Asphaltene deposition is one of the most seri- ous problems, which usually occurs in oil wells, petroleum production, oil processing, and transportation facilities. Deposition of heavy organic components, especially a...Asphaltene deposition is one of the most seri- ous problems, which usually occurs in oil wells, petroleum production, oil processing, and transportation facilities. Deposition of heavy organic components, especially asphaltene, can lead to wellbore blockage and impacts well economics due to reduction in oil production. Therefore, it is necessary to pay more attention to finding some solution to overcome this problem. In this study, a pipe-loop apparatus for investigation of oil stability was employed to measure deposition thickness using a thermal method. The effects of many factors such as oil type, oil temperature, oil velocity, inhibitors, and solvents on asphaltene deposition were investigated. The results showed that the deposition increased with the increasing value of the colloidal insta- bility index. Besides, the deposition thickness increased with the decreasing velocity of oil, but did not change with oil temperature. In addition, n-heptane could result in more deposition; however, toluene had no effect on the deposi- tion. Branched dodecyl benzene sulfonic acid (Branched DBSA) and Linear DBSA as inhibitors decreased the rate of asphaltene deposition.展开更多
With the gradual depletion of available ore at shallow depth,deep mines have been widely operated around the world and therefore need a longer distance to transport the backfill to the underground stope.In this case,t...With the gradual depletion of available ore at shallow depth,deep mines have been widely operated around the world and therefore need a longer distance to transport the backfill to the underground stope.In this case,the determination of pressure drop is more important in the pipeline transportation system design.As the pilot loop systems require a large amount of capital and manual investment,even its results are reliable,there is an urgent need to find an alternative simple and cost-saving method to determine the pressure drop.Hence,laboratory L-pipe and a pilot-loop tests were employed to study the flow properties of cemented paste backfill cured at various solid and binder content.The results indicate that the L-pipe test presented a similar trend to the loop test,but the L-pipe was characterized by higher pressure drop values for various solid and cement contents.As cement content increased beyond 0%,the paste in the L-pipe showed a slighter difference in pressure drop evolution compared to the paste in the loop-pipe.These results suggest that the simple L-pipe is a workable substitute for semi-industrial loop tests and can provide guidance for designing practical CPB pipeline systems in deep mines.展开更多
基金the supports from Islamic Azad University,Kermanshah Branch
文摘Asphaltene deposition is one of the most seri- ous problems, which usually occurs in oil wells, petroleum production, oil processing, and transportation facilities. Deposition of heavy organic components, especially asphaltene, can lead to wellbore blockage and impacts well economics due to reduction in oil production. Therefore, it is necessary to pay more attention to finding some solution to overcome this problem. In this study, a pipe-loop apparatus for investigation of oil stability was employed to measure deposition thickness using a thermal method. The effects of many factors such as oil type, oil temperature, oil velocity, inhibitors, and solvents on asphaltene deposition were investigated. The results showed that the deposition increased with the increasing value of the colloidal insta- bility index. Besides, the deposition thickness increased with the decreasing velocity of oil, but did not change with oil temperature. In addition, n-heptane could result in more deposition; however, toluene had no effect on the deposi- tion. Branched dodecyl benzene sulfonic acid (Branched DBSA) and Linear DBSA as inhibitors decreased the rate of asphaltene deposition.
基金Project(51904055)supported by the National Natural Science Foundation of ChinaProject(N2001010)supported by the Fundamental Research Funds for the Central Universities of China。
文摘With the gradual depletion of available ore at shallow depth,deep mines have been widely operated around the world and therefore need a longer distance to transport the backfill to the underground stope.In this case,the determination of pressure drop is more important in the pipeline transportation system design.As the pilot loop systems require a large amount of capital and manual investment,even its results are reliable,there is an urgent need to find an alternative simple and cost-saving method to determine the pressure drop.Hence,laboratory L-pipe and a pilot-loop tests were employed to study the flow properties of cemented paste backfill cured at various solid and binder content.The results indicate that the L-pipe test presented a similar trend to the loop test,but the L-pipe was characterized by higher pressure drop values for various solid and cement contents.As cement content increased beyond 0%,the paste in the L-pipe showed a slighter difference in pressure drop evolution compared to the paste in the loop-pipe.These results suggest that the simple L-pipe is a workable substitute for semi-industrial loop tests and can provide guidance for designing practical CPB pipeline systems in deep mines.