mises stresses in the pistons of the four different materials were found to be far lower than the yield strengths of all the materials. Hence, all the selected materials including the implementing material have equal properties to withstand the maximum gas load. All the selected materials were observed to have high thermal conductivity enough to be able to withstand the operating temperature in the engine cylinders.展开更多
A cylinder combustion simulation model was established for a two-stroke aviation piston engine used in a small unmanned aerial vehicle. The influence of different ignition system parameters on the combustion process o...A cylinder combustion simulation model was established for a two-stroke aviation piston engine used in a small unmanned aerial vehicle. The influence of different ignition system parameters on the combustion process of aviation kerosene was studied using this model. The research results showed that under the working conditions of 5500 r/min and 50% throttle opening, as the ignition energy increased, the peak values of average cylinder pressure and average temperature increased, and the combustion duration shortened, The advance of the combustion center of gravity increases the tendency of the engine to knock. Under the same operating conditions, as the ignition timing advances, the peak values of average pressure and average temperature in the cylinder increase, gradually approaching the top dead center, and the tendency of engine detonation increases more significantly.展开更多
A high precision, high antijamming multipoint infrared telemetry system was developed to measure the piston temperature in internal combustion engine. The temperature at the measuring point is converted into correspon...A high precision, high antijamming multipoint infrared telemetry system was developed to measure the piston temperature in internal combustion engine. The temperature at the measuring point is converted into corresponding voltage signal by the thermo-couple first. Then after the V/F stage, the voltage signal is converted into the frequency signal to drive the infrared light-emitting diode to transmit infrared pulses. At the receiver end, a photosensitive audion receives the infrared pulses. After conversion, the voltage recorded by the receiver stands for the magnitude of temperature at the measuring point. Test results of the system indicate that the system is practical and the system can perform multipoint looping temperature measurements for the piston.展开更多
Raising the rotational speed of an axial piston pump is useful for improving its power density;however,the churning losses of the piston increase significantly with increasing speed,and this reduces the performance an...Raising the rotational speed of an axial piston pump is useful for improving its power density;however,the churning losses of the piston increase significantly with increasing speed,and this reduces the performance and efficiency of the axial piston pump.Currently,there has been some research on the churning losses of pistons;however,it has rarely been analyzed from the perspective of the piston number.To improve the performance and efficiency of the axial piston pump,a computational fluid dynamics(CFD)simulation model of the churning loss was established,and the effect of piston number on the churning loss was studied in detail.The simulation analysis results revealed that the churning losses initially increased as the number of pistons increased;however,when the number of pistons increased from six to nine,the torque of the churning losses decreased because of the hydrodynamic shadowing effect.In addition,in the analysis of cavitation results,it was determined that the cavitation area of the axial piston pump was mainly concentrated around the piston,and the cavitation became increasingly severe as the speed increased.By comparing the simulation results with and without the cavitation model,it was observed that the cavitation phenomenon is beneficial for the reduction of churning losses.In this study,a piston churning loss test rig that can eliminate other friction losses was established to verify the accuracy of the simulation results.A comparative analysis indicated that the simulation results were consistent with the actual situation.In addition,this study also conducted a simulation study on seven and nine piston pumps with the same displacement.The simulation results revealed that churning losses of the seven pistons were generally greater than those of the nine pistons under the same displacement.In addition,regarding the same piston number and displacement,reducing the pitch circle radius of piston bores is effective in reducing the churning loss.This research analyzes the effect of piston number on the churning loss,which has certain guiding significance for the structural design and model selection of axial piston pumps.展开更多
Vibrations or dither's are features of the PWM servo control system in their steady outputs. On the grounds of analyses and experiments of a PWM pneumatic servo control system, the paper puts forward four varietie...Vibrations or dither's are features of the PWM servo control system in their steady outputs. On the grounds of analyses and experiments of a PWM pneumatic servo control system, the paper puts forward four varieties of PWM modulation methods, and concludes on the relationship between dithers and the different methods, and then discusses the influence of friction to the dithers. Results from experiments regarding the dynamic and static responses on the given system support the theories presented.展开更多
文摘The adaptive FEM analysis of the temperature field of the piston in one diesel engine is given by using the ANSYS software. By making full use of the post results provided by the software, the posteriori error estimation and adaptive accuracy meshing algorithm is developed. So the blindness of the mesh design through experiences can be avoided, and the accuracy requirement is adapted to the relative temperature gradient distribution across the entire domain. Therefore the meshes and solutions can be obtained at the same time. Based on the temperature field analysis, the thermal stress and deformation fields are calculated as well. The results show that the stress concentrates on the edge of the piston pin boss and the inside surface of the first ring groove, and the deformation of the head of the piston is greatest. But the difference between the long and short axes of the bottom cross section is greatest.
