期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
基于绝对节点坐标的多柔体系统动力学高效计算方法 被引量:36
1
作者 刘铖 田强 胡海岩 《力学学报》 EI CSCD 北大核心 2010年第6期1197-1205,共9页
绝对节点坐标法已经被广泛应用于柔性多体系统的动力学研究之中,但是其计算效率问题尚未得到很好的解决.基于绝对节点坐标方法计算弹性力及其对广义坐标的偏导数矩阵(Jacobi矩阵),通常是基于第二类Piola-Kirchhoff应力张量来完成,计算... 绝对节点坐标法已经被广泛应用于柔性多体系统的动力学研究之中,但是其计算效率问题尚未得到很好的解决.基于绝对节点坐标方法计算弹性力及其对广义坐标的偏导数矩阵(Jacobi矩阵),通常是基于第二类Piola-Kirchhoff应力张量来完成,计算效率不高.根据虚功原理并采用第一类Piola-Kirchhoff应力张量的方法直接推导得到了弹性力及其Jacobi矩阵的解析表达式.基于不同方法所得的数值算例结果对比研究表明,该方法可使计算效率大大提高. 展开更多
关键词 绝对节点坐标法 多柔体系统 JACOBI矩阵 第一类piola-Kirchhoff应力张量
在线阅读 下载PDF
广义连续统场论中新的增率型功率和能率原理
2
作者 戴天民 《应用数学和力学》 EI CSCD 北大核心 2001年第12期1243-1248,共6页
目的是建立广义连续统场论的增率型功率和能率原理· 通过组合具有交叉项的增率型虚速度和虚角度原理以及虚应力和虚偶应力原理提出了微极连续统场论中具有交叉项的增率型功率和能率原理 ,并借助广义Piola定理同时而且无需其它附... 目的是建立广义连续统场论的增率型功率和能率原理· 通过组合具有交叉项的增率型虚速度和虚角度原理以及虚应力和虚偶应力原理提出了微极连续统场论中具有交叉项的增率型功率和能率原理 ,并借助广义Piola定理同时而且无需其它附加要求地推导出微极和非局部微极连续统场论的所有增率型运动方程和边界条件以及能率方程· 类似地可以推导出微态连续统的相应结果· 文中给出的结果是新的 ,并可作为建立广义连续统力学相关的增率型有限元方法的理论基础· 展开更多
关键词 广义连续统 增率型 广义piola定理 运动方程 边界条件 能率方程 功率原理 连续统力学
在线阅读 下载PDF
广义连续统场论中新的功能及功率能率原理 被引量:8
3
作者 戴天民 《应用数学和力学》 EI CSCD 北大核心 2001年第11期1111-1118,共8页
提出极性和非局部极性连续统场论中具有交叉项的新的功能及功率能率原理 ,并据此和广义的Piola定理一次性地而且无需其它要求地推导出所有相应的运动方程和边界条件以及新的能量和能率均衡方程· 同时 ,建立起广义连续统力学中的... 提出极性和非局部极性连续统场论中具有交叉项的新的功能及功率能率原理 ,并据此和广义的Piola定理一次性地而且无需其它要求地推导出所有相应的运动方程和边界条件以及新的能量和能率均衡方程· 同时 ,建立起广义连续统力学中的新的能量和能率均衡原理· 给出的新的功能及能率原理纠正了现有文献中所有有关不带交叉项的能量和能率原理的不完整性· 展开更多
关键词 功率能率原理 Piol定理 能率均衡方程 广义连续统场论 能量均衡方程 功能原理 连续统力学
在线阅读 下载PDF
NEW PRINCIPLES OF WORK AND ENERGY AS WELLAS POWER AND ENERGY RATE FORCONTINUUM FIELD THEORIES 被引量:3
4
作者 DAI Tian-min(戴天民) 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2001年第11期1231-1239,共9页
New principles of work and energy as well as power and energy rate with cross terms for polar and nonlocal polar continuum field theories were presented and from them all corresponding equations of motion and boundary... New principles of work and energy as well as power and energy rate with cross terms for polar and nonlocal polar continuum field theories were presented and from them all corresponding equations of motion and boundary conditions as well as complete equations of energy and energy rate with the help of generalized Piola's theorems were naturally derived in all and without any additional requirement. Finally, some new balance laws of energy and energy rate for generalized continuum mechanics were established. The new principles of work and energy as well as power and energy rate with cross terms presented in this paper are believed to be new and they have corrected the incompleteness of all existing corresponding principles and laws without cross terms in literatures of generalized continuum field theories. 展开更多
关键词 new principles of work and energy power and energy rate generalized piola's theorem new equations of energy and energy rate generalized continua
在线阅读 下载PDF
NEW PRINCIPLES OF POWER AND ENERGY RATE OF INCREMENTAL RATE TYPE FOR GENERALIZED CONTINUUM FIELD THEORIES
5
作者 DAI Tian-min(戴天民) 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2001年第12期1383-1389,共7页
