期刊文献+
共找到1,271篇文章
< 1 2 64 >
每页显示 20 50 100
Pressure-Dependent Models in Ship Piping Systems 被引量:1
1
作者 Daniel Molina Pérez Lemuel C.Ramos-Arzola Amadelis Quesada Torres 《Journal of Marine Science and Application》 CSCD 2020年第2期266-274,共9页
This paper aims to evaluate the feasibility of pressure-dependent models in the design of ship piping systems.For this purpose,a complex ship piping system is designed to operate in firefighting and bilge services thr... This paper aims to evaluate the feasibility of pressure-dependent models in the design of ship piping systems.For this purpose,a complex ship piping system is designed to operate in firefighting and bilge services through jet pumps.The system is solved as pressure-dependent model by the piping system analysis software EPANET and by a mathematical approach involving a piping network model.This results in a functional system that guarantees the recommendable ranges of hydraulic state variables(flow and pressure)and compliance with the rules of ship classification societies.Through this research,the suitability and viability of pressure-dependent models in the simulation of a ship piping system are proven. 展开更多
关键词 Pressure-dependent models Ship piping systems Bilge systems Firefighting systems piping network models
在线阅读 下载PDF
Characteristics of turbulent flow distribution in branch piping system 被引量:4
2
作者 YOO Geun-jong CHOI Hoon-ki KIM Chul-hwan 《Journal of Central South University》 SCIE EI CAS 2012年第11期3208-3214,共7页
Flow distribution in branch piping system is affected by flow characteristics and different geometric variations. Most of the flow distribution studies are performed with one-dimensional analysis to yield overall info... Flow distribution in branch piping system is affected by flow characteristics and different geometric variations. Most of the flow distribution studies are performed with one-dimensional analysis to yield overall information only. However, detailed analysis is required to find effects of design parameters on the flow distribution. For this aspect, three-dimensional turbulent flow analysis was performed to assess turbulence model performance and effects of upstream pressure and branch pipe geometry. Three different turbulence models of standard k-e model, realizable k-e model and standard k-co yield similar results, indicating small effects of turbulence models on flow characteristics analysis. Geometric variations include area ratio of main and branch pipes, branch pipe diameter, and connection shape of main and branch pipes. Among these parameters, area ratio and branch diameter and shape show strong effect on flow distribution due to high friction and minor loss. Uniform flow distribution is one of common requirements in the branch piping system and this can be achieved with rather high total loss design. 展开更多
关键词 flow distribution pipe flow branch pipe turbulent flow
在线阅读 下载PDF
Augmented Reality Based on Object Recognition for Piping System Maintenance
3
作者 Ana Regina Mizrahy Cuperschmid Mariana Higashi Sakamoto 《Journal of Architectural Environment & Structural Engineering Research》 2021年第2期38-44,共7页
Augmented Reality(AR)applications can be used to improve tasks and mitigate errors during facilities operation and maintenance.This article presents an AR system for facility management using a three-dimensional(3D)ob... Augmented Reality(AR)applications can be used to improve tasks and mitigate errors during facilities operation and maintenance.This article presents an AR system for facility management using a three-dimensional(3D)object tracking method.Through spatial mapping,the object of interest,a pipe trap underneath a sink,is tracked and mixed onto the AR visualization.From that,the maintenance steps are transformed into visible and animated instructions.Although some tracking issues related to the component parts were observed,the designed AR application results demonstrated the potential to improve facility management tasks. 展开更多
关键词 Augmented reality 3D object tracking Maintenance PIPE Facility management
在线阅读 下载PDF
Sound field prediction and management in irregular enclosures subjected to piping system excitation
4
作者 Xiangliang Wang Dongwei Wang +1 位作者 Yun Ma Gengkai Hu 《Acta Mechanica Sinica》 2025年第11期121-134,共14页