文摘Manufacturing machines converting energy to mechanical work at the molecular level is a vital pathway to ex- plore the microscopic world. A kind of operable molecular engines, composed offl-cyclodextrin (fl-CD), aryl, al- kene and amide moiety was investigated using molecular dynamics simulations combined with free-energy calcula- tions. To understand how the integrated alkene double bond controls the work performed on the engines, two alkene isomers of the prototype were considered as two molecular engines. The free-energy profiles delineating the binding process of the amide (Z)- and (E)-isomers for each alkene isomer with 1-adamantanol indicate that for the alkene (E)-isomer, the apparent work performed on the amide bond is 1.6 kcal/mol, while the alkene (Z)-isomer is incapa- ble to perform work. Direct switch on/off of engines caused by the isomerization of the alkene bond was, therefore, witnessed, in line with experimental measurements. Decomposition of the free-energy profile into different compo- nents and structural analyses suggest that the isomerization of the alkene bond controls the position of the aryl unit relative to the cavity of the CD, resulting in the difference among the free-energy profiles and the stark contrast of the work performed on engines.
基金the Ministry of Science and Higher Education of the Russian Federation(Ural Federal University Program of Development within the Priority-2030 Program)is gratefully acknowledged.
文摘Improving the specific,technical,economic,and environmental characteristics of piston engines(ICE)operating on alternative gaseous fuels is a pressing task for the energy and mechanical engineering industries.The aim of the study was to optimize the parameters of the ICE working cycle after replacing the base fuel(propane-butane blend)with syngas from wood sawdust to improve its technical and economic performance based on mathematical modeling.The modeling results were verified through experimental studies(differences for key parameters did not exceed 4.0%).The object of the study was an electric generator based on a single-cylinder spark ignition engine with a power of 1 kW.The article describes the main approaches to creating a mathematical model of the engine working cycle,a test bench for modeling verification,physicochemical properties of the base fuel(propane-butane blend),and laboratory syngas.It was shown that replacing the fuel from a propane-butane blend to laboratory syngas caused a decrease in engine efficiency to 33%(the efficiency of the base ICE was 0.179 vs.the efficiency of 0.119 for the converted ICE for the 0.59 kW power mode).Engine efficiency was chosen as the key criterion for optimizing the working cycle.As a result of optimization,the efficiency of the converted syngas engine was 6.1%higher than that of the base engine running on the propane-butane blend,and the power drop did not exceed 8.0%.Thus,careful fine-tuning of the working cycle parameters allows increasing the technical and economic characteristics of the syngas engine to the level of ICEs running on traditional types of fuel.
文摘Industry and energy continue to require piston engines(PICE)at a high level worldwide.Therefore,science and technology must urgently work on improving the PICE working cycle.Improving the quality of the intake process of theworking fluid into the cylinder is one of the most effective ways to improve the operational performance of PICE.The purpose of the study was to assess the impact of various cylinder head(CylH)designs on the gas-dynamic and heat-exchange qualities of air flows within an engine model’s intake system.Three different CylH designs were studied:the basic configuration and upgraded cylinder heads with a square valve and a square valve port.These designs are innovative.Laboratory conditions were used to conduct the studies for stationary air flow.The experiments covered the range of Reynolds numbers from 8500 to 96,000.The intake system’s gas dynamics and heat transfer were determined using the thermal anemometry method,which was based on constant-temperature hot-wire anemometers.It has been established that the use of upgraded CylHs causes an increase in the turbulence number of flow by an average of 13.5%.Additionally,itwas found that the increase in the turbulence number of flowin the cylinder is about 19%when installing new CylH designs.It was shown that therewas an increase in the heat transfer coefficient in the intake pipe by 10%–40%when installing modernized CylH designs in the intake system.The article focused on the problems of increasing the turbulence level and intensifying the heat transfer of stationary air flow in the intake system,specifically in PICEs.The study’s findings are novel in the areas of applied gas dynamics and PICEs.
