On 3 July 2015, a Mw 6.4 earthquake occurred on a blind fault struck Pishan, Xinjiang,China. By combining Crustal Movement Observation Network of China(CMONOC) and other Static Global Positioning System(GPS) sites...On 3 July 2015, a Mw 6.4 earthquake occurred on a blind fault struck Pishan, Xinjiang,China. By combining Crustal Movement Observation Network of China(CMONOC) and other Static Global Positioning System(GPS) sites surrounding Pishan region, it provides a rare chance for us to constrain the slip rupture for such a moderate event. The maximum displacement is up to 12 cm, 2 cm for coseismic and postseismic deformation, respectively,and both the deformation patterns show a same direction moving northeastward. With rectangular dislocation model, a magnitude of Mw6.48, Mw6.3 is calculated based on coseismic, postseismic deformation respectively. Our result indicates the western Kunlun range is still moving toward Tarim Basin followed by an obvious postseismic slip associated with this earthquake. To determine a more reasonable model for postseismic deformation, a longer GPS dataset will be needed.展开更多
The disaster area of the Pishan M_S6.5 earthquake in 2015 is located in the southern margin of the Tarim Basin,where the natural condition are harsh,and the economy is extremely backward.Moreover,because of a large nu...The disaster area of the Pishan M_S6.5 earthquake in 2015 is located in the southern margin of the Tarim Basin,where the natural condition are harsh,and the economy is extremely backward.Moreover,because of a large number of residential housing with poor seismic performance in the disaster area,the damage and economic losses are serious.Since the most disaster area is located in the piedmont overflow,with poor site conditions such as shallow groundwater level and soil foundation,the magnifying effect of ground motion has a significant impact on the damage.In conclusion,we believe that investment in antiearthquake housing projects should be increased in post disaster reconstruction.Furthermore,for the north of the disaster area,with the dense population,poor conditions like soft soil foundation and poor engineering geological conditions,we recommend that in the future construction of anti-earthquake housing projects,more attention should be paid to strengthen the foundation treatment and precaution measures.展开更多
The July 3,2015 Pishan M_S6. 5 earthquake occurred in the intersection area of the Tarim block and West Kunlun block where the moderate-strong earthquakes have become active in recent years. This paper has studied the...The July 3,2015 Pishan M_S6. 5 earthquake occurred in the intersection area of the Tarim block and West Kunlun block where the moderate-strong earthquakes have become active in recent years. This paper has studied the seismicity parameters of the earthquake sequences such as the b-value in the Pishan region and its vicinity. In addition,we also relocated the aftershocks of the Pishan M_S6. 5 earthquake using the seismic phase report by the double-difference method. The temporal and spatial variation characteristics of the Pishan earthquake sequence in the rupture zone are analyzed. The study is of great significance in the seismic hazard assessment in this region.展开更多
An earthquake of Mw6.4 occurred in Pishan County in Xinjiang Province, northwestern Tibetan Plateau, on July 3,2015. The epicenter was located on an active blind thrust system located at the northern margin of the Wes...An earthquake of Mw6.4 occurred in Pishan County in Xinjiang Province, northwestern Tibetan Plateau, on July 3,2015. The epicenter was located on an active blind thrust system located at the northern margin of the Western Kunlun Mountain Orogenic Belt southwest of the Tarim Basin. We constructed a shovel-shaped fault model based on the layered-crust model with reference to the seismic reflection profile, and obtained the rupture process of the earthquake from the joint inversion of Interferometric Synthetic Aperture Radar(InSAR) measurements, far-field waveform data, and Global Positioning System(GPS) data. The results show that the seismic fault dips southward with a strike of 109°, and the rupture direction was essentially northward. The fault plane rupture distribution is concentrated, with a maximum recorded slip of 73 cm. The main features of the fault are