The great Sanhe-Pinggu M8 earthquake occurred in 1679 was the largest surface rupture event recorded in history in the northern part of North China plain. This study determines the fault geometry of this earthquake by...The great Sanhe-Pinggu M8 earthquake occurred in 1679 was the largest surface rupture event recorded in history in the northern part of North China plain. This study determines the fault geometry of this earthquake by inverting seismological data of present-day moderate-small earthquakes in the focal area. We relocated those earthquakes with the double-difference method. Based on the assumption that clustered small earthquakes often occur in the vicinity of fault plane of large earthquake, and referring to the morphology of the long axis of the isoseismal line obtained by the predecessors, we selected a strip-shaped zone from the relocated earthquake catalog in the period from 1980 to 2009 to invert fault plane parameters of this earthquake. The inversion results are as follows: the strike is 38.23°, the dip angle is 82.54°, the slip angle is -156.08°, the fault length is about 80 km, the lower-boundary depth is about 23 km and the buried depth of upper boundary is about 3 kin. This shows that the seismogenic fault is a NNE-trending normal dip-slip fault, southeast wall downward and northwest wall uplift, with the right-lateral strike-slip component. Moreover, the surface rupture zone, intensity distribution of the earth-quake and seismic-wave velocity profile in the focal area all verified our study result.展开更多
The platforms on both sides of the Malangou River (a lateral ditch of the Qingshui River that is a tributary of the Yongding River) where Malan Village in Zhaitang Town of Mentougou District of Beijing is located ar...The platforms on both sides of the Malangou River (a lateral ditch of the Qingshui River that is a tributary of the Yongding River) where Malan Village in Zhaitang Town of Mentougou District of Beijing is located are the place of China's typical section of the Quaternary Malan loess. During the investigation in the eastern suburbs of Beijing City, the authors not only clarified 5 grades of terraces on the Pinggu piedmont plain, but also found a clayey silt section mixed with a small amount of alluvial-diluvial gravel layers at a height of 15-25 m above the river level near a Fishpond in Xinli Village of Nandule Town. Results of the study of grain size of the section document that the loess mostly is silty soil (0.05--0.005 mm), and that the grain size probability cumulative curves of the section are dominated by single-peak, coarse-grained segment I and coarse-grained segment II types, reflecting that its depositional environment is similar to eolian phase. Identification results of heavy minerals from the section show that their contents account for 0.01%-0.11%, averaging 0.04%. There are 24 kinds of heavy minerals, most of which are stable heavy minerals, and the clay minerals mostly are illite, which is consistent with the Malan loess on the Loess Plateau. The chemical composition data reflect that the source area of the loess is relatively arid. The six grade classification of sporopollen in the section further shows the subdivision of the history of alternating warm and humid phases in this geological period. The thermoluminescence dating results range from 21.0 ka to 59.2 ka, convincingly demonstrating that the section indeed consists of Malan loess. The above studies provide a new basis for overall understanding of the distribution of the Malan loess at the northeast margin of the North China Plain and its environment change in the Late Pleistocene.展开更多
基金jointly supported by the National Natural Science Foundation of China(Nos.91214201 and 41074072)Research Foundation of Science and Technology Plan Project in Hebei Province(12276903D)
文摘The great Sanhe-Pinggu M8 earthquake occurred in 1679 was the largest surface rupture event recorded in history in the northern part of North China plain. This study determines the fault geometry of this earthquake by inverting seismological data of present-day moderate-small earthquakes in the focal area. We relocated those earthquakes with the double-difference method. Based on the assumption that clustered small earthquakes often occur in the vicinity of fault plane of large earthquake, and referring to the morphology of the long axis of the isoseismal line obtained by the predecessors, we selected a strip-shaped zone from the relocated earthquake catalog in the period from 1980 to 2009 to invert fault plane parameters of this earthquake. The inversion results are as follows: the strike is 38.23°, the dip angle is 82.54°, the slip angle is -156.08°, the fault length is about 80 km, the lower-boundary depth is about 23 km and the buried depth of upper boundary is about 3 kin. This shows that the seismogenic fault is a NNE-trending normal dip-slip fault, southeast wall downward and northwest wall uplift, with the right-lateral strike-slip component. Moreover, the surface rupture zone, intensity distribution of the earth-quake and seismic-wave velocity profile in the focal area all verified our study result.
基金funded by the project Ecological Agricultural Geological Survey and Demonstration Research of Xinli Village in Pinggu District, Beijing under the Central Research Institutes of Basic Research and Public Service Special Operations K1201 and the geological survey project (Grant No. 1212011300010)
文摘The platforms on both sides of the Malangou River (a lateral ditch of the Qingshui River that is a tributary of the Yongding River) where Malan Village in Zhaitang Town of Mentougou District of Beijing is located are the place of China's typical section of the Quaternary Malan loess. During the investigation in the eastern suburbs of Beijing City, the authors not only clarified 5 grades of terraces on the Pinggu piedmont plain, but also found a clayey silt section mixed with a small amount of alluvial-diluvial gravel layers at a height of 15-25 m above the river level near a Fishpond in Xinli Village of Nandule Town. Results of the study of grain size of the section document that the loess mostly is silty soil (0.05--0.005 mm), and that the grain size probability cumulative curves of the section are dominated by single-peak, coarse-grained segment I and coarse-grained segment II types, reflecting that its depositional environment is similar to eolian phase. Identification results of heavy minerals from the section show that their contents account for 0.01%-0.11%, averaging 0.04%. There are 24 kinds of heavy minerals, most of which are stable heavy minerals, and the clay minerals mostly are illite, which is consistent with the Malan loess on the Loess Plateau. The chemical composition data reflect that the source area of the loess is relatively arid. The six grade classification of sporopollen in the section further shows the subdivision of the history of alternating warm and humid phases in this geological period. The thermoluminescence dating results range from 21.0 ka to 59.2 ka, convincingly demonstrating that the section indeed consists of Malan loess. The above studies provide a new basis for overall understanding of the distribution of the Malan loess at the northeast margin of the North China Plain and its environment change in the Late Pleistocene.