The dynamic analysis of a pipe system is one of the most crucial problems for the entire mining system. A discrete element method (DEM) is proposed for the analysis of a deep-ocean mining pipe system, including the ...The dynamic analysis of a pipe system is one of the most crucial problems for the entire mining system. A discrete element method (DEM) is proposed for the analysis of a deep-ocean mining pipe system, including the lift pipe, pump, buffer and flexible hose. By the discrete element method, the pipe is divided into some rigid elements that are linked by flexible connectors. First, two examples representing static analysis and dynamic analysis respectively are given to show that the DEM model is feasible. Then the three-dimensional DEM model is used for dynamic analysis of the mining pipe system. The dynamic motions of the entire mining pipe system under different work conditions are discussed. Some suggestions are made for the actual operation of deep-ocean mining systems.展开更多
On the basis of the thermal-elastic-plastic theory, a three-dimensional finite element numerical simulation is performed on the girth welded residual stresses of the duplex stainless steel pipe with ANSYS nonlinear fi...On the basis of the thermal-elastic-plastic theory, a three-dimensional finite element numerical simulation is performed on the girth welded residual stresses of the duplex stainless steel pipe with ANSYS nonlinear finite element program for the first time. Three-dimensional FEM using mobile heat source for analysis transient temperature field and welding stress field in circumferential joint of pipes is founded. Distributions of axial and hoop residual stresses of the joint are investigated. The axial and the hoop residual stresses at the weld and weld vicinity on inner surface of pipes are tensile, and they are gradually transferred into compressive with the increase of the departure from the weld. The axial residual stresses at the weld and weld vicinity on outer surface of pipes is compressive while the hoop one is tensile. The distributions of residual stresses compared positive-circle with negative-circle show distinct symmetry. These results provide theoretical knowledge for the optimization of process and the control of welding residual stresses.展开更多
Numerical simulation concerning the forming and welding process of spiral welded pipe was conducted, which included three steps : the first step was the stress analysis when the spiral was formed, and then the stress...Numerical simulation concerning the forming and welding process of spiral welded pipe was conducted, which included three steps : the first step was the stress analysis when the spiral was formed, and then the stress was regarded as initial condition of melding during the temperature field analysis in the process of welding, the last step was the thermal stress analysis of the weld seam after the welding was over. Moreover, when the steel strip was pushed, the stress was also calculated by non-linearity contact technology using Abaqus Software. By finite element modeling and calculating of the forming and welding process of the spiral welded pipe, the key points of the multi-fields synthetic simulating were studied and discussed.展开更多
A set of serf-developed apparatus for foundation physical model were utilized to conduct model tests of the multi-element composite foundation with a steel pipe pile and several gravel piles. Some load-bearing charact...A set of serf-developed apparatus for foundation physical model were utilized to conduct model tests of the multi-element composite foundation with a steel pipe pile and several gravel piles. Some load-bearing characteristics of the multi-element Composite foundation, including the curves of foundation settlement, stresses of piles, pile-soil stress ratio, and load-sharing ratio of piles and soil, were obtained to study its working performances in silty sand soil. The experimental results revealed that the multi-element composite foundation with steel pipe pile and gravel pile contributed more than the gravel pile composite foundation in improving the bearing capacity of the silty fine sand.展开更多
With the aid of elastic plastic large deformation finite element method (FEM), an elastic plastic and cou pling thermo-mechanical model was built to calculate the bending process of the bent pipe, combining with loc...With the aid of elastic plastic large deformation finite element method (FEM), an elastic plastic and cou pling thermo-mechanical model was built to calculate the bending process of the bent pipe, combining with local heating or cooling of the bent pipe. Based on the FEM simulation, the metal deformation during the bending process was analyzed in detail. The thinning and thickening ratio of the pipe wall thickness, the ovality of the cross section of the pipe and the spring back angle, etc. , are presented.展开更多
By using site observation data and establishing 3D model using ANSYS software, this paper has discussed the strain change of stratum stress during process of jacking-in and the impact of machine head on ground surface...By using site observation data and establishing 3D model using ANSYS software, this paper has discussed the strain change of stratum stress during process of jacking-in and the impact of machine head on ground surface under different frontal resistances. Analysis of the two cases shows that soil pressure reaches its maximum point when the soil is right above machine head, and soil stress will gradually decline when machine head passes over it. It also shows that impact brought by pipe-jacking construction on stress change of the surrounding soil is limited. The thesis suggest that road surface should be consolidated and soil condition be improved before construction to prevent loss and disaster caused by road surface deformation, jacking force can be increased so that jacking efficiency can be enhanced when ground stratum is well filled with soil, but the frontal resistance facing machine head should be equal to surrounding soil pressure in order to avoid rise of ground surface.展开更多