as follows: low inclination angle(25°–10°), thrust slip at a depth of 9–13 km, rupture propagation time of about 12 s, no significant slip in soft or hard sedimentary layers at 0–4 km depth and propagation from the initial rupture point to the surrounding area with no obvious directionality. The InSAR time-series analysis method is used to determine the deformation rate in the source region within 2 years after the earthquake, and the maximum value is ~17 mm yr-1 in the radar line-of-sight direction. Obvious post-earthquake deformation is evident in the hanging wall, with a similar trend to the coseismic displacement field. These results suggest that the Pishan earthquake has not completely released the accumulated energy of the region, given that the multilayer fold structure above the blind fault is still in a process of slow uplift since the earthquake. Post-earthquake adjustment models and aftershock risk analysis require further study using more independent data.展开更多
基于新疆区域数字地震台网记录,采用CAP(Cut and Paste)方法反演了2015年7月3日皮山6.5级主震和部分MS3.6以上余震的震源机制解和震源深度;采用HypoDD方法重新定位了序列中ML2.5以上地震序列的震源位置,并利用小震分布和区域应力场拟...基于新疆区域数字地震台网记录,采用CAP(Cut and Paste)方法反演了2015年7月3日皮山6.5级主震和部分MS3.6以上余震的震源机制解和震源深度;采用HypoDD方法重新定位了序列中ML2.5以上地震序列的震源位置,并利用小震分布和区域应力场拟合了可能存在的发震断层面参数.基于上述研究,综合分析了皮山6.5级地震序列的震源深度、震源机制和震源破裂面特征,探讨可能的发震构造.结果显示,利用CAP方法得到的最佳双力偶机制解节面I:走向280°/倾角60°/滑动角90°;节面II:走向100°/倾角30°/滑动角90°,矩心深度19km,表明该地震为一次逆冲型地震事件.大部分M_S3.6以上余震震源机制与主震具有一定的相似性.双差定位结果显示,M_L2.5以上的余震序列主要分布在主震的西南方向,深度主要分布在0~15km范围内,余震分布显示出与发震构造泽普隐伏断裂一致的倾向南西的特征.利用小震分布和区域应力场拟合得到发震断层参数为走向104°/倾角34°/滑动角94°,该结果与主震震源机制解中节面II的滑动角较为接近,绝大多数余震发生在断层面附近10km左右的区域.根据本研究得到的震源机制、精定位结果以及利用小震分布和区域应力场拟合得到的断层面的参数,结合震源区地质构造情况,初步给出了此次皮山6.5级地震的发震模式.展开更多
基金supported by National Natural Science Foundation of China(41304014,41204001,41274037 and 41431069)National 863 Project of China(2013AA122501)+4 种基金China postdoctoral science foundation(2015M57228)the Basic Fund of Hubei Subsurface Multi-scale Imaging Key Laboratory,Institute of Geophysics and Geomatics,China University of Geosciences,Wuhan(SMIL-2015-01)the Fundamental Research Funds for National Universities(CUGL150810)China Scholarship Council(201506415072)the Basic Research Fund of Key Laboratory of Geospace Environment and Geodesy,Ministry of Education of China(13-02-11 and 14-01-01)
文摘On 3 July 2015, a Mw 6.4 earthquake occurred on a blind fault struck Pishan, Xinjiang,China. By combining Crustal Movement Observation Network of China(CMONOC) and other Static Global Positioning System(GPS) sites surrounding Pishan region, it provides a rare chance for us to constrain the slip rupture for such a moderate event. The maximum displacement is up to 12 cm, 2 cm for coseismic and postseismic deformation, respectively,and both the deformation patterns show a same direction moving northeastward. With rectangular dislocation model, a magnitude of Mw6.48, Mw6.3 is calculated based on coseismic, postseismic deformation respectively. Our result indicates the western Kunlun range is still moving toward Tarim Basin followed by an obvious postseismic slip associated with this earthquake. To determine a more reasonable model for postseismic deformation, a longer GPS dataset will be needed.
基金funded by the “Three-in-one Project ” of China Earthquake Administration (163101)the Spark Program of Earthquake Sciences,CEA (XH15044Y)
文摘The disaster area of the Pishan M_S6.5 earthquake in 2015 is located in the southern margin of the Tarim Basin,where the natural condition are harsh,and the economy is extremely backward.Moreover,because of a large number of residential housing with poor seismic performance in the disaster area,the damage and economic losses are serious.Since the most disaster area is located in the piedmont overflow,with poor site conditions such as shallow groundwater level and soil foundation,the magnifying effect of ground motion has a significant impact on the damage.In conclusion,we believe that investment in antiearthquake housing projects should be increased in post disaster reconstruction.Furthermore,for the north of the disaster area,with the dense population,poor conditions like soft soil foundation and poor engineering geological conditions,we recommend that in the future construction of anti-earthquake housing projects,more attention should be paid to strengthen the foundation treatment and precaution measures.