The sound field driven by piping systems in enclosures may severely affect living comfort,which is frequently encountered in various engineering applications.Managing this sound field relies heavily on the available p... The sound field driven by piping systems in enclosures may severely affect living comfort,which is frequently encountered in various engineering applications.Managing this sound field relies heavily on the available prediction tools at hand,e.g.,the widely used finite element methods are computationally expensive due to the necessity to discretize entire space,analytical models,based on modal expansion method,may offer substantial advantages in terms of computational cost and efficiency.However,deriving eigenmodes of irregular enclosed spaces may be challenging,which impedes accurate and rapid predictions of the sound field in practical applications.This study presents an analytical framework aimed at rapidly and accurately predicting the interior sound field driven by the piping system vibrations in irregular enclosures.Vibration response of the piping system is obtained using the wave approach,and a line dipole source is idealized as the sound source of the piping system vibration.On the basis of eigenmodes of regular enclosures,the Kirchhoff-Helmholtz integral theorem(modal ex-pansion method for irregular enclosures)is introduced to account for the boundaries of irregular enclosures.This theoretical framework is validated through numerical simulations by finite element method and experiments,demonstrating high accuracy and significant efficiency advantages.The proposed method can be further employed to optimize radiated sound fields by tailoring the impedance of space walls or layout of piping systems.This study provides an efficient tool for predicting radiated sound field in general enclosures driven by vibration of piping systems,paving a new path for indoor acoustical optimization. 展开更多
关键词 piping systems Sound field prediction Dipole arrays Modal expansion method for irregular enclosures Acoustical optimization
原文传递
AN APPROACH TO MATHEMATICAL MODELING OF PIPING SYSTEM WITH FLUID-STRUCTURE INTERACTION 被引量:1
5
作者 Zhuge Qi Cai Yi-gang Yang Shi-chao Sheng Jing-chao Zhejiang University,Hangzhou,P.R.China 《Journal of Hydrodynamics》 SCIE EI CSCD 1989年第4期11-19,共9页
The present paper studies the dynamic pehaviour of a complex piping system containing internal fluid flow.A generalized complex modal decomposition method is proposed for modeling the piping structure.A characteristic... The present paper studies the dynamic pehaviour of a complex piping system containing internal fluid flow.A generalized complex modal decomposition method is proposed for modeling the piping structure.A characteristic impedance transfer matrix of piping flow with a frequency-dependent friction is employed for describing the model of fluid flow,which is coupled to the structural model by means of an approach similar to that used in the structural modal synthesis.The coupled model is practicable for the detecting,monitoring,controlling or predicting of piping vibrations,and for the studying of fluid dynamic characteristics under the influence of structural vibration,also for the diagnosticating of the piping system. 展开更多
关键词 AN APPROACH TO MATHEMATICAL MODELING OF piping system WITH FLUID-STRUCTURE INTERACTION
原文传递
Vibrational characteristics of piping system in air conditioning outdoor unit 被引量:17
6
作者 S. K. LOH W. F. FARIS +1 位作者 M. HAMDI W. M. CHIN 《Science China(Technological Sciences)》 SCIE EI CAS 2011年第5期1154-1168,共15页
The modal analysis of piping system in air conditioner (AC) outdoor unit is essential to investigate the vibration properties of the system. In view of the growing significance of numerical finite element (FE) model f... The modal analysis of piping system in air conditioner (AC) outdoor unit is essential to investigate the vibration properties of the system. In view of the growing significance of numerical finite element (FE) model for vibration behaviour prediction, the AC piping elastic end support characterization has been explored. The axial and radial stiffness variables (ka, kr1, kr2) of the compressor-piping mounting are obtained and represented by dynamic stiffness of compressor grommet. They are obtained from dynamic load deflection test based on compressor operating condition such as excitation frequency and amplitude. The unknown stiffness variables of the other tube end (chassis-piping mounting) are determined by parameter fine tuning. An experimental modal analysis using impact hammer test has also been employed to determine the vibration properties such as natural frequencies, mode shapes and damping ratio of the piping structures. The modal parameters acquisition using SCADAS mobile acquisition system and LMS Impact Testing software is compared with the corresponding simulated modal properties using Abaqus. Most of the simulated natural frequencies achieve good correlation with the measured frequencies and it is reasonably a good prediction model to predict vibration behaviour of AC piping structures. 展开更多
关键词 air conditioning outdoor unit piping modal analysis vibration characteristics
原文传递