The aim of this paper is to establish new principles of power and energy rate of incremental type in generalized continuum mechanics BY combining new principles of virtual velocity and virtual angular velocity as well... The aim of this paper is to establish new principles of power and energy rate of incremental type in generalized continuum mechanics BY combining new principles of virtual velocity and virtual angular velocity as well as of virtual stress anti virtual couple stress with c ross terms of incremental rate type a new principle of power anti energy rate of incremental rate type with cross terms for micropolar continuum field theories is presented and from it all corresponding equations of motion and boundary conditions as well as power and energy rate equations of incremental rate type for micropolar and nonlocal micropolar continua with the help of generalized Piola's theorems in all and without any additional requirement are derived. Complete results for micromorphic continua could be similarly derived. The derived results in the present paper are believed to be new. They could be used to establish corresponding finite element methods of incremental rate type for generalized continuum mechanics. 展开更多
关键词 generalized continua incremental rate type principles of power and energy rate generalized piola's theorem
在线阅读 下载PDF
A variational differential quadrature solution to finite deformation problems of hyperelastic shell-type structures:a two-point formulation in Cartesian coordinates
6
作者 M.FARAJI-OSKOUIE R.ANSARI M.DARVIZEH 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2022年第8期1219-1232,共14页
A new numerical approach is presented to compute the large deformations of shell-type structures made of the Saint Venant-Kirchhoff and Neo-Hookean materials based on the seven-parameter shell theory.A work conjugate ... A new numerical approach is presented to compute the large deformations of shell-type structures made of the Saint Venant-Kirchhoff and Neo-Hookean materials based on the seven-parameter shell theory.A work conjugate pair of the first Piola Kirchhoff stress tensor and deformation gradient tensor is considered for the stress and strain measures in the paper.Through introducing the displacement vector,the deformation gradient,and the stress tensor in the Cartesian coordinate system and by means of the chain rule for taking derivative of tensors,the difficulties in using the curvilinear coordinate system are bypassed.The variational differential quadrature(VDQ)method as a pointwise numerical method is also used to discretize the weak form of the governing equations.Being locking-free,the simple implementation,computational efficiency,and fast convergence rate are the main features of the proposed numerical approach.Some well-known benchmark problems are solved to assess the approach.The results indicate that it is capable of addressing the large deformation problems of elastic and hyperelastic shell-type structures efficiently. 展开更多
关键词 shell large deformation variational differential quadrature(VDQ)technique seven-parameter shell theory first piola Kirchhoff stress tensor and deformation gradient tensor(P−F)formulation
在线阅读 下载PDF
Nonlinear Waves in Solid Continua with Finite Deformation
7
作者 K. S. Surana J. Knight J. N. Reddy 《American Journal of Computational Mathematics》 2015年第3期345-386,共42页