基金Supported by National Natural Science Foundation of China(Grant No.52205072).
文摘Owing to their rolling friction,two-dimensional piston pumps are highly suitable as power components for electro-hydrostatic actuators(EHAs).These pumps are particularly advantageous for applications requiring high efficiency and reliability.However,the ambiguity surrounding the output flow characteristics of individual two-dimensional pumps poses a significant challenge in achieving precise closed-loop control of the EHA positions.To address this issue,this study established a comprehensive numerical model that included gap leakage to analyze the impact of leakage on the output flow characteristics of a two-dimensional piston pump.The validity of the numerical analysis was indirectly confirmed through meticulous measurements of the leakage and volumetric efficiency,ensuring robust results.The research findings indicated that,at lower pump speeds,leakage significantly affected the output flow rate,leading to potential inefficiencies in the system.Conversely,at higher rotational speeds,the impact of leakage was less pronounced,implying that the influence of leakage on the pump outlet flow must be carefully considered and managed for EHAs to perform position servo control.Additionally,the research demonstrates that two-dimensional motion does not have a unique or additional effect on pump leakage,thus simplifying the design considerations.Finally,the study concluded that maintaining an oil-filled leakage environment is beneficial because it helps reduce the impact of leakage and enhances the overall volumetric efficiency of the pump system.
基金funded by the National Natural Science Foundation of China(Nos.52206131,U2233213and 51775025)the National Key R&D Program of China(2022YFB2602002,2018YFB0104100)+1 种基金the Zhejiang Provincial Natural Science Foundation of China(LQ22E060004)the Science Center of Gas Turbine Project,China(No.P2022-A-I-001-001)。
文摘The in-cylinder gas exchange process is crucial to the power performance of two-stroke aircraft piston engines,which is easily influenced by complex factors such as high-altitude performance variation and in-cylinder flow characteristics.This paper reviews the development history and characteristics of gas exchange types,as well as the current state of theory and the validation methods of gas exchange technology,while also discusses the trends of cutting-edge technologies in the field.This paper provides a theoretical foundation for the optimization and engineering design of gas exchange systems and,more importantly,points out that the innovation of gas exchange types,the modification of theoretical models,and the technology of variable airflow organization are the key future research directions in this field.
基金the National Natural Science Foundation of China(No.52265043)Science and Technology Plan,Guizhou Province,China(No.ZK2021(267))+2 种基金Technology Achievements Application and Industrialization Project,Guizhou Province,China(No.2021(067))Cultivation Project of Guizhou University,China(No.2019(23))Lastly,we thank the Shanghai Synchrotron Radiation Facility(SSRF)for providing the synchrotron radiation beamtime.
文摘Effects of ultrasonic vibration(UV)and mechanical vibration(MV)on the Mn-rich phase modification and mechanical properties of Al−12Si−4Cu−1Ni−1Mg−2Mn piston alloys were investigated.The results show that the UV and UV+MV treatments can significantly refine and fragmentize the microstructures.In addition,UV treatment can significantly passivate the primary Mn-rich Al15Mn3Si2 intermetallics.The formation mechanisms of refinement and passivation of the grains and non-dendrite particles were discussed.Compared with the gravity die-cast alloys,the UV and UV+MV treated alloys exhibit improved tensile and creep resistance at room and elevated temperatures.These results can be attributed to the refinement of theα(Al)grains and the secondary intermetallics,the increased proportion of refined heat-resistant precipitates,and the formation of nano-sized Si particles.The ultimate tensile strength of the UV treated alloys at 350℃ exceeds that of commercial piston alloys.This indicates the high application potential of the developed piston alloys in density diesel engines.
