A simulation for piston effect in supercritical carbon dioxide by employing a simple model is conducted. In the first place, the thermal properties of carbon dioxide near its liquid-vapor critical point are discussed....A simulation for piston effect in supercritical carbon dioxide by employing a simple model is conducted. In the first place, the thermal properties of carbon dioxide near its liquid-vapor critical point are discussed. It is calcu- lated that the heat capacity ratio and isobaric expansion coefficient of supercritical fluids are extremely high. Furthermore, the simulation for piston effect in supereritical carbon dioxide between two infinite vertical walls is presented. The numerical results prove that piston effect has a much faster speed of heat transfer than thermal conduction under mierogravity conditions. Moreover, the piston effect turns out to be stronger when closer to the critical point.展开更多
A thermal hydraulic model based on the lumped parameter method is presented to analyze the load-carrying capacity of a slipper pair in an aviation axial-piston pump under specified operating conditions. Both theoretic...A thermal hydraulic model based on the lumped parameter method is presented to analyze the load-carrying capacity of a slipper pair in an aviation axial-piston pump under specified operating conditions. Both theoretical and experimental results are presented to demonstrate the validity of the thermal hydraulic model. The results illustrate that the squeezing force and thermal wedge bearing force are the main factors that affect the film thickness and load-carrying capacity.At high oil temperature and high load pressure, the film thickness decreases with increasing clamping force due to a combined action of the squeezing bearing force and the thermal wedge bearing force, but the load-carrying capacity will increase. An increase of the film thickness is proven to be beneficial under high shaft rotational speed but especially dangerous as it strongly increases the ripple amplitude of the film thickness, which leads to decreasing the load-carrying capacity. The structural parameters of the slipper can be optimized to achieve desired performance, such as the slipper radius ratio and orifice length diameter ratio. To satisfy the requirement of the load-carrying capacity, the slipper radius ratio should be selected from 1.4 to 1.8, and the orifice length diameter ratio should be selected from 4 to 5.展开更多
基金financially supported by the National Basic Research Program of China (973 Program) under Grant No.2012CB933200the National Natural Science Foundation of China under Grant No.51161140332
文摘A simulation for piston effect in supercritical carbon dioxide by employing a simple model is conducted. In the first place, the thermal properties of carbon dioxide near its liquid-vapor critical point are discussed. It is calcu- lated that the heat capacity ratio and isobaric expansion coefficient of supercritical fluids are extremely high. Furthermore, the simulation for piston effect in supereritical carbon dioxide between two infinite vertical walls is presented. The numerical results prove that piston effect has a much faster speed of heat transfer than thermal conduction under mierogravity conditions. Moreover, the piston effect turns out to be stronger when closer to the critical point.
基金co-supported by the National Natural Science Foundation of China (No. 51505338 and No. 51475332)the Youths Science Foundation of Zhejiang (No. LQ16E050004 and No. LQ17E050003)
文摘A thermal hydraulic model based on the lumped parameter method is presented to analyze the load-carrying capacity of a slipper pair in an aviation axial-piston pump under specified operating conditions. Both theoretical and experimental results are presented to demonstrate the validity of the thermal hydraulic model. The results illustrate that the squeezing force and thermal wedge bearing force are the main factors that affect the film thickness and load-carrying capacity.At high oil temperature and high load pressure, the film thickness decreases with increasing clamping force due to a combined action of the squeezing bearing force and the thermal wedge bearing force, but the load-carrying capacity will increase. An increase of the film thickness is proven to be beneficial under high shaft rotational speed but especially dangerous as it strongly increases the ripple amplitude of the film thickness, which leads to decreasing the load-carrying capacity. The structural parameters of the slipper can be optimized to achieve desired performance, such as the slipper radius ratio and orifice length diameter ratio. To satisfy the requirement of the load-carrying capacity, the slipper radius ratio should be selected from 1.4 to 1.8, and the orifice length diameter ratio should be selected from 4 to 5.