Research on the ITOC Based Scheduling System for Ship Piping Production 被引量:1
7
作者 李瑞 刘玉君 濵田邦裕 《Journal of Marine Science and Application》 2010年第4期355-362,共8页
Manufacturing of ship piping systems is one of the major production activities in shipbuilding. The schedule of pipe production has an important impact on the master schedule of shipbuilding. In this research, the ITO... Manufacturing of ship piping systems is one of the major production activities in shipbuilding. The schedule of pipe production has an important impact on the master schedule of shipbuilding. In this research, the ITOC concept was introduced to solve the scheduling problems of a piping factory, and an intelligent scheduling system was developed. The system, in which a product model, an operation model, a factory model, and a knowledge database of piping production were integrated, automated the planning process and production scheduling. Details of the above points were discussed. Moreover, an application of the system in a piping factory, which achieved a higher level of performance as measured by tardiness, lead time, and inventory, was demonstrated. 展开更多
关键词 piping factory scheduling system ITOC
在线阅读 下载PDF
Development of a Theory of Constraints Based Scheduling System for Ship Piping Production
8
作者 李瑞 濵田邦裕 下反贵裕 《Journal of Shanghai Jiaotong university(Science)》 EI 2010年第3期354-362,共9页
Manufacturing of ship piping system is one of the major production activities in shipbuilding.The schedule of pipe production has an important impact on master schedule of shipbuilding.In this research,the theory of c... Manufacturing of ship piping system is one of the major production activities in shipbuilding.The schedule of pipe production has an important impact on master schedule of shipbuilding.In this research,the theory of constraints(TOC) concept is introduced to solve the scheduling problems of piping factory,and an intelligent scheduling system is developed.The system integrates a product model,an operation model,a factory model and a knowledge database of piping production and can make the process planning and production scheduling automatically.In the paper,details of above points are discussed.Moreover,an application of the system in a piping factory,which achieves a higher level of performance as measured by tardiness,lead time and inventory,is demonstrated at the end of the paper. 展开更多
关键词 piping factory scheduling system theory of constraints(TOC)
原文传递
Experimental Study on a Hybrid Battery Thermal Management System Combining Oscillating Heat Pipe and Liquid Cooling
9
作者 Hongkun Lu M.M.Noor K.Kadirgama 《Frontiers in Heat and Mass Transfer》 2025年第1期299-324,共26页
To improve the thermal performance and temperature uniformity of battery pack,this paper presents a novel battery thermal management system(BTMS)that integrates oscillating heat pipe(OHP)technology with liquid cooling... To improve the thermal performance and temperature uniformity of battery pack,this paper presents a novel battery thermal management system(BTMS)that integrates oscillating heat pipe(OHP)technology with liquid cooling.The primary innovation of the new hybrid BTMS lies in the use of an OHP with vertically arranged evaporator and condenser,enabling dual heat transfer pathways through liquid cooling plate and OHP.This study experimentally investigates the performance characteristics of the⊥-shaped OHP and hybrid BTMS.Results show that lower filling ratios significantly enhance the OHP’s startup performance but reduce operational stability,with optimal performance achieved at a 26.1%filling ratio.Acetone,as a single working fluid,exhibited superior heat transfer performance under low-load conditions compared to mixed fluids,while the acetone/ethanol mixture,forming a non-azeotropic solution,minimized temperature fluctuations.At 100 W,the⊥-shaped OHP with a horizontally arranged evaporator demonstrated better heat transfer performance than 2D-OHP designs.Compared to a liquid BTMS using water coolant at 280 W,the hybrid BTMS reduced the equivalent thermal resistance(RBTMS)and maximum temperature difference(ΔTmax)by 8.06%and 19.1%,respectively.When graphene nanofluid was used as the coolant in hybrid BTMS,the battery pack’s average temperature(Tb)dropped from 52.2℃ to 47.9℃,with RBTMS andΔTmax decreasing by 20.1%and 32.7%,respectively.These findings underscore the hybrid BTMS’s suitability for high heat load applications,offering a promising solution for electric vehicle thermal management. 展开更多
关键词 Battery thermal management system oscillating heat pipe liquid cooling hybrid BTMS graphene nanofluid
在线阅读 下载PDF
Gas Dynamics and Heat Transfer of Stationary Gas Flows in the Intake System with Different Designs of the Engine Cylinder Head
10
作者 Leonid Plotnikov 《Frontiers in Heat and Mass Transfer》 2025年第5期1443-1454,共12页
Industry and energy continue to require piston engines(PICE)at a high level worldwide.Therefore,science and technology must urgently work on improving the PICE working cycle.Improving the quality of the intake process... Industry and energy continue to require piston engines(PICE)at a high level worldwide.Therefore,science and technology must urgently work on improving the PICE working cycle.Improving the quality of the intake process of theworking fluid into the cylinder is one of the most effective ways to improve the operational performance of PICE.The purpose of the study was to assess the impact of various cylinder head(CylH)designs on the gas-dynamic and heat-exchange qualities of air flows within an engine model’s intake system.Three different CylH designs were studied:the basic configuration and upgraded cylinder heads with a square valve and a square valve port.These designs are innovative.Laboratory conditions were used to conduct the studies for stationary air flow.The experiments covered the range of Reynolds numbers from 8500 to 96,000.The intake system’s gas dynamics and heat transfer were determined using the thermal anemometry method,which was based on constant-temperature hot-wire anemometers.It has been established that the use of upgraded CylHs causes an increase in the turbulence number of flow by an average of 13.5%.Additionally,itwas found that the increase in the turbulence number of flowin the cylinder is about 19%when installing new CylH designs.It was shown that therewas an increase in the heat transfer coefficient in the intake pipe by 10%–40%when installing modernized CylH designs in the intake system.The article focused on the problems of increasing the turbulence level and intensifying the heat transfer of stationary air flow in the intake system,specifically in PICEs.The study’s findings are novel in the areas of applied gas dynamics and PICEs. 展开更多
关键词 Piston engine cylinder head VALVE intake pipe gas dynamics local heat transfer stationary air flow
在线阅读 下载PDF
Innovative Dual Two-Phase Cooling System for Thermal Management of Electric Vehicle Batteries Using Dielectric Fluids and Pulsating Heat Pipes
11
作者 Federico Sacchelli Luca Cattani +2 位作者 Matteo Malavasi Fabio Bozzoli Corrado Sciancalepore 《Frontiers in Heat and Mass Transfer》 2025年第5期1351-1364,共14页
This study investigates the feasibility of a novel dual two-phase cooling system for thermal management in lithium-ion batteries used in electric vehicles(EVs).The proposed system aims to combine low-boiling dielectri... This study investigates the feasibility of a novel dual two-phase cooling system for thermal management in lithium-ion batteries used in electric vehicles(EVs).The proposed system aims to combine low-boiling dielectric fluid immersion cooling and pulsating heat pipes(PHPs),in order to leverage the advantages of both technologies for efficient heat dissipation in a completely passive configuration.Experimental evaluations conducted under different discharge conditions demonstrate that the systemeffectivelymaintains battery temperatureswithin the optimal range of 20–40℃,with enhanced temperature uniformity and stability.While the PHP exhibited minimal impact at low power,its role became critical under higher discharge rates,ensuring efficient vapor condensation and pressure stability.The results highlight the potential of this passive cooling system to improve battery performance and safety,supporting its application in EV battery thermal management.Future work aims to optimize design parameters and evaluate real battery modules under ultra-fast charging scenarios. 展开更多
关键词 Battery thermal management systems dual two-phase cooling low-boiling immersion liquid pulsating heat pipes
在线阅读 下载PDF
Orthogonality conditions and analytical response solutions of damped gyroscopic double-beam system:an example of pipe-in-pipe system
12
作者 Jinming FAN Zhongbiao PU +2 位作者 Jie YANG Xueping CHANG Yinghui LI 《Applied Mathematics and Mechanics(English Edition)》 2025年第5期927-946,共20页
The double-beam system is a crucial foundational structure in industry,with extensive application contexts and significant research value.The double-beam system with damping and gyroscopic effects is termed as the dam... The double-beam system is a crucial foundational structure in industry,with extensive application contexts and significant research value.The double-beam system with damping and gyroscopic effects is termed as the damped gyroscopic double-beam system.In such systems,the orthogonality conditions of the undamped double-beam system are no longer applicable,rendering it impossible to decouple them in modal space using the modal superposition method(MSM) to obtain analytical solutions.Based on the complex modal method and state space method,this paper takes the damped pipe-in-pipe(PIP) system as an example to solve this problem.The concepts of the original system and adjoint system are introduced,and the orthogonality conditions of the damped PIP system are given in the state-space.Based on the derived orthogonality conditions,the transient and steady-state response solutions are obtained.In the numerical discussion section,the convergence and accuracy of the solutions are verified.In addition,the dynamic responses of the system under different excitations and initial conditions are studied,and the forward and reverse synchronous vibrations in the PIP system are discussed.Overall,the method presented in this paper provides a convenient way to analyze the dynamics of the damped gyroscopic double-beam system. 展开更多
关键词 fluid-conveying pipe transverse vibration pipe-in-pipe(PIP)system gyroscopic double-beam system complex modal superposition method(MSM) analytical solution
在线阅读 下载PDF
Thermal Performance and Application of a Self-Powered Coal Monitoring System with Heat Pipe and Thermoelectric Integration for Spontaneous Combustion Prevention
13
作者 Tao Lin Chengdai Chen +2 位作者 Liyao Chen Fengqin Han Guanghui He 《Frontiers in Heat and Mass Transfer》 2025年第5期1661-1680,共20页
Targeting spontaneous coal combustion during stacking,we developed an efficient heat dissipation&self-supplied wireless temperature measurement system(SPWTM)with gravity heat pipe-thermoelectric integration for du... Targeting spontaneous coal combustion during stacking,we developed an efficient heat dissipation&self-supplied wireless temperature measurement system(SPWTM)with gravity heat pipe-thermoelectric integration for dual safety.The heat transfer characteristics and temperature measurement optimization of the system are experimentally investigated and verified in practical applications.The results show that,firstly,the effects of coal pile heat production power and burial depth,along with heat pipe startup and heat transfer characteristics.At 60 cmburial depth,the condensation section dissipates 98%coal pile heat via natural convection.Secondly,for the temperature measurement error caused by the heat pipe heat transfer temperature difference,the correction method of“superimposing the measured value with the heat transfer temperature difference”is proposed,and the higher the coal temperature,the better the temperature measurement accuracy.Finally,the system can quickly(≤1 h)reduce the temperature of the coal pile to the spontaneous combustion point,significantly inhibiting the spontaneous combustion phenomenon,the maximum temperature does not exceed 49.2℃.Meanwhile,it utilizes waste heat to drive thermoelectric power generation,realizing self-supplied,unattended,and long-term accurate temperature measurement and warning.In a word,synergistic active heat dissipation and self-powered temperature monitoring-warning ensure dual coal pile thermal safety. 展开更多
关键词 Coal pile thermal safety heat pipe thermoelectric coupling self-powered temperature measurement heat transfer characteristics
在线阅读 下载PDF
Study of 2D/3D Associative Parametric Product Modeling Techniques Adaptive to Piping System
14
作者 Zhang Bin Chang Hongxing Song Jianping 2 《Computer Aided Drafting,Design and Manufacturing》 1998年第1期43-48,共6页
Case study of 2D/3D association and feature based parametric variational design techniques applied to piping system in AEC industry is made to integrate the P&ID and 3D piping modules. Object classes shared by bot... Case study of 2D/3D association and feature based parametric variational design techniques applied to piping system in AEC industry is made to integrate the P&ID and 3D piping modules. Object classes shared by both modules contain the identical connectivity information for all pipelines, while the geometric information for 2D and 3D cases are stored separately. Some details about the object-oriented techniques to cope with such a situation are explored. 展开更多
关键词 D/3D association 3D piping P&ID
全文增补中
Optimized DISA system parameters of a thin-wall malleable iron pipe casting by numerical simulation 被引量:1
15
作者 顾涛 连冬晓 +2 位作者 覃福海 周永军 杜鹏鹏 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2017年第2期119-124,共6页
The filling and solidification of a malleable iron pipe casting manufactured by DISA casting mold line with different design parameters were calculated by using software MAGMASOFT. Then the shrinkage porosity was pred... The filling and solidification of a malleable iron pipe casting manufactured by DISA casting mold line with different design parameters were calculated by using software MAGMASOFT. Then the shrinkage porosity was predicted by thermal criterion. Based on the simulation results, the influences of the runner ratio and feeder position on the porosity were discussed. The results show that synchronization of injection can be significantly influenced by the size of downsprue section, and an de-sign structure of DISA gating system was used to solve the problem of flow imbalance in the filling procegs. At the same time, the riser was designed on the hotspot for feeding shrinkage. At last, the optimizated gating system and feeding system were ac-complished to eliminate shrinkage porosity. 展开更多
关键词 DISA casting mold line malleable iron pipe casting shrinkage porosity numerical simulation
在线阅读 下载PDF
Thermal simulation method for researching solidification process of ductile iron pipe based on heat transfer similarity of characteristic unit of ductile iron pipe
16
作者 Gan-chao Zhai Gong-ao Zhu +4 位作者 Shao-dong Hu Bin Yang Jie-yu Zhang Xiang-ru Chen Qi-jie Zhai 《China Foundry》 2026年第1期62-72,共11页
Centrifugal casting of ductile iron pipe is a high-temperature,semi-continuous production process.However,conducting laboratory research on the solidification process of centrifugal casting of ductile iron pipe presen... Centrifugal casting of ductile iron pipe is a high-temperature,semi-continuous production process.However,conducting laboratory research on the solidification process of centrifugal casting of ductile iron pipe presents significant challenges.In this study,a novel research method was introduced for investigating the solidification process of ductile iron pipe,namely thermal simulation of ductile iron pipe.Comparative research was conducted on the microstructure and properties of the thermal simulation sample and the ductile iron pipe.The findings indicate that the thermal simulation sample and ductile iron pipe exhibit good heat transfer similarity and microstructure similarity.The difference of cooling rate between thermal simulation sample and ductile pipe is less than 0.24℃·s^(-1),and the difference of microstructure content of free cementite,ferrite,and pearlite is less than 5%.The tensile strength of annealed ductile iron pipe is 466 MPa,with an elongation of 16.1%and a Brinell hardness of 156.5 HBW.In comparison,the tensile strength of annealed thermal simulation sample is 482.0 MPa,with an elongation of 15.5%and a Brinell hardness of 159.0 HBW.These results suggest that the thermal simulation experimental research method is both scientific and feasible,offering an objective,reliable,and cost-effective approach to laboratory research on ductile iron pipe. 展开更多
关键词 ductile iron pipe centrifugal casting thermal simulation MICROSTRUCTURE mechanical property
在线阅读 下载PDF
Numerical modeling of earthen dam breach due to piping failure 被引量:8
17
作者 Sheng-shui Chen Qi-ming Zhong Guang-ze Shen 《Water Science and Engineering》 EI CAS CSCD 2019年第3期169-178,共10页
Based on model tests of earthen dam breach due to piping failure, a numerical model was developed.A key difference from previous research is the assumption that the cross-section of the pipe channel is an arch, with a... Based on model tests of earthen dam breach due to piping failure, a numerical model was developed.A key difference from previous research is the assumption that the cross-section of the pipe channel is an arch, with a rectangle at the bottom and a semicircle at the top before the collapse of the pipe roof, rather than a rectangular or circular cross-section.A shear stress-based erosion rate formula was utilized, and the arched pipe tunnel was assumed to enlarge along its length and width until the overlying soil could no longer maintain stability.Orifice flow and open channel flow were adopted to calculate the breach flow discharge for pressure and free surface flows, respectively.The collapse of the pipe roof was determined by comparing the weight of the overlying soil and the cohesion of the soil on the two sidewalls of the pipe.After the collapse, overtopping failure dominated, and the limit equilibrium method was adopted to estimate the stability of the breach slope when the water flow overtopped.In addition, incomplete and base erosion, as well as one-and two-sided breaches were taken into account.The USDAARS-HERU model test P1, with detailed measured data, was used as a case study, and two artificially filled earthen dam failure cases were studied to verify the model.Feedback analysis demonstrates that the proposed model can provide satisfactory results for modeling the breach flow discharge and breach development process.Sensitivity analysis shows that the soil erodibility and initial piping position significantly affect the prediction of the breach flow discharge.Furthermore, a comparison with a well-known numerical model shows that the proposed model performs better than the NWS BREACH model. 展开更多
关键词 Earthen DAM piping FAILURE OVERTOPPING FAILURE Breach FLOW NUMERICAL modeling Sensitivity analysis
在线阅读 下载PDF
Improving the performance of a thermoelectric power system using a flat-plate heat pipe 被引量:8
18
作者 Suchen Wu Yiwen Ding +1 位作者 Chengbin Zhang Dehao Xu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2019年第1期44-53,共10页
A gravitational flat-plate heat pipe is designed and fabricated in this paper to serve as a heat spreader to diffuse the local heat source to the hot side of the thermoelectric power module.Based on this, an experimen... A gravitational flat-plate heat pipe is designed and fabricated in this paper to serve as a heat spreader to diffuse the local heat source to the hot side of the thermoelectric power module.Based on this, an experimental test for the thermoelectric power generation system is conducted to study the influences of the heat spreader on the temperature uniformity and power generation performance when exposing to a local heat source.In addition,the effects of the heating power, inclination angle, and local heat source size on the power generation performance of the thermoelectric power module using a flat-plate heat pipe as a heat spreader are examined and compared with that using a metal plate.The results indicate that the gravitational flat-plate heat pipe has considerable advantages over the metal plate in the temperature uniformity.The superiority of temperature uniformity in the improvement of power generation performance for the thermoelectric power system using a heat pipe is demonstrated.Particularly, the heat pipe shows good adaptability to placement mode and the local heat source size, which is beneficial to the application in the thermoelectric power generation. 展开更多
关键词 THERMOELECTRIC HEAT PIPE HEAT SPREADER Power generation
在线阅读 下载PDF
Hydraulic calculation of gravity transportation pipeline system for backfill slurry 被引量:14
19
作者 张钦礼 胡冠宇 王新民 《Journal of Central South University of Technology》 EI 2008年第5期645-649,共5页
Taking cemented coal gangue pipeline transportation system in Suncun Coal Mine, Xinwen Mining Group, Shandong Province, China, as an example, the hydraulic calculation approaches and process about gravity pipeline tra... Taking cemented coal gangue pipeline transportation system in Suncun Coal Mine, Xinwen Mining Group, Shandong Province, China, as an example, the hydraulic calculation approaches and process about gravity pipeline transportation of backfill slurry were investigated. The results show that the backfill capability of the backfill system should be higher than 74.4 m3/h according to the mining production and backfill times in the mine; the minimum velocity (critical velocity) and practical working velocity of the backfill slurry are 1.44 and 3.82 m/s, respectively. Various formulae give the maximum ratio of total length to vertical height of pipeline (L/H ratio) of the backfill system of 5.4, and then the reliability and capability of the system can be evaluated. 展开更多
关键词 hydraulic calculation critical velocity working velocity pipe length-backfill depth ratio backfill capability
在线阅读 下载PDF
Flow-induced Noise and Vibration Analysis of a Piping Elbow with/without a Guide Vane 被引量:6
20
作者 Tao Zhang Yong'ou Zhang +1 位作者 Huajiang Ouyang Tao Guo 《Journal of Marine Science and Application》 2014年第4期394-401,共8页
The effect of a guide vane installed at the elbow on flow-induced noise and vibration is investigated in the range of Reynolds numbers from 1.70×10^5 to 6.81×10^5, and the position of guide vane is determine... The effect of a guide vane installed at the elbow on flow-induced noise and vibration is investigated in the range of Reynolds numbers from 1.70×10^5 to 6.81×10^5, and the position of guide vane is determined by publications. The turbulent flow in the piping elbow is simulated with large eddy simulation (LES). Following this, a hybrid method of combining LES and Lighthill's acoustic analogy theory is used to simulate the hydrodynamic noise and sound sources are solved as volume sources in code Actran. In addition, the flow-induced vibration of the piping elbow is investigated based on a fluid-structure interaction (FSI) code. The LES results indicate that the range of vortex zone in the elbow without the guide vane is larger than the case with the guide vane, and the guide vane is effective in reducing flow-induced noise and vibration in the 90° piping elbow at different Reynolds numbers. 展开更多
关键词 flow-induced noise flow-induced vibration piping elbow guide vane large eddy simulation fluid structure interaction Actran
在线阅读 下载PDF
上一页 1 2 64 下一页 到第
使用帮助 返回顶部