基金supported by the Natural Science Foundation of Fujian Province(2023J011020)the Education Department of Fujian Province/Sanming University(JAT220348/B202202)Sanming University(22YG12,PYT2202).
文摘The isobaric energy recovery device can significantly reduce the energy consumption of the seawater reverse osmosis system by recycling the residual pressure energy of high-pressure concentrated brine.Three-cylinder valve-controlled energy recovery device(TC-ERD)solves the fluid pulsation of traditional two-cylinder devices,but the use of a“liquid piston”exacerbates the mixing between brine and seawater.Herein,the evolutionary law of“liquid piston”and the relationship between volumetric mixing degree and operating conditions are explored.The results show that the“liquid piston”first axially expands and then gradually stabilizes,isolating the brine and seawater.Additionally,as long as the volume utilization ratio(U_(R))of the pressure exchange cylinder remains constant,there will not be much difference in the volumetric mixing degree after stabilization of the“liquid piston”(Vm-max)regardless of changes in the processing capacity(Q)and cycle time(T_(0)).Therefore,the equation for Vm-max with respect to the operating parameters(Q,T_(0))is derived,which can not only predict the Vm-max of the TCERD,but also provide an empirical reference for the design of other valve-controlled devices with“liquid piston”.When the Vm-max is 6%,the efficiency of the TC-ERD at design conditions(30 m^(3)·h^(-1),5.0 MPa)is 97.53%.
基金The project was commissioned and supported by the funding of the Federal Office of Environment(No.1337000438).
文摘In this article,we consider the numerical prediction of the noise emission from a wheelset in laboratory conditions.We focus on the fluid-structure interaction leading to sound emission in the fluid domain by analyzing three different methods to account for acoustic sources.These are a discretized baffled piston using the discrete calculation method(DCM),a closed cylindrical volume using the boundary element method(BEM)and radiating elastic disks in a cubic enclosure solved with the finite element method(FEM).We provide the validation of the baffled piston and the BEM using measurements of the noise emission of a railway wheel by considering ground reflections in the numerical models.Selected space-resolved waveforms are compared with experimental results as well as with a fluid-structure interaction finite element model.The computational advantage of a discretized disk mounted on a baffle and BEM compared to FEM is highlighted,and the baffled pistons limitations caused by a lack of edge radiation effects are investigated.
文摘Heavy-fuel engines are widely used in UAVs(Unmanned Autonomous Vehicles)because of their reliability and high-power density.In this study,a combustion model for an in-cylinder direct injection engine has been imple-mented using the AVL FIRE software.The effects of the angle of nozzle inclination on fuel evaporation,mixture distribution,and combustion in the engine cylinder have been systematically studied at 5500 r/min and consider-ing full load cruise conditions.According to the results,as the angle of nozzle inclination increases,the maximum combustion explosion pressure in the cylinderfirst increases and then it decreases.When the angle of nozzle incli-nation is less than 45°,the quality of the mixture in the cylinder and the combustion performance can be improved by increasing the angle.When the angle of nozzle inclination is greater than 45°,however,the mixture unevenness increases slightly with the angle,leading to a deterioration of the combustion performances.When the angle of nozzle inclination is between 35°and 55°,the overall combustion performance of the engine is rela-tively good.When the angle of nozzle inclination is 45°,the combustion chamber’s geometry and the cylinder’s airflow are well matched with the fuel spray,and the mixture quality is the best.Compared with 25°,the peak heat release rate increases by 20%,and the maximum combustion burst pressure increases by 5.5%.