Wellbore instability is a key problem restricting efficient production of coal-bed methane. In order to perform thorough and systematic research regarding coal-bed wellbore stability problems, a new discrete element m...Wellbore instability is a key problem restricting efficient production of coal-bed methane. In order to perform thorough and systematic research regarding coal-bed wellbore stability problems, a new discrete element model which fully considers the features of cleat coal-beds is established based on the Kirsch equation. With this model, the safe pipe tripping speed, drilling fluid density window and coal- bed collapse/fracture pressure are determined; in addition, the relationships between pipe tripping speed and pipe size, cleat size, etc. and wellbore stability are analyzed in the coal-bed drilling and pipe tripping processes. The case studies show the following results: the wellbore collapses (collapse pressure: 4.33 MPa) or fractures (fracture pressure: 12.7 MPa) in certain directions as a result of swab or surge pressure when the pipe tripping speed is higher than a certain value; the cleat face size has a great influence on wellbore stability, and if the drilling fluid pressure is too low, the wellbore is prone to collapse when the ratio of the face cleat size to butt cleat size is reduced; however, if the drilling fluid pressure is high enough, the butt cleat size has no influence on the wellbore fracture; the factors influencing coal-bed stability include the movement length, pipe size, borehole size.展开更多
With the increasing development and utilization of offshore oil and gas resources, global buckling failures of pipelines subjected to high temperature and high pressure are becoming increasingly important. For unburie...With the increasing development and utilization of offshore oil and gas resources, global buckling failures of pipelines subjected to high temperature and high pressure are becoming increasingly important. For unburied or semi-buried submarine pipelines, lateral global buckling represents the main form of global buckling. The pipe–soil interaction determines the deformation and stress distribution of buckling pipelines. In this paper, the nonlinear pipe–soil interaction model is introduced into the analysis of pipeline lateral global buckling, a coupling method of PSI elements and the modified RIKS algorithm is proposed to study the lateral global buckling of a pipeline, and the buckling characteristics of submarine pipeline with a single arch symmetric initial imperfection under different pipe–soil interaction models are studied. Research shows that, compared with the ideal elastic–plastic pipe–soil interaction model, when the DNV-RP-F109 model is adopted to simulate the lateral pipe–soil interactions in the lateral global buckling of a pipeline, the buckling amplitude increases, however, the critical buckling force and the initial buckling temperature difference decreases. In the DNV-RP-F109 pipe–soil interaction model, the maximum soil resistance, the residual soil resistance, and the displacement to reach the maximum soil resistance have significant effects on the analysis results of pipeline global buckling.展开更多
On the basis of Hamilton principle. the equation of sonlid-liquid coupling vibration of pipe conveying fluid is deduced. An asymmetrical sonlid-liquid coupling damp matrix and a symmetrical solid-liquid coupling Sti...On the basis of Hamilton principle. the equation of sonlid-liquid coupling vibration of pipe conveying fluid is deduced. An asymmetrical sonlid-liquid coupling damp matrix and a symmetrical solid-liquid coupling Stiffness matrix are obtained. Using QR method , pipe’s nature frequencies are calculated. The curves of the first four orders of natural frequency-flow velocity of pipe waw given .The influence of flowing velocity ,pressure, solid-liquid coupling damp and solid-liquid coupling stiffness on natural frequency are discussed respectively.The dynamic respondence of the pipes for stepload with different flow velocity are calculated by Newmark method .It is found that,with the flow velocity increased, the nature frequency of the pipes reduced, increased,reduced again and so on.展开更多
Plastic pipe reinforced by cross helically wound steel wires(PSP)is a new plastic-matrix steel composite pipe developed in China.To investigate the stress of PSP under foundation settlement,a finite element model(FEM)...Plastic pipe reinforced by cross helically wound steel wires(PSP)is a new plastic-matrix steel composite pipe developed in China.To investigate the stress of PSP under foundation settlement,a finite element model(FEM)is proposed.The stresses and strains of PSP are obtained by the FEM analysis.The mechanic behavior of PSP subject to a foundation settlement is analyzed.Finally,the influence factor analysis of settlement deformation,such as settlement depth,overlying soil depth,diameter of PSP and inner pressure of PSP,are discussed.展开更多