基金sponsored by the Program Spark Program of Earthquake Science of China under Grant No.XH16044National Natural Science Foundation of China under Grant No.41504047Task Contract for Earthquake Situation Tracking of CEA in 2017(2017010102)
文摘The July 3,2015 Pishan M_S6. 5 earthquake occurred in the intersection area of the Tarim block and West Kunlun block where the moderate-strong earthquakes have become active in recent years. This paper has studied the seismicity parameters of the earthquake sequences such as the b-value in the Pishan region and its vicinity. In addition,we also relocated the aftershocks of the Pishan M_S6. 5 earthquake using the seismic phase report by the double-difference method. The temporal and spatial variation characteristics of the Pishan earthquake sequence in the rupture zone are analyzed. The study is of great significance in the seismic hazard assessment in this region.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41474036 & 41174037)the 13th Five-year Informatization Plan of Chinese Academy of Sciences (Grant No. XXH13505-06)
文摘An earthquake of Mw6.4 occurred in Pishan County in Xinjiang Province, northwestern Tibetan Plateau, on July 3,2015. The epicenter was located on an active blind thrust system located at the northern margin of the Western Kunlun Mountain Orogenic Belt southwest of the Tarim Basin. We constructed a shovel-shaped fault model based on the layered-crust model with reference to the seismic reflection profile, and obtained the rupture process of the earthquake from the joint inversion of Interferometric Synthetic Aperture Radar(InSAR) measurements, far-field waveform data, and Global Positioning System(GPS) data. The results show that the seismic fault dips southward with a strike of 109°, and the rupture direction was essentially northward. The fault plane rupture distribution is concentrated, with a maximum recorded slip of 73 cm. The main features of the fault are as follows: low inclination angle(25°–10°), thrust slip at a depth of 9–13 km, rupture propagation time of about 12 s, no significant slip in soft or hard sedimentary layers at 0–4 km depth and propagation from the initial rupture point to the surrounding area with no obvious directionality. The InSAR time-series analysis method is used to determine the deformation rate in the source region within 2 years after the earthquake, and the maximum value is ~17 mm yr-1 in the radar line-of-sight direction. Obvious post-earthquake deformation is evident in the hanging wall, with a similar trend to the coseismic displacement field. These results suggest that the Pishan earthquake has not completely released the accumulated energy of the region, given that the multilayer fold structure above the blind fault is still in a process of slow uplift since the earthquake. Post-earthquake adjustment models and aftershock risk analysis require further study using more independent data.
文摘基于新疆区域数字地震台网记录,采用CAP(Cut and Paste)方法反演了2015年7月3日皮山6.5级主震和部分MS3.6以上余震的震源机制解和震源深度;采用HypoDD方法重新定位了序列中ML2.5以上地震序列的震源位置,并利用小震分布和区域应力场拟合了可能存在的发震断层面参数.基于上述研究,综合分析了皮山6.5级地震序列的震源深度、震源机制和震源破裂面特征,探讨可能的发震构造.结果显示,利用CAP方法得到的最佳双力偶机制解节面I:走向280°/倾角60°/滑动角90°;节面II:走向100°/倾角30°/滑动角90°,矩心深度19km,表明该地震为一次逆冲型地震事件.大部分M_S3.6以上余震震源机制与主震具有一定的相似性.双差定位结果显示,M_L2.5以上的余震序列主要分布在主震的西南方向,深度主要分布在0~15km范围内,余震分布显示出与发震构造泽普隐伏断裂一致的倾向南西的特征.利用小震分布和区域应力场拟合得到发震断层参数为走向104°/倾角34°/滑动角94°,该结果与主震震源机制解中节面II的滑动角较为接近,绝大多数余震发生在断层面附近10km左右的区域.根据本研究得到的震源机制、精定位结果以及利用小震分布和区域应力场拟合得到的断层面的参数,结合震源区地质构造情况,初步给出了此次皮山6.5级地震的发震模式.