This work considers initiation of nonlinear waves, their propagation, reflection, and their interactions in thermoelastic solids and thermoviscoelastic solids with and without memory. The conservation and balance laws... This work considers initiation of nonlinear waves, their propagation, reflection, and their interactions in thermoelastic solids and thermoviscoelastic solids with and without memory. The conservation and balance laws constituting the mathematical models as well as the constitutive theories are derived for finite deformation and finite strain using second Piola-Kirchoff stress tensor and Green’s strain tensor and their material derivatives [1]. Fourier heat conduction law with constant conductivity is used as the constitutive theory for heat vector. Numerical studies are performed using space-time variationally consistent finite element formulations derived using space-time residual functionals and the non-linear equations resulting from the first variation of the residual functional are solved using Newton’s Linear Method with line search. Space-time local approximations are considered in higher order scalar product spaces that permit desired order of global differentiability in space and time. Computed results for non-linear wave propagation, reflection, and interaction are compared with linear wave propagation to demonstrate significant differences between the two, the importance of the nonlinear wave propagation over linear wave propagation as well as to illustrate the meritorious features of the mathematical models and the space-time variationally consistent space-time finite element process with time marching in obtaining the numerical solutions of the evolutions. 展开更多
关键词 Linear and Nonlinear WAVES SECOND piola-Kirchoff Stress Green's STRAIN CONSTITUTIVE Theories DISSIPATION Memory RHEOLOGY Finite STRAIN
在线阅读 下载PDF
材料内部存在初始应力条件下弹性张量的确定(英文)
8
作者 吴林志 杜善义 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 1993年第1期110-112,共3页
<正> With respect to small deformation gradient tensor,the displacement gradientmoduli Φ_(iLjM)~* at the reference system are introduced by taking into account the rela-tion of the first Piola-Kirchhoff stress ... <正> With respect to small deformation gradient tensor,the displacement gradientmoduli Φ_(iLjM)~* at the reference system are introduced by taking into account the rela-tion of the first Piola-Kirchhoff stress tensor T_(iL) and displacement gradient tensor u_(jM)in the paper.Then the specific expression of Φ_(iLjM) is derived by the comparison of theexpansion terms of Helmholtz free energy H.Finally,the coefficients (?)_(iLjM) related toΦ_(iLjM) are obtained by using ultrasonic measurement and the elastic tensor C_(iLjM) whichdepends on (?)_(iLjM) and initial stresses in the reference system are given. 展开更多
关键词 初应力 弹性张量 材料
在线阅读 下载PDF
二阶椭圆问题的弱迦辽金四边形谱元方法 被引量:1
9
作者 潘佳佳 李会元 《数值计算与计算机应用》 2021年第4期303-322,共20页
本文对二阶椭圆方程特征值问题的弱伽辽金谱元方法开展相关数值研究.与弱有限元方法类似,弱伽辽金谱元方法的逼近函数空间包括各个单元上的独立内部分量、并辅以各单元边界分量作为单元与单元间的联系.本文聚焦任意凸四边形网格剖分下... 本文对二阶椭圆方程特征值问题的弱伽辽金谱元方法开展相关数值研究.与弱有限元方法类似,弱伽辽金谱元方法的逼近函数空间包括各个单元上的独立内部分量、并辅以各单元边界分量作为单元与单元间的联系.本文聚焦任意凸四边形网格剖分下的弱伽辽金四边形谱元方法,弱逼近函数中的各内部分量与边界分量分别由参考正方形单元与参考单元边界上的正交多项式通过双线性变换来构造;而弱梯度逼近空间则由参考正方形上的正交多项式通过Piola变换构造.在此基础上,本文提出了二阶椭圆方程特征值问题的弱伽辽金四边形谱元方法逼近格式和实现算法,并通过对离散弱梯度核空间的系统研究,具体分析了逼近格式的适定性.通过大量的数值实验,本文具体分析了弱伽辽金四边形谱元方法的精度和收敛性,特别是逼近函数空间与离散弱梯度空间中多项式次数的不同搭配对精度和收敛性的影响.研究表明,P-型弱伽辽金四边形谱元方法承袭了谱方法的指数阶收敛性质;h-型弱伽辽金四边形谱元方法不但具有h-型方法在通常意义上的满阶收敛性,而且完全可以通过逼近空间多项式次数的灵活匹配达到超收敛. 展开更多
关键词 弱伽辽金 四边形谱元 piola变换 离散弱梯度 指数阶收敛 超收敛
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部