An experimental bimorph piezoelectric element (PZT) actuator for small piperobot is developed. The robot can move in φ20 mm pipe, and can carry a CCD camera for detectingcracks or fine holes on inner surface of pipe....An experimental bimorph piezoelectric element (PZT) actuator for small piperobot is developed. The robot can move in φ20 mm pipe, and can carry a CCD camera for detectingcracks or fine holes on inner surface of pipe. The velocity of the robot can reach 17~22 mm/s forvertical pipe up/down, respectively. Moving principle and its performance characteristics arepresented.展开更多
With von Mises yield criterion,the loading range of Net Section Collapse(NSC) Criteria is extended from combined tension and bending loadings to combined bending,torsion and internal pressure loadings.A new theoretica...With von Mises yield criterion,the loading range of Net Section Collapse(NSC) Criteria is extended from combined tension and bending loadings to combined bending,torsion and internal pressure loadings.A new theoretical analyzing method of plastic limit load for pressure pipe with incomplete welding defects based on the extended NSC Criteria is presented and the correlative formulas are deduced,the influences of pipe curvature,circumferential length and depth of incomplete welding defects on the plastic limit load of pressure pipe are considered as well in this method.Meanwhile,according to the orthogonal experimental design method,the plastic limit loads are calculated by the finite element method and compared with the theoretical values.The results show that the expressions of plastic limit load of pressure pipe with incomplete welding defects under bending,torsion and internal pressure based on extended NSC criteria are reliable.The study provides an important theoretical basis for the establishment of safety assessment measure towards pressure pipe with incomplete welding defects.展开更多
Presents the calculation of critical velocity, natural frequency and dynamic respondency of fluid conveying pipe are calculated under different boundary conditions using finite element method, and the use of calculati...Presents the calculation of critical velocity, natural frequency and dynamic respondency of fluid conveying pipe are calculated under different boundary conditions using finite element method, and the use of calculation results to design and research rocket pipes feeding fuel and watery turbine pipes conveying water etc.展开更多
In the light of a growing need for fracture control of rapid crack propagation (RCP) in gas pipelines, a program PFRAC(Pipeline FRacture Analysis Code) has been developed((1)) to analyse the various events. In this pa...In the light of a growing need for fracture control of rapid crack propagation (RCP) in gas pipelines, a program PFRAC(Pipeline FRacture Analysis Code) has been developed((1)) to analyse the various events. In this paper, by using PFRAC for the simulation of axial crack propagation in gas pipelines, a number of dynamic analysis issues relating to boundary effects for uncracked and cracked pipes are investigated. This indicates that the boundary conditions along the length of the pipe play an important role for fracture analysis in the pipe. In contrast, the boundary conditions at the ends of a long pipeline have little effect on the dynamic fracture events.展开更多
Through finite element numerical simulation and based on laminated plate theory, the effect of dimension on the torsion properties of uniform C/SiC composites pipe was studied to provide a theoretical guidance for pre...Through finite element numerical simulation and based on laminated plate theory, the effect of dimension on the torsion properties of uniform C/SiC composites pipe was studied to provide a theoretical guidance for preparing the C/SiC pipe with different dimensions. The results show that, with increasing length of pipe, the anti-torsion section coefficient of pipe increases whereas the torsion angle per unit length decreases. Increasing the length can improve the torsion property. Anti-torsion section coefficient rises with increasing internal radius, while the torsion angle per unit length decreases to a constant. With increasing thickness, the anti-torsion section coefficient increases whereas the amplitude decreases gradually, and the torsion angle per unit length is a constant. Increment of internal radius and thickness improves the torsion property finitely.展开更多
Polyethylene-steel Composite Pipes is widely used in conveying corrosive media occasions,but the pipe may lose effectiveness in the process of transporting hot and cold media,so the research of stress distribution and...Polyethylene-steel Composite Pipes is widely used in conveying corrosive media occasions,but the pipe may lose effectiveness in the process of transporting hot and cold media,so the research of stress distribution and variation in polyethylene-steel composite pipes is very necessary.This article first assume that a thin adhesive layer is in between the polyethylene and steel,the adhesive layer along the axial shear stress is the major cause of the polyethylene layer and the steel pipe off sticky.Secondly,we use a method of finite element to computer simulation by ANSYS,and verify initial assumptions.Finally,based on simulation data,we analyse the adhesive layer stress distribution and the variation with different parameters to change.Through the above research,preliminarily summarize the variation and distribution of interlaminar stress,and provide technical support for future design and process improvement of polyethylenesteel pipe.展开更多
Crimping is used in production of large diameter submerged-arc welding pipes. Many researches are focused on crimping in certain manufacturing mode of welding pipe. The application scopes of research achievements beco...Crimping is used in production of large diameter submerged-arc welding pipes. Many researches are focused on crimping in certain manufacturing mode of welding pipe. The application scopes of research achievements become limited due to lack of uniformity in theoretical analysis. In order to propose a crimping prediction method in order to control forming quality, the theory model of crimping based on elastic-plastic mechanics is established. The main technical parameters are determined by theoretical analysis, including length of crimping, base radius of punch, terminal angle of punch, base radius of die, terminal angle of die and horizontal distance between punch and die. In addition, a method used to evaluate the forming quality is presented, which investigates the bending angle after springback, forming force, straight edge length and equivalent radius of curvature. In order to investigate the effects of technical parameters on forming quality, a two-dimensional finite element model is established by finite element software ABAQUS. The finite element model is verified in that its shapes error is less than 5% by comparable experiments, which shows that their geometric precision meets demand. The crimping characteristics is obtained, such as the distribution of stress and strain and the changes of forming force, and the relation curves of technical parameters on forming quality are given by simulation analysis. The sensitivity analysis indicates that the effects of length of crimping, technical parameters of punch on forming quality are significant. In particular, the data from simulation analysis are regressed by response surface method (RSM) to establish prediction model. The feasible technical parameters are obtained from the prediction model. This method presented provides a new thought used to design technical parameters of crimping forming and makes a basis for improving crimping forming quality.展开更多
The loss of metal in a pipe due to corrosion usually results in localized thinned areas with various depths and an irregular shape on its surface. In this paper, a number of numerical models of pipes with different si...The loss of metal in a pipe due to corrosion usually results in localized thinned areas with various depths and an irregular shape on its surface. In this paper, a number of numerical models of pipes with different size defects are established. The limit loads of these pipes are researched using the nonlinear finite element method. The effect of defect parameters of the local wall-thinning pipes on the limit load is discussed. The results show that limit loads decrease obviously when the depths and lengths of the defect increase. However, when the defect length reaches a certain value, the effect of defect length on limit loads is not significant. These results are compared with the results of the method of API 579. When the defect length is adequately small, the results of FEM are in good agreement with the ones of APl 579, but when the defect depth and length is adequately large, the API 579 is not suitable.展开更多
基金This researchis part of a project financially supported by the National Natural Science Goundation of China(GrantNo.50275152)National Deep-Sea Technology Project of Development and Research.(Grant No.DY105-3-2-2)
文摘The dynamic analysis of a pipe system is one of the most crucial problems for the entire mining system. A discrete element method (DEM) is proposed for the analysis of a deep-ocean mining pipe system, including the lift pipe, pump, buffer and flexible hose. By the discrete element method, the pipe is divided into some rigid elements that are linked by flexible connectors. First, two examples representing static analysis and dynamic analysis respectively are given to show that the DEM model is feasible. Then the three-dimensional DEM model is used for dynamic analysis of the mining pipe system. The dynamic motions of the entire mining pipe system under different work conditions are discussed. Some suggestions are made for the actual operation of deep-ocean mining systems.
文摘On the basis of the thermal-elastic-plastic theory, a three-dimensional finite element numerical simulation is performed on the girth welded residual stresses of the duplex stainless steel pipe with ANSYS nonlinear finite element program for the first time. Three-dimensional FEM using mobile heat source for analysis transient temperature field and welding stress field in circumferential joint of pipes is founded. Distributions of axial and hoop residual stresses of the joint are investigated. The axial and the hoop residual stresses at the weld and weld vicinity on inner surface of pipes are tensile, and they are gradually transferred into compressive with the increase of the departure from the weld. The axial residual stresses at the weld and weld vicinity on outer surface of pipes is compressive while the hoop one is tensile. The distributions of residual stresses compared positive-circle with negative-circle show distinct symmetry. These results provide theoretical knowledge for the optimization of process and the control of welding residual stresses.
基金Funded by Scientific Research Key Program of Beijing Municipal Commission of Education(KZ200610017010)Beijing Elitist Program Project(20041D0500517).
文摘Numerical simulation concerning the forming and welding process of spiral welded pipe was conducted, which included three steps : the first step was the stress analysis when the spiral was formed, and then the stress was regarded as initial condition of melding during the temperature field analysis in the process of welding, the last step was the thermal stress analysis of the weld seam after the welding was over. Moreover, when the steel strip was pushed, the stress was also calculated by non-linearity contact technology using Abaqus Software. By finite element modeling and calculating of the forming and welding process of the spiral welded pipe, the key points of the multi-fields synthetic simulating were studied and discussed.
基金The National Natural Science Foundation of China (No.50478090)
文摘A set of serf-developed apparatus for foundation physical model were utilized to conduct model tests of the multi-element composite foundation with a steel pipe pile and several gravel piles. Some load-bearing characteristics of the multi-element Composite foundation, including the curves of foundation settlement, stresses of piles, pile-soil stress ratio, and load-sharing ratio of piles and soil, were obtained to study its working performances in silty sand soil. The experimental results revealed that the multi-element composite foundation with steel pipe pile and gravel pile contributed more than the gravel pile composite foundation in improving the bearing capacity of the silty fine sand.
基金Item Sponsored by National Natural Science Foundation of China (50435010) and National"973"Project of China(2004CCA06600)
文摘With the aid of elastic plastic large deformation finite element method (FEM), an elastic plastic and cou pling thermo-mechanical model was built to calculate the bending process of the bent pipe, combining with local heating or cooling of the bent pipe. Based on the FEM simulation, the metal deformation during the bending process was analyzed in detail. The thinning and thickening ratio of the pipe wall thickness, the ovality of the cross section of the pipe and the spring back angle, etc. , are presented.
基金the Science and Technology Foundation of Sichuan Department of Land and Resources(SCDLR0609)
文摘By using site observation data and establishing 3D model using ANSYS software, this paper has discussed the strain change of stratum stress during process of jacking-in and the impact of machine head on ground surface under different frontal resistances. Analysis of the two cases shows that soil pressure reaches its maximum point when the soil is right above machine head, and soil stress will gradually decline when machine head passes over it. It also shows that impact brought by pipe-jacking construction on stress change of the surrounding soil is limited. The thesis suggest that road surface should be consolidated and soil condition be improved before construction to prevent loss and disaster caused by road surface deformation, jacking force can be increased so that jacking efficiency can be enhanced when ground stratum is well filled with soil, but the frontal resistance facing machine head should be equal to surrounding soil pressure in order to avoid rise of ground surface.
文摘Wellbore instability is a key problem restricting efficient production of coal-bed methane. In order to perform thorough and systematic research regarding coal-bed wellbore stability problems, a new discrete element model which fully considers the features of cleat coal-beds is established based on the Kirsch equation. With this model, the safe pipe tripping speed, drilling fluid density window and coal- bed collapse/fracture pressure are determined; in addition, the relationships between pipe tripping speed and pipe size, cleat size, etc. and wellbore stability are analyzed in the coal-bed drilling and pipe tripping processes. The case studies show the following results: the wellbore collapses (collapse pressure: 4.33 MPa) or fractures (fracture pressure: 12.7 MPa) in certain directions as a result of swab or surge pressure when the pipe tripping speed is higher than a certain value; the cleat face size has a great influence on wellbore stability, and if the drilling fluid pressure is too low, the wellbore is prone to collapse when the ratio of the face cleat size to butt cleat size is reduced; however, if the drilling fluid pressure is high enough, the butt cleat size has no influence on the wellbore fracture; the factors influencing coal-bed stability include the movement length, pipe size, borehole size.
基金financially supported by the National Basic Key Research Program of China(Grant No.2014CB046802)the National Natural Science Foundation of China(Grant No.51679162)the Natural Science Foundation of Tianjin(Grant No.17JCZDJC39900)
文摘With the increasing development and utilization of offshore oil and gas resources, global buckling failures of pipelines subjected to high temperature and high pressure are becoming increasingly important. For unburied or semi-buried submarine pipelines, lateral global buckling represents the main form of global buckling. The pipe–soil interaction determines the deformation and stress distribution of buckling pipelines. In this paper, the nonlinear pipe–soil interaction model is introduced into the analysis of pipeline lateral global buckling, a coupling method of PSI elements and the modified RIKS algorithm is proposed to study the lateral global buckling of a pipeline, and the buckling characteristics of submarine pipeline with a single arch symmetric initial imperfection under different pipe–soil interaction models are studied. Research shows that, compared with the ideal elastic–plastic pipe–soil interaction model, when the DNV-RP-F109 model is adopted to simulate the lateral pipe–soil interactions in the lateral global buckling of a pipeline, the buckling amplitude increases, however, the critical buckling force and the initial buckling temperature difference decreases. In the DNV-RP-F109 pipe–soil interaction model, the maximum soil resistance, the residual soil resistance, and the displacement to reach the maximum soil resistance have significant effects on the analysis results of pipeline global buckling.
文摘On the basis of Hamilton principle. the equation of sonlid-liquid coupling vibration of pipe conveying fluid is deduced. An asymmetrical sonlid-liquid coupling damp matrix and a symmetrical solid-liquid coupling Stiffness matrix are obtained. Using QR method , pipe’s nature frequencies are calculated. The curves of the first four orders of natural frequency-flow velocity of pipe waw given .The influence of flowing velocity ,pressure, solid-liquid coupling damp and solid-liquid coupling stiffness on natural frequency are discussed respectively.The dynamic respondence of the pipes for stepload with different flow velocity are calculated by Newmark method .It is found that,with the flow velocity increased, the nature frequency of the pipes reduced, increased,reduced again and so on.
基金supported by the National Natural Science Foundation of China(No.51203188)
文摘Plastic pipe reinforced by cross helically wound steel wires(PSP)is a new plastic-matrix steel composite pipe developed in China.To investigate the stress of PSP under foundation settlement,a finite element model(FEM)is proposed.The stresses and strains of PSP are obtained by the FEM analysis.The mechanic behavior of PSP subject to a foundation settlement is analyzed.Finally,the influence factor analysis of settlement deformation,such as settlement depth,overlying soil depth,diameter of PSP and inner pressure of PSP,are discussed.
基金This project is supported by National Natural Science Foundation of China (No.69889501).
文摘An experimental bimorph piezoelectric element (PZT) actuator for small piperobot is developed. The robot can move in φ20 mm pipe, and can carry a CCD camera for detectingcracks or fine holes on inner surface of pipe. The velocity of the robot can reach 17~22 mm/s forvertical pipe up/down, respectively. Moving principle and its performance characteristics arepresented.
基金Project (No. X106871) supported by the Natural Science Foundation of Zhejiang Province,China
文摘With von Mises yield criterion,the loading range of Net Section Collapse(NSC) Criteria is extended from combined tension and bending loadings to combined bending,torsion and internal pressure loadings.A new theoretical analyzing method of plastic limit load for pressure pipe with incomplete welding defects based on the extended NSC Criteria is presented and the correlative formulas are deduced,the influences of pipe curvature,circumferential length and depth of incomplete welding defects on the plastic limit load of pressure pipe are considered as well in this method.Meanwhile,according to the orthogonal experimental design method,the plastic limit loads are calculated by the finite element method and compared with the theoretical values.The results show that the expressions of plastic limit load of pressure pipe with incomplete welding defects under bending,torsion and internal pressure based on extended NSC criteria are reliable.The study provides an important theoretical basis for the establishment of safety assessment measure towards pressure pipe with incomplete welding defects.
文摘Presents the calculation of critical velocity, natural frequency and dynamic respondency of fluid conveying pipe are calculated under different boundary conditions using finite element method, and the use of calculation results to design and research rocket pipes feeding fuel and watery turbine pipes conveying water etc.
文摘In the light of a growing need for fracture control of rapid crack propagation (RCP) in gas pipelines, a program PFRAC(Pipeline FRacture Analysis Code) has been developed((1)) to analyse the various events. In this paper, by using PFRAC for the simulation of axial crack propagation in gas pipelines, a number of dynamic analysis issues relating to boundary effects for uncracked and cracked pipes are investigated. This indicates that the boundary conditions along the length of the pipe play an important role for fracture analysis in the pipe. In contrast, the boundary conditions at the ends of a long pipeline have little effect on the dynamic fracture events.
