Sewage sludge in cities of Yangzi River Belt,China,generally exhibits a lower organic content and higher silt contentdue to leakage of drainage system,which caused low bioenergy recovery and carbon emission benefits i...Sewage sludge in cities of Yangzi River Belt,China,generally exhibits a lower organic content and higher silt contentdue to leakage of drainage system,which caused low bioenergy recovery and carbon emission benefits in conventional anaerobic digestion(CAD).Therefore,this paper is on a pilot scale,a bio-thermophilic pretreatment anaerobic digestion(BTPAD)for low organic sludge(volatile solids(VS)of 4%)was operated with a long-term continuous flow of 200 days.The VS degradation rate and CH_(4) yield of BTPAD increased by 19.93%and 53.33%,respectively,compared to those of CAD.The analysis of organic compositions in sludge revealed that BTPAD mainly improved the hydrolysis of proteins in sludge.Further analysis of microbial community proportions by high-throughput sequencing revealed that the short-term bio-thermophilic pretreatment was enriched in Clostridiales,Coprothermobacter and Gelria,was capable of hydrolyzing acidified proteins,and provided more volatile fatty acid(VFA)for the subsequent reaction.Biome combined with fluorescence quantitative polymerase chain reaction(PCR)analysis showed that the number of bacteria with high methanogenic capacity in BTPAD was much higher than that in CAD during the medium temperature digestion stage,indicating that short-term bio-thermophilic pretreatment could provide better methanogenic conditions for BTPAD.Furthermore,the greenhouse gas emission footprint analysis showed that short-term bio-thermophilic pretreatment could reduce the carbon emission of sludge anaerobic digestion system by 19.18%.展开更多
To achieve high efficiency of nitrogen and phosphorus removal and to investigate the rule of simultaneous nitrification and denitrification phosphorus removal (SNDPR), a whole course of SNDPR damage and recovery was...To achieve high efficiency of nitrogen and phosphorus removal and to investigate the rule of simultaneous nitrification and denitrification phosphorus removal (SNDPR), a whole course of SNDPR damage and recovery was studied in a pilot-scale, anaerobicanoxic oxidation ditch (OD), where the volumes of anaerobic zone, anoxic zone, and ditches zone of the OD system were 7, 21, and 280 L, respectively. The reactor was fed with municipal wastewater with a flow rate of 336 L/d. The concept of simultaneous nitrification and denitrification (SND) rate (rSND) was put forward to quantify SND. The results indicate that: (1) high nitrogen and phosphorus removal efficiencies were achieved during the stable SND phase, total nitrogen (TN) and total phosphate (TP) removal rates were 80% and 85%, respectively; (2) when the system was aerated excessively, the stability of SND was damaged, and rSND dropped from 80% to 20% or less; (3) the natural logarithm of the ratio of NOx to NH4^+ in the effluent had a linear correlation to oxidation-reduction potential (ORP); (4) when NO3^- was less than 6 mg/L, high phosphorus removal efficiency could be achieved; (5) denitrifying phosphorus removal (DNPR) could take place in the anaerobic-anoxic OD system. The major innovation was that the SND rate was devised and quantified.展开更多
The influence of cells groupings factor to the performance of the cells groupings time-shift pilot scheme is researched for the multiple cells large scale antennas systems(LSAS). The former researches have confirmed...The influence of cells groupings factor to the performance of the cells groupings time-shift pilot scheme is researched for the multiple cells large scale antennas systems(LSAS). The former researches have confirmed that the cells groupings time-shift pilots scheme is effective to reduce inter-cell interference, especially pilot contamination, which results from the pilot reuse in adjacent cells. However, they have not specified reasonable cells groupings factor, which plays a critical role in the general performance of the LSAS. Therefore, this problem is researched in details. The time for reverse-link data transmission will be compressed, when the groupings factor surpasses a certain range. Thus it is not always beneficial to increase the cells groupings factor without limitation. Furthermore,a reasonable cells groupings factor is deduced from the perspective of optimization to enhance the system performance. Simulations verify the proposed cell grouping factor.展开更多
The lack and pollution of water resource make wastewater reuse necessary. The pilot scale long-term tests for submerged membrane bioreactor were conducted to treat the effluents of anaerobic or aerobic treatment proce...The lack and pollution of water resource make wastewater reuse necessary. The pilot scale long-term tests for submerged membrane bioreactor were conducted to treat the effluents of anaerobic or aerobic treatment process for the high-strength Chinese traditional medicine wastewater. This article was focