This paper aims to evaluate the feasibility of pressure-dependent models in the design of ship piping systems.For this purpose,a complex ship piping system is designed to operate in firefighting and bilge services thr...This paper aims to evaluate the feasibility of pressure-dependent models in the design of ship piping systems.For this purpose,a complex ship piping system is designed to operate in firefighting and bilge services through jet pumps.The system is solved as pressure-dependent model by the piping system analysis software EPANET and by a mathematical approach involving a piping network model.This results in a functional system that guarantees the recommendable ranges of hydraulic state variables(flow and pressure)and compliance with the rules of ship classification societies.Through this research,the suitability and viability of pressure-dependent models in the simulation of a ship piping system are proven.展开更多
Flow distribution in branch piping system is affected by flow characteristics and different geometric variations. Most of the flow distribution studies are performed with one-dimensional analysis to yield overall info...Flow distribution in branch piping system is affected by flow characteristics and different geometric variations. Most of the flow distribution studies are performed with one-dimensional analysis to yield overall information only. However, detailed analysis is required to find effects of design parameters on the flow distribution. For this aspect, three-dimensional turbulent flow analysis was performed to assess turbulence model performance and effects of upstream pressure and branch pipe geometry. Three different turbulence models of standard k-e model, realizable k-e model and standard k-co yield similar results, indicating small effects of turbulence models on flow characteristics analysis. Geometric variations include area ratio of main and branch pipes, branch pipe diameter, and connection shape of main and branch pipes. Among these parameters, area ratio and branch diameter and shape show strong effect on flow distribution due to high friction and minor loss. Uniform flow distribution is one of common requirements in the branch piping system and this can be achieved with rather high total loss design.展开更多
Augmented Reality(AR)applications can be used to improve tasks and mitigate errors during facilities operation and maintenance.This article presents an AR system for facility management using a three-dimensional(3D)ob...Augmented Reality(AR)applications can be used to improve tasks and mitigate errors during facilities operation and maintenance.This article presents an AR system for facility management using a three-dimensional(3D)object tracking method.Through spatial mapping,the object of interest,a pipe trap underneath a sink,is tracked and mixed onto the AR visualization.From that,the maintenance steps are transformed into visible and animated instructions.Although some tracking issues related to the component parts were observed,the designed AR application results demonstrated the potential to improve facility management tasks.展开更多
The sound field driven by piping systems in enclosures may severely affect living comfort,which is frequently encountered in various engineering applications.Managing this sound field relies heavily on the available p...The sound field driven by piping systems in enclosures may severely affect living comfort,which is frequently encountered in various engineering applications.Managing this sound field relies heavily on the available prediction tools at hand,e.g.,the widely used finite element methods are computationally expensive due to the necessity to discretize entire space,analytical models,based on modal expansion method,may offer substantial advantages in terms of computational cost and efficiency.However,deriving eigenmodes of irregular enclosed spaces may be challenging,which impedes accurate and rapid predictions of the sound field in practical applications.This study presents an analytical framework aimed at rapidly and accurately predicting the interior sound field driven by the piping system vibrations in irregular enclosures.Vibration response of the piping system is obtained using the wave approach,and a line dipole source is idealized as the sound source of the piping system vibration.On the basis of eigenmodes of regular enclosures,the Kirchhoff-Helmholtz integral theorem(modal ex-pansion method for irregular enclosures)is introduced to account for the boundaries of irregular enclosures.This theoretical framework is validated through numerical simulations by finite element method and experiments,demonstrating high accuracy and significant efficiency advantages.The proposed method can be further employed to optimize radiated sound fields by tailoring the impedance of space walls or layout of piping systems.This study provides an efficient tool for predicting radiated sound field in general enclosures driven by vibration of piping systems,paving a new path for indoor acoustical optimization.展开更多
To improve the thermal performance and temperature uniformity of battery pack,this paper presents a novel battery thermal management system(BTMS)that integrates oscillating heat pipe(OHP)technology with liquid cooling...To improve the thermal performance and temperature uniformity of battery pack,this paper presents a novel battery thermal management system(BTMS)that integrates oscillating heat pipe(OHP)technology with liquid cooling.The primary innovation of the new hybrid BTMS lies in the use of an OHP with vertically arranged evaporator and condenser,enabling dual heat transfer pathways through liquid cooling plate and OHP.This study experimentally investigates the performance characteristics of the⊥-shaped OHP and hybrid BTMS.Results show that lower filling ratios significantly enhance the OHP’s startup performance but reduce operational stability,with optimal performance achieved at a 26.1%filling ratio.Acetone,as a single working fluid,exhibited superior heat transfer performance under low-load conditions compared to mixed fluids,while the acetone/ethanol mixture,forming a non-azeotropic solution,minimized temperature fluctuations.At 100 W,the⊥-shaped OHP with a horizontally arranged evaporator demonstrated better heat transfer performance than 2D-OHP designs.Compared to a liquid BTMS using water coolant at 280 W,the hybrid BTMS reduced the equivalent thermal resistance(RBTMS)and maximum temperature difference(ΔTmax)by 8.06%and 19.1%,respectively.When graphene nanofluid was used as the coolant in hybrid BTMS,the battery pack’s average temperature(Tb)dropped from 52.2℃ to 47.9℃,with RBTMS andΔTmax decreasing by 20.1%and 32.7%,respectively.These findings underscore the hybrid BTMS’s suitability for high heat load applications,offering a promising solution for electric vehicle thermal management.展开更多
Industry and energy continue to require piston engines(PICE)at a high level worldwide.Therefore,science and technology must urgently work on improving the PICE working cycle.Improving the quality of the intake process...Industry and energy continue to require piston engines(PICE)at a high level worldwide.Therefore,science and technology must urgently work on improving the PICE working cycle.Improving the quality of the intake process of theworking fluid into the cylinder is one of the most effective ways to improve the operational performance of PICE.The purpose of the study was to assess the impact of various cylinder head(CylH)designs on the gas-dynamic and heat-exchange qualities of air flows within an engine model’s intake system.Three different CylH designs were studied:the basic configuration and upgraded cylinder heads with a square valve and a square valve port.These designs are innovative.Laboratory conditions were used to conduct the studies for stationary air flow.The experiments covered the range of Reynolds numbers from 8500 to 96,000.The intake system’s gas dynamics and heat transfer were determined using the thermal anemometry method,which was based on constant-temperature hot-wire anemometers.It has been established that the use of upgraded CylHs causes an increase in the turbulence number of flow by an average of 13.5%.Additionally,itwas found that the increase in the turbulence number of flowin the cylinder is about 19%when installing new CylH designs.It was shown that therewas an increase in the heat transfer coefficient in the intake pipe by 10%–40%when installing modernized CylH designs in the intake system.The article focused on the problems of increasing the turbulence level and intensifying the heat transfer of stationary air flow in the intake system,specifically in PICEs.The study’s findings are novel in the areas of applied gas dynamics and PICEs.展开更多
This study investigates the feasibility of a novel dual two-phase cooling system for thermal management in lithium-ion batteries used in electric vehicles(EVs).The proposed system aims to combine low-boiling dielectri...This study investigates the feasibility of a novel dual two-phase cooling system for thermal management in lithium-ion batteries used in electric vehicles(EVs).The proposed system aims to combine low-boiling dielectric fluid immersion cooling and pulsating heat pipes(PHPs),in order to leverage the advantages of both technologies for efficient heat dissipation in a completely passive configuration.Experimental evaluations conducted under different discharge conditions demonstrate that the systemeffectivelymaintains battery temperatureswithin the optimal range of 20–40℃,with enhanced temperature uniformity and stability.While the PHP exhibited minimal impact at low power,its role became critical under higher discharge rates,ensuring efficient vapor condensation and pressure stability.The results highlight the potential of this passive cooling system to improve battery performance and safety,supporting its application in EV battery thermal management.Future work aims to optimize design parameters and evaluate real battery modules under ultra-fast charging scenarios.展开更多
The double-beam system is a crucial foundational structure in industry,with extensive application contexts and significant research value.The double-beam system with damping and gyroscopic effects is termed as the dam...The double-beam system is a crucial foundational structure in industry,with extensive application contexts and significant research value.The double-beam system with damping and gyroscopic effects is termed as the damped gyroscopic double-beam system.In such systems,the orthogonality conditions of the undamped double-beam system are no longer applicable,rendering it impossible to decouple them in modal space using the modal superposition method(MSM) to obtain analytical solutions.Based on the complex modal method and state space method,this paper takes the damped pipe-in-pipe(PIP) system as an example to solve this problem.The concepts of the original system and adjoint system are introduced,and the orthogonality conditions of the damped PIP system are given in the state-space.Based on the derived orthogonality conditions,the transient and steady-state response solutions are obtained.In the numerical discussion section,the convergence and accuracy of the solutions are verified.In addition,the dynamic responses of the system under different excitations and initial conditions are studied,and the forward and reverse synchronous vibrations in the PIP system are discussed.Overall,the method presented in this paper provides a convenient way to analyze the dynamics of the damped gyroscopic double-beam system.展开更多
Targeting spontaneous coal combustion during stacking,we developed an efficient heat dissipation&self-supplied wireless temperature measurement system(SPWTM)with gravity heat pipe-thermoelectric integration for du...Targeting spontaneous coal combustion during stacking,we developed an efficient heat dissipation&self-supplied wireless temperature measurement system(SPWTM)with gravity heat pipe-thermoelectric integration for dual safety.The heat transfer characteristics and temperature measurement optimization of the system are experimentally investigated and verified in practical applications.The results show that,firstly,the effects of coal pile heat production power and burial depth,along with heat pipe startup and heat transfer characteristics.At 60 cmburial depth,the condensation section dissipates 98%coal pile heat via natural convection.Secondly,for the temperature measurement error caused by the heat pipe heat transfer temperature difference,the correction method of“superimposing the measured value with the heat transfer temperature difference”is proposed,and the higher the coal temperature,the better the temperature measurement accuracy.Finally,the system can quickly(≤1 h)reduce the temperature of the coal pile to the spontaneous combustion point,significantly inhibiting the spontaneous combustion phenomenon,the maximum temperature does not exceed 49.2℃.Meanwhile,it utilizes waste heat to drive thermoelectric power generation,realizing self-supplied,unattended,and long-term accurate temperature measurement and warning.In a word,synergistic active heat dissipation and self-powered temperature monitoring-warning ensure dual coal pile thermal safety.展开更多
The present paper studies the dynamic pehaviour of a complex piping system containing internal fluid flow.A generalized complex modal decomposition method is proposed for modeling the piping structure.A characteristic...The present paper studies the dynamic pehaviour of a complex piping system containing internal fluid flow.A generalized complex modal decomposition method is proposed for modeling the piping structure.A characteristic impedance transfer matrix of piping flow with a frequency-dependent friction is employed for describing the model of fluid flow,which is coupled to the structural model by means of an approach similar to that used in the structural modal synthesis.The coupled model is practicable for the detecting,monitoring,controlling or predicting of piping vibrations,and for the studying of fluid dynamic characteristics under the influence of structural vibration,also for the diagnosticating of the piping system.展开更多
The modal analysis of piping system in air conditioner (AC) outdoor unit is essential to investigate the vibration properties of the system. In view of the growing significance of numerical finite element (FE) model f...The modal analysis of piping system in air conditioner (AC) outdoor unit is essential to investigate the vibration properties of the system. In view of the growing significance of numerical finite element (FE) model for vibration behaviour prediction, the AC piping elastic end support characterization has been explored. The axial and radial stiffness variables (ka, kr1, kr2) of the compressor-piping mounting are obtained and represented by dynamic stiffness of compressor grommet. They are obtained from dynamic load deflection test based on compressor operating condition such as excitation frequency and amplitude. The unknown stiffness variables of the other tube end (chassis-piping mounting) are determined by parameter fine tuning. An experimental modal analysis using impact hammer test has also been employed to determine the vibration properties such as natural frequencies, mode shapes and damping ratio of the piping structures. The modal parameters acquisition using SCADAS mobile acquisition system and LMS Impact Testing software is compared with the corresponding simulated modal properties using Abaqus. Most of the simulated natural frequencies achieve good correlation with the measured frequencies and it is reasonably a good prediction model to predict vibration behaviour of AC piping structures.展开更多
Manufacturing of ship piping systems is one of the major production activities in shipbuilding. The schedule of pipe production has an important impact on the master schedule of shipbuilding. In this research, the ITO...Manufacturing of ship piping systems is one of the major production activities in shipbuilding. The schedule of pipe production has an important impact on the master schedule of shipbuilding. In this research, the ITOC concept was introduced to solve the scheduling problems of a piping factory, and an intelligent scheduling system was developed. The system, in which a product model, an operation model, a factory model, and a knowledge database of piping production were integrated, automated the planning process and production scheduling. Details of the above points were discussed. Moreover, an application of the system in a piping factory, which achieved a higher level of performance as measured by tardiness, lead time, and inventory, was demonstrated.展开更多
Many locations with concentrated hydrates at vents have confirmed the presence of abundant thermogenic gas in the middle of the Qiongdongnan Basin(QDNB).However,the impact of deep structures on gasbearing fluids migra...Many locations with concentrated hydrates at vents have confirmed the presence of abundant thermogenic gas in the middle of the Qiongdongnan Basin(QDNB).However,the impact of deep structures on gasbearing fluids migration and gas hydrates distribution in tectonically inactive regions is still unclear.In this study,the authors apply high-resolution 3D seismic and logging while drilling(LWD)data from the middle of the QDNB to investigate the influence of deep-large faults on gas chimneys and preferred gasescape pipes.The findings reveal the following:(1)Two significant deep-large faults,F1 and F2,developed on the edge of the Songnan Low Uplift,control the dominant migration of thermogenic hydrocarbons and determine the initial locations of gas chimneys.(2)The formation of gas chimneys is likely related to fault activation and reactivation.Gas chimney 1 is primarily arises from convergent fluid migration resulting from the intersection of the two faults,while the gas chimney 2 benefits from a steeper fault plane and shorter migration distance of fault F2.(3)Most gas-escape pipes are situated near the apex of the two faults.Their reactivations facilitate free gas flow into the GHSZ and contribute to the formation of fracture‐filling hydrates.展开更多
Manufacturing of ship piping system is one of the major production activities in shipbuilding.The schedule of pipe production has an important impact on master schedule of shipbuilding.In this research,the theory of c...Manufacturing of ship piping system is one of the major production activities in shipbuilding.The schedule of pipe production has an important impact on master schedule of shipbuilding.In this research,the theory of constraints(TOC) concept is introduced to solve the scheduling problems of piping factory,and an intelligent scheduling system is developed.The system integrates a product model,an operation model,a factory model and a knowledge database of piping production and can make the process planning and production scheduling automatically.In the paper,details of above points are discussed.Moreover,an application of the system in a piping factory,which achieves a higher level of performance as measured by tardiness,lead time and inventory,is demonstrated at the end of the paper.展开更多
A physically-based numerical three-dimensional earthen dam piping failure model is developed for homogeneous and zoned soil dams.This model is an erosion model,coupled with force/moment equilibrium analyses.Orifice fl...A physically-based numerical three-dimensional earthen dam piping failure model is developed for homogeneous and zoned soil dams.This model is an erosion model,coupled with force/moment equilibrium analyses.Orifice flow and two-dimensional(2D)shallow water equations(SWE)are solved to simulate dam break flows at different breaching stages.Erosion rates of different soils with different construction compaction efforts are calculated using corresponding erosion formulae.The dam's real shape,soil properties,and surrounding area are programmed.Large outer 2D-SWE grids are used to control upstream and downstream hydraulic conditions and control the boundary conditions of orifice flow,and inner 2D-SWE flow is used to scour soil and perform force/moment equilibrium analyses.This model is validated using the European Commission IMPACT(Investigation of Extreme Flood Processes and Uncertainty)Test#5 in Norway,Teton Dam failure in Idaho,USA,and Quail Creek Dike failure in Utah,USA.All calculated peak outflows are within 10%errors of observed values.Simulation results show that,for a V-shaped dam like Teton Dam,a piping breach location at the abutment tends to result in a smaller peak breach outflow than the piping breach location at the dam's center;and if Teton Dam had broken from its center for internal erosion,a peak outflow of 117851 m'/s,which is 81%larger than the peak outflow of 65120 m3/s released from its right abutment,would have been released from Teton Dam.A lower piping inlet elevation tends to cause a faster/earlier piping breach than a higher piping inlet elevation.展开更多
Ice pigging is an emerging technique for pipe cleaning in drinking water distribution systems.However,substantial confusion and controversy exist on the potential impacts of ice pigging on bulk water quality.This stud...Ice pigging is an emerging technique for pipe cleaning in drinking water distribution systems.However,substantial confusion and controversy exist on the potential impacts of ice pigging on bulk water quality.This study monitored the microstructural features and composition of sediments and microbial community structures in bulk water in eight multimaterial Chinese networks.Chloride concentration analysis demonstrated that separate cleaning of pipes with different materials in complex networks could mitigate the risk of losing ice pigs and degrading water quality.The microstructural and trace element characterization results showed that ice pigs would scarcely disturb the inner surfaces of long-used pipes.The bacterial richness and diversity of bulk water decreased significantly after ice pigging.Furthermore,correlations were established between pipe service age,temperature,and chloride and total iron concentrations,and the 15 most abundant taxa in bulk water,which could be used to guide practical ice pigging operations.展开更多
The effects of cast iron pipe corrosion onwater quality risk and microbial ecology in drinking water distribution systems(DWDSs)were investigated.It was found that trihalomethane(THMs)concentration and antibiotic resi...The effects of cast iron pipe corrosion onwater quality risk and microbial ecology in drinking water distribution systems(DWDSs)were investigated.It was found that trihalomethane(THMs)concentration and antibiotic resistance genes(ARGs)increased sharply in the old DWDSs.Under the same residual chlorine concentration conditions,the adenosine triphos-phate concentration in the effluent of old DWDSs(Eff-old)was significantly higher than that in the effluent of newDWDSs.Moreover,stronger bioflocculation ability andweaker hy-drophobicity coexisted in the extracellular polymeric substances of Eff-old,meanwhile,iron particles could be well inserted into the structure of the biofilms to enhance the mechanical strength and stability of the biofilms,hence enhancing the formation of THMs.Old DWDSs significantly influenced the microbial community of bulk water and triggered stronger mi-crobial antioxidant systems response,resulting in higher ARGs abundance.Corroded cast iron pipes induced a unique interaction system of biofilms,chlorine,and corrosion prod-ucts.Therefore,as the age of cast iron pipes increases,the fluctuation of water quality and microbial ecology should be paid more attention to maintain the safety of tap water.展开更多
Solar energy is a valuable renewable energy source,and photovoltaic(PV)systems are a practical approach to harnessing this energy.Nevertheless,low energy efficiency is considered a major setback of the system.Moreover...Solar energy is a valuable renewable energy source,and photovoltaic(PV)systems are a practical approach to harnessing this energy.Nevertheless,low energy efficiency is considered a major setback of the system.Moreover,high cell temperature and reflection of solar irradiance from the panel are considered chief culprits in this regard.Employing pulsating heat pipes(PHPs)is an innovative and useful approach to improving solar panel performance.This study presents the results of the power performance of a PV panel attached to a newly designed spiral pulsating heat pipe,while graphene oxide nanofluid with three different concentrations was used as a working fluid to maximize the efficacy of the solar panel.The study proved that the cooling method delivered high efficiency by reducing the temperature,especially in the middle of the day.Using nanofluid graphene oxide at concentrations of 0.2,0.4,and 0.8 gr/lit as the working fluid can reduce the thermal resistance of PHPs by over 30%,24%,and 15%,respectively.This,in turn,enhances the system’s electrical power output by approximately 9%,7%,and 6%,respectively.展开更多
Case study of 2D/3D association and feature based parametric variational design techniques applied to piping system in AEC industry is made to integrate the P&ID and 3D piping modules. Object classes shared by bot...Case study of 2D/3D association and feature based parametric variational design techniques applied to piping system in AEC industry is made to integrate the P&ID and 3D piping modules. Object classes shared by both modules contain the identical connectivity information for all pipelines, while the geometric information for 2D and 3D cases are stored separately. Some details about the object-oriented techniques to cope with such a situation are explored.展开更多
文摘This paper aims to evaluate the feasibility of pressure-dependent models in the design of ship piping systems.For this purpose,a complex ship piping system is designed to operate in firefighting and bilge services through jet pumps.The system is solved as pressure-dependent model by the piping system analysis software EPANET and by a mathematical approach involving a piping network model.This results in a functional system that guarantees the recommendable ranges of hydraulic state variables(flow and pressure)and compliance with the rules of ship classification societies.Through this research,the suitability and viability of pressure-dependent models in the simulation of a ship piping system are proven.
基金Project supported by Changwon National University in 2010
文摘Flow distribution in branch piping system is affected by flow characteristics and different geometric variations. Most of the flow distribution studies are performed with one-dimensional analysis to yield overall information only. However, detailed analysis is required to find effects of design parameters on the flow distribution. For this aspect, three-dimensional turbulent flow analysis was performed to assess turbulence model performance and effects of upstream pressure and branch pipe geometry. Three different turbulence models of standard k-e model, realizable k-e model and standard k-co yield similar results, indicating small effects of turbulence models on flow characteristics analysis. Geometric variations include area ratio of main and branch pipes, branch pipe diameter, and connection shape of main and branch pipes. Among these parameters, area ratio and branch diameter and shape show strong effect on flow distribution due to high friction and minor loss. Uniform flow distribution is one of common requirements in the branch piping system and this can be achieved with rather high total loss design.
文摘Augmented Reality(AR)applications can be used to improve tasks and mitigate errors during facilities operation and maintenance.This article presents an AR system for facility management using a three-dimensional(3D)object tracking method.Through spatial mapping,the object of interest,a pipe trap underneath a sink,is tracked and mixed onto the AR visualization.From that,the maintenance steps are transformed into visible and animated instructions.Although some tracking issues related to the component parts were observed,the designed AR application results demonstrated the potential to improve facility management tasks.
基金supported by the National Natural Science Foundation of China(Grant Nos.11632003,11972083,11991030,12372088,and U22B2078)Beijing Institute of Technology Research Fund Program for Young Scholars(Grant No.XSQD-202101010).
文摘The sound field driven by piping systems in enclosures may severely affect living comfort,which is frequently encountered in various engineering applications.Managing this sound field relies heavily on the available prediction tools at hand,e.g.,the widely used finite element methods are computationally expensive due to the necessity to discretize entire space,analytical models,based on modal expansion method,may offer substantial advantages in terms of computational cost and efficiency.However,deriving eigenmodes of irregular enclosed spaces may be challenging,which impedes accurate and rapid predictions of the sound field in practical applications.This study presents an analytical framework aimed at rapidly and accurately predicting the interior sound field driven by the piping system vibrations in irregular enclosures.Vibration response of the piping system is obtained using the wave approach,and a line dipole source is idealized as the sound source of the piping system vibration.On the basis of eigenmodes of regular enclosures,the Kirchhoff-Helmholtz integral theorem(modal ex-pansion method for irregular enclosures)is introduced to account for the boundaries of irregular enclosures.This theoretical framework is validated through numerical simulations by finite element method and experiments,demonstrating high accuracy and significant efficiency advantages.The proposed method can be further employed to optimize radiated sound fields by tailoring the impedance of space walls or layout of piping systems.This study provides an efficient tool for predicting radiated sound field in general enclosures driven by vibration of piping systems,paving a new path for indoor acoustical optimization.
基金funded by the Science and Technology Research Project of Jiangxi Provincial Department of Education(GJJ2404911)the Ministry of Higher Education,Malaysia through the Fundamental Research Grant Scheme:FRGS/1/2024/TK10/UMP/02/15 and Universiti Malaysia Pahang Al-Sultan Abdullah(RDU240117).
文摘To improve the thermal performance and temperature uniformity of battery pack,this paper presents a novel battery thermal management system(BTMS)that integrates oscillating heat pipe(OHP)technology with liquid cooling.The primary innovation of the new hybrid BTMS lies in the use of an OHP with vertically arranged evaporator and condenser,enabling dual heat transfer pathways through liquid cooling plate and OHP.This study experimentally investigates the performance characteristics of the⊥-shaped OHP and hybrid BTMS.Results show that lower filling ratios significantly enhance the OHP’s startup performance but reduce operational stability,with optimal performance achieved at a 26.1%filling ratio.Acetone,as a single working fluid,exhibited superior heat transfer performance under low-load conditions compared to mixed fluids,while the acetone/ethanol mixture,forming a non-azeotropic solution,minimized temperature fluctuations.At 100 W,the⊥-shaped OHP with a horizontally arranged evaporator demonstrated better heat transfer performance than 2D-OHP designs.Compared to a liquid BTMS using water coolant at 280 W,the hybrid BTMS reduced the equivalent thermal resistance(RBTMS)and maximum temperature difference(ΔTmax)by 8.06%and 19.1%,respectively.When graphene nanofluid was used as the coolant in hybrid BTMS,the battery pack’s average temperature(Tb)dropped from 52.2℃ to 47.9℃,with RBTMS andΔTmax decreasing by 20.1%and 32.7%,respectively.These findings underscore the hybrid BTMS’s suitability for high heat load applications,offering a promising solution for electric vehicle thermal management.
文摘Industry and energy continue to require piston engines(PICE)at a high level worldwide.Therefore,science and technology must urgently work on improving the PICE working cycle.Improving the quality of the intake process of theworking fluid into the cylinder is one of the most effective ways to improve the operational performance of PICE.The purpose of the study was to assess the impact of various cylinder head(CylH)designs on the gas-dynamic and heat-exchange qualities of air flows within an engine model’s intake system.Three different CylH designs were studied:the basic configuration and upgraded cylinder heads with a square valve and a square valve port.These designs are innovative.Laboratory conditions were used to conduct the studies for stationary air flow.The experiments covered the range of Reynolds numbers from 8500 to 96,000.The intake system’s gas dynamics and heat transfer were determined using the thermal anemometry method,which was based on constant-temperature hot-wire anemometers.It has been established that the use of upgraded CylHs causes an increase in the turbulence number of flow by an average of 13.5%.Additionally,itwas found that the increase in the turbulence number of flowin the cylinder is about 19%when installing new CylH designs.It was shown that therewas an increase in the heat transfer coefficient in the intake pipe by 10%–40%when installing modernized CylH designs in the intake system.The article focused on the problems of increasing the turbulence level and intensifying the heat transfer of stationary air flow in the intake system,specifically in PICEs.The study’s findings are novel in the areas of applied gas dynamics and PICEs.
基金National Recovery and Resilience Plan(NRRP)Mission 4 Component 2 Investment 1.5-Call for tender No.3277 of 30/12/2021 of Italian Ministry of University and Research funded by the European Union-NextGenerationEU(Award Number:Project code ECS00000033,Concession Decree No.1052 of 23 June 2022 adopted by the Italian Ministry of,CUP D93C22000460001,“Ecosystem for Sustainable Transition in Emilia-Romagna”(Ecosister)).
文摘This study investigates the feasibility of a novel dual two-phase cooling system for thermal management in lithium-ion batteries used in electric vehicles(EVs).The proposed system aims to combine low-boiling dielectric fluid immersion cooling and pulsating heat pipes(PHPs),in order to leverage the advantages of both technologies for efficient heat dissipation in a completely passive configuration.Experimental evaluations conducted under different discharge conditions demonstrate that the systemeffectivelymaintains battery temperatureswithin the optimal range of 20–40℃,with enhanced temperature uniformity and stability.While the PHP exhibited minimal impact at low power,its role became critical under higher discharge rates,ensuring efficient vapor condensation and pressure stability.The results highlight the potential of this passive cooling system to improve battery performance and safety,supporting its application in EV battery thermal management.Future work aims to optimize design parameters and evaluate real battery modules under ultra-fast charging scenarios.
基金Project supported by the National Natural Science Foundation of China (No. 12272323)。
文摘The double-beam system is a crucial foundational structure in industry,with extensive application contexts and significant research value.The double-beam system with damping and gyroscopic effects is termed as the damped gyroscopic double-beam system.In such systems,the orthogonality conditions of the undamped double-beam system are no longer applicable,rendering it impossible to decouple them in modal space using the modal superposition method(MSM) to obtain analytical solutions.Based on the complex modal method and state space method,this paper takes the damped pipe-in-pipe(PIP) system as an example to solve this problem.The concepts of the original system and adjoint system are introduced,and the orthogonality conditions of the damped PIP system are given in the state-space.Based on the derived orthogonality conditions,the transient and steady-state response solutions are obtained.In the numerical discussion section,the convergence and accuracy of the solutions are verified.In addition,the dynamic responses of the system under different excitations and initial conditions are studied,and the forward and reverse synchronous vibrations in the PIP system are discussed.Overall,the method presented in this paper provides a convenient way to analyze the dynamics of the damped gyroscopic double-beam system.
基金supported by the Engineering Research Centre for Digital Grid Technology for Coordinating New Energy under Grant[Grant number 2021GCZX003]Yunnan Fundamental Research Projects under Grant[Grant number 202301CF070031]+2 种基金Hundred Talents Project 2023 under Grant[Grant number B0201001]2024 Distinctive Innovation Scientific Research Projects for Higher Education Institutions[Grant number 2024KTSCX157]Young Innovative Talent Project under Grant[Grant numbers K0223021,K0224014].
文摘Targeting spontaneous coal combustion during stacking,we developed an efficient heat dissipation&self-supplied wireless temperature measurement system(SPWTM)with gravity heat pipe-thermoelectric integration for dual safety.The heat transfer characteristics and temperature measurement optimization of the system are experimentally investigated and verified in practical applications.The results show that,firstly,the effects of coal pile heat production power and burial depth,along with heat pipe startup and heat transfer characteristics.At 60 cmburial depth,the condensation section dissipates 98%coal pile heat via natural convection.Secondly,for the temperature measurement error caused by the heat pipe heat transfer temperature difference,the correction method of“superimposing the measured value with the heat transfer temperature difference”is proposed,and the higher the coal temperature,the better the temperature measurement accuracy.Finally,the system can quickly(≤1 h)reduce the temperature of the coal pile to the spontaneous combustion point,significantly inhibiting the spontaneous combustion phenomenon,the maximum temperature does not exceed 49.2℃.Meanwhile,it utilizes waste heat to drive thermoelectric power generation,realizing self-supplied,unattended,and long-term accurate temperature measurement and warning.In a word,synergistic active heat dissipation and self-powered temperature monitoring-warning ensure dual coal pile thermal safety.
文摘The present paper studies the dynamic pehaviour of a complex piping system containing internal fluid flow.A generalized complex modal decomposition method is proposed for modeling the piping structure.A characteristic impedance transfer matrix of piping flow with a frequency-dependent friction is employed for describing the model of fluid flow,which is coupled to the structural model by means of an approach similar to that used in the structural modal synthesis.The coupled model is practicable for the detecting,monitoring,controlling or predicting of piping vibrations,and for the studying of fluid dynamic characteristics under the influence of structural vibration,also for the diagnosticating of the piping system.
文摘The modal analysis of piping system in air conditioner (AC) outdoor unit is essential to investigate the vibration properties of the system. In view of the growing significance of numerical finite element (FE) model for vibration behaviour prediction, the AC piping elastic end support characterization has been explored. The axial and radial stiffness variables (ka, kr1, kr2) of the compressor-piping mounting are obtained and represented by dynamic stiffness of compressor grommet. They are obtained from dynamic load deflection test based on compressor operating condition such as excitation frequency and amplitude. The unknown stiffness variables of the other tube end (chassis-piping mounting) are determined by parameter fine tuning. An experimental modal analysis using impact hammer test has also been employed to determine the vibration properties such as natural frequencies, mode shapes and damping ratio of the piping structures. The modal parameters acquisition using SCADAS mobile acquisition system and LMS Impact Testing software is compared with the corresponding simulated modal properties using Abaqus. Most of the simulated natural frequencies achieve good correlation with the measured frequencies and it is reasonably a good prediction model to predict vibration behaviour of AC piping structures.
文摘Manufacturing of ship piping systems is one of the major production activities in shipbuilding. The schedule of pipe production has an important impact on the master schedule of shipbuilding. In this research, the ITOC concept was introduced to solve the scheduling problems of a piping factory, and an intelligent scheduling system was developed. The system, in which a product model, an operation model, a factory model, and a knowledge database of piping production were integrated, automated the planning process and production scheduling. Details of the above points were discussed. Moreover, an application of the system in a piping factory, which achieved a higher level of performance as measured by tardiness, lead time, and inventory, was demonstrated.
基金supported by the National Natural Science Foundation of China(42376221,42276083)Director Research Fund Project of Guangzhou Marine Geological Survey(2023GMGSJZJJ00030)+2 种基金National Key Research and Development Program of China(2021YFC2800901)Guangdong Major Project of Basic and Applied Basic Research(2020B030103003)the project of the China Geological Survey(DD20230064).
文摘Many locations with concentrated hydrates at vents have confirmed the presence of abundant thermogenic gas in the middle of the Qiongdongnan Basin(QDNB).However,the impact of deep structures on gasbearing fluids migration and gas hydrates distribution in tectonically inactive regions is still unclear.In this study,the authors apply high-resolution 3D seismic and logging while drilling(LWD)data from the middle of the QDNB to investigate the influence of deep-large faults on gas chimneys and preferred gasescape pipes.The findings reveal the following:(1)Two significant deep-large faults,F1 and F2,developed on the edge of the Songnan Low Uplift,control the dominant migration of thermogenic hydrocarbons and determine the initial locations of gas chimneys.(2)The formation of gas chimneys is likely related to fault activation and reactivation.Gas chimney 1 is primarily arises from convergent fluid migration resulting from the intersection of the two faults,while the gas chimney 2 benefits from a steeper fault plane and shorter migration distance of fault F2.(3)Most gas-escape pipes are situated near the apex of the two faults.Their reactivations facilitate free gas flow into the GHSZ and contribute to the formation of fracture‐filling hydrates.
文摘Manufacturing of ship piping system is one of the major production activities in shipbuilding.The schedule of pipe production has an important impact on master schedule of shipbuilding.In this research,the theory of constraints(TOC) concept is introduced to solve the scheduling problems of piping factory,and an intelligent scheduling system is developed.The system integrates a product model,an operation model,a factory model and a knowledge database of piping production and can make the process planning and production scheduling automatically.In the paper,details of above points are discussed.Moreover,an application of the system in a piping factory,which achieves a higher level of performance as measured by tardiness,lead time and inventory,is demonstrated at the end of the paper.
文摘A physically-based numerical three-dimensional earthen dam piping failure model is developed for homogeneous and zoned soil dams.This model is an erosion model,coupled with force/moment equilibrium analyses.Orifice flow and two-dimensional(2D)shallow water equations(SWE)are solved to simulate dam break flows at different breaching stages.Erosion rates of different soils with different construction compaction efforts are calculated using corresponding erosion formulae.The dam's real shape,soil properties,and surrounding area are programmed.Large outer 2D-SWE grids are used to control upstream and downstream hydraulic conditions and control the boundary conditions of orifice flow,and inner 2D-SWE flow is used to scour soil and perform force/moment equilibrium analyses.This model is validated using the European Commission IMPACT(Investigation of Extreme Flood Processes and Uncertainty)Test#5 in Norway,Teton Dam failure in Idaho,USA,and Quail Creek Dike failure in Utah,USA.All calculated peak outflows are within 10%errors of observed values.Simulation results show that,for a V-shaped dam like Teton Dam,a piping breach location at the abutment tends to result in a smaller peak breach outflow than the piping breach location at the dam's center;and if Teton Dam had broken from its center for internal erosion,a peak outflow of 117851 m'/s,which is 81%larger than the peak outflow of 65120 m3/s released from its right abutment,would have been released from Teton Dam.A lower piping inlet elevation tends to cause a faster/earlier piping breach than a higher piping inlet elevation.
基金financially supported by the National Natural Science Foundation of China(52100015)the Zhejiang Provincial Natural Science Foundation of China(LQ22E080018)the China Postdoctoral Science Foundation(2021M692860).
文摘Ice pigging is an emerging technique for pipe cleaning in drinking water distribution systems.However,substantial confusion and controversy exist on the potential impacts of ice pigging on bulk water quality.This study monitored the microstructural features and composition of sediments and microbial community structures in bulk water in eight multimaterial Chinese networks.Chloride concentration analysis demonstrated that separate cleaning of pipes with different materials in complex networks could mitigate the risk of losing ice pigs and degrading water quality.The microstructural and trace element characterization results showed that ice pigs would scarcely disturb the inner surfaces of long-used pipes.The bacterial richness and diversity of bulk water decreased significantly after ice pigging.Furthermore,correlations were established between pipe service age,temperature,and chloride and total iron concentrations,and the 15 most abundant taxa in bulk water,which could be used to guide practical ice pigging operations.
基金supported by the National Natural Science Foundation of China(Nos.52000043,and 51838005)the intro-duced innovative R&D team project under the“The Pearl River Talent Recruitment Program”of Guangdong Province(No.2019ZT08L387)+2 种基金the Guangdong Natural Science Foundation(No.2023A1515011509)the Science and Technology Research Project of Guangzhou(Nos.202201020177,202102020986 and 202102021044)the special fund from Key Laboratory of Drinking Water Science and Technology,Research Center for Eco-Environmental Sciences,Chinese Academy of Sciences(No.20K01KLDWST).
文摘The effects of cast iron pipe corrosion onwater quality risk and microbial ecology in drinking water distribution systems(DWDSs)were investigated.It was found that trihalomethane(THMs)concentration and antibiotic resistance genes(ARGs)increased sharply in the old DWDSs.Under the same residual chlorine concentration conditions,the adenosine triphos-phate concentration in the effluent of old DWDSs(Eff-old)was significantly higher than that in the effluent of newDWDSs.Moreover,stronger bioflocculation ability andweaker hy-drophobicity coexisted in the extracellular polymeric substances of Eff-old,meanwhile,iron particles could be well inserted into the structure of the biofilms to enhance the mechanical strength and stability of the biofilms,hence enhancing the formation of THMs.Old DWDSs significantly influenced the microbial community of bulk water and triggered stronger mi-crobial antioxidant systems response,resulting in higher ARGs abundance.Corroded cast iron pipes induced a unique interaction system of biofilms,chlorine,and corrosion prod-ucts.Therefore,as the age of cast iron pipes increases,the fluctuation of water quality and microbial ecology should be paid more attention to maintain the safety of tap water.
文摘Solar energy is a valuable renewable energy source,and photovoltaic(PV)systems are a practical approach to harnessing this energy.Nevertheless,low energy efficiency is considered a major setback of the system.Moreover,high cell temperature and reflection of solar irradiance from the panel are considered chief culprits in this regard.Employing pulsating heat pipes(PHPs)is an innovative and useful approach to improving solar panel performance.This study presents the results of the power performance of a PV panel attached to a newly designed spiral pulsating heat pipe,while graphene oxide nanofluid with three different concentrations was used as a working fluid to maximize the efficacy of the solar panel.The study proved that the cooling method delivered high efficiency by reducing the temperature,especially in the middle of the day.Using nanofluid graphene oxide at concentrations of 0.2,0.4,and 0.8 gr/lit as the working fluid can reduce the thermal resistance of PHPs by over 30%,24%,and 15%,respectively.This,in turn,enhances the system’s electrical power output by approximately 9%,7%,and 6%,respectively.
文摘Case study of 2D/3D association and feature based parametric variational design techniques applied to piping system in AEC industry is made to integrate the P&ID and 3D piping modules. Object classes shared by both modules contain the identical connectivity information for all pipelines, while the geometric information for 2D and 3D cases are stored separately. Some details about the object-oriented techniques to cope with such a situation are explored.