基金Funded by the National Natural Science Foundation of China(Nos.51772246,51272210,50902112,and U1737209)the Program for New Century Excellent Talents in University(NCET-13-0474)+1 种基金the Fundamental Research Funds for the Central Universities(3102017jg02001)the National Program for Support of Topnotch Young Professionals
文摘Through finite element numerical simulation and based on laminated plate theory, the effect of dimension on the torsion properties of uniform C/SiC composites pipe was studied to provide a theoretical guidance for preparing the C/SiC pipe with different dimensions. The results show that, with increasing length of pipe, the anti-torsion section coefficient of pipe increases whereas the torsion angle per unit length decreases. Increasing the length can improve the torsion property. Anti-torsion section coefficient rises with increasing internal radius, while the torsion angle per unit length decreases to a constant. With increasing thickness, the anti-torsion section coefficient increases whereas the amplitude decreases gradually, and the torsion angle per unit length is a constant. Increment of internal radius and thickness improves the torsion property finitely.
文摘Polyethylene-steel Composite Pipes is widely used in conveying corrosive media occasions,but the pipe may lose effectiveness in the process of transporting hot and cold media,so the research of stress distribution and variation in polyethylene-steel composite pipes is very necessary.This article first assume that a thin adhesive layer is in between the polyethylene and steel,the adhesive layer along the axial shear stress is the major cause of the polyethylene layer and the steel pipe off sticky.Secondly,we use a method of finite element to computer simulation by ANSYS,and verify initial assumptions.Finally,based on simulation data,we analyse the adhesive layer stress distribution and the variation with different parameters to change.Through the above research,preliminarily summarize the variation and distribution of interlaminar stress,and provide technical support for future design and process improvement of polyethylenesteel pipe.
基金supported by Hebei Excellent Youth Fund of Science and Technology Research for Colleges and Universities of China(Grant NoY2012035)
文摘Crimping is used in production of large diameter submerged-arc welding pipes. Many researches are focused on crimping in certain manufacturing mode of welding pipe. The application scopes of research achievements become limited due to lack of uniformity in theoretical analysis. In order to propose a crimping prediction method in order to control forming quality, the theory model of crimping based on elastic-plastic mechanics is established. The main technical parameters are determined by theoretical analysis, including length of crimping, base radius of punch, terminal angle of punch, base radius of die, terminal angle of die and horizontal distance between punch and die. In addition, a method used to evaluate the forming quality is presented, which investigates the bending angle after springback, forming force, straight edge length and equivalent radius of curvature. In order to investigate the effects of technical parameters on forming quality, a two-dimensional finite element model is established by finite element software ABAQUS. The finite element model is verified in that its shapes error is less than 5% by comparable experiments, which shows that their geometric precision meets demand. The crimping characteristics is obtained, such as the distribution of stress and strain and the changes of forming force, and the relation curves of technical parameters on forming quality are given by simulation analysis. The sensitivity analysis indicates that the effects of length of crimping, technical parameters of punch on forming quality are significant. In particular, the data from simulation analysis are regressed by response surface method (RSM) to establish prediction model. The feasible technical parameters are obtained from the prediction model. This method presented provides a new thought used to design technical parameters of crimping forming and makes a basis for improving crimping forming quality.
基金supported by the National High Technol-ogy Research and Development Program of China(2007AA04Z404)Natural Science Basic Research Plan in Shaanxi Province of China (SJ08A17)the Technical Innovation Foundation of NWPU(2008KJ02019)
文摘The loss of metal in a pipe due to corrosion usually results in localized thinned areas with various depths and an irregular shape on its surface. In this paper, a number of numerical models of pipes with different size defects are established. The limit loads of these pipes are researched using the nonlinear finite element method. The effect of defect parameters of the local wall-thinning pipes on the limit load is discussed. The results show that limit loads decrease obviously when the depths and lengths of the defect increase. However, when the defect length reaches a certain value, the effect of defect length on limit loads is not significant. These results are compared with the results of the method of API 579. When the defect length is adequately small, the results of FEM are in good agreement with the ones of APl 579, but when the defect depth and length is adequately large, the API 579 is not suitable.