文摘The main objective of this research was to examine the suitability of aluminium alloy to design a piston of an internal combustion engine for improvement in weight and cost reduction. The piston was modelled using Autodesk Inventor 2017 software. The modelled piston was then imported into Ansys for further analysis. Static structural and thermal analysis were carried out on the pistons of the four different materials namely: Al 413 alloy, Al 384 alloy, Al 390 alloy and Al332 alloy to determine the total deformation, equivalent Von Mises stress, maximum shear stress, and the safety factor. The results of the study revealed that, aluminium 332 alloy piston deformed less compared to the deformations of aluminium 390 alloy piston, aluminium 384 alloy piston and aluminium 413 alloy piston. The induced Von Mises stresses in the pistons of the four different materials were found to be far lower than the yield strengths of all the materials. Hence, all the selected materials including the implementing material have equal properties to withstand the maximum gas load. All the selected materials were observed to have high thermal conductivity enough to be able to withstand the operating temperature in the engine cylinders.
文摘A cylinder combustion simulation model was established for a two-stroke aviation piston engine used in a small unmanned aerial vehicle. The influence of different ignition system parameters on the combustion process of aviation kerosene was studied using this model. The research results showed that under the working conditions of 5500 r/min and 50% throttle opening, as the ignition energy increased, the peak values of average cylinder pressure and average temperature increased, and the combustion duration shortened, The advance of the combustion center of gravity increases the tendency of the engine to knock. Under the same operating conditions, as the ignition timing advances, the peak values of average pressure and average temperature in the cylinder increase, gradually approaching the top dead center, and the tendency of engine detonation increases more significantly.
文摘A high precision, high antijamming multipoint infrared telemetry system was developed to measure the piston temperature in internal combustion engine. The temperature at the measuring point is converted into corresponding voltage signal by the thermo-couple first. Then after the V/F stage, the voltage signal is converted into the frequency signal to drive the infrared light-emitting diode to transmit infrared pulses. At the receiver end, a photosensitive audion receives the infrared pulses. After conversion, the voltage recorded by the receiver stands for the magnitude of temperature at the measuring point. Test results of the system indicate that the system is practical and the system can perform multipoint looping temperature measurements for the piston.
基金National Natural Science Foundation of China(Grant No.52005429)Open Foundation of State Key Laboratory of Fluid Power and Mechatronic Systems of China(Grant No.GZKF-201911)National Key Research and Development Program of China(Grant No.2018YFB2000703).
文摘Raising the rotational speed of an axial piston pump is useful for improving its power density;however,the churning losses of the piston increase significantly with increasing speed,and this reduces the performance and efficiency of the axial piston pump.Currently,there has been some research on the churning losses of pistons;however,it has rarely been analyzed from the perspective of the piston number.To improve the performance and efficiency of the axial piston pump,a computational fluid dynamics(CFD)simulation model of the churning loss was established,and the effect of piston number on the churning loss was studied in detail.The simulation analysis results revealed that the churning losses initially increased as the number of pistons increased;however,when the number of pistons increased from six to nine,the torque of the churning losses decreased because of the hydrodynamic shadowing effect.In addition,in the analysis of cavitation results,it was determined that the cavitation area of the axial piston pump was mainly concentrated around the piston,and the cavitation became increasingly severe as the speed increased.By comparing the simulation results with and without the cavitation model,it was observed that the cavitation phenomenon is beneficial for the reduction of churning losses.In this study,a piston churning loss test rig that can eliminate other friction losses was established to verify the accuracy of the simulation results.A comparative analysis indicated that the simulation results were consistent with the actual situation.In addition,this study also conducted a simulation study on seven and nine piston pumps with the same displacement.The simulation results revealed that churning losses of the seven pistons were generally greater than those of the nine pistons under the same displacement.In addition,regarding the same piston number and displacement,reducing the pitch circle radius of piston bores is effective in reducing the churning loss.This research analyzes the effect of piston number on the churning loss,which has certain guiding significance for the structural design and model selection of axial piston pumps.
文摘Vibrations or dither's are features of the PWM servo control system in their steady outputs. On the grounds of analyses and experiments of a PWM pneumatic servo control system, the paper puts forward four varieties of PWM modulation methods, and concludes on the relationship between dithers and the different methods, and then discusses the influence of friction to the dithers. Results from experiments regarding the dynamic and static responses on the given system support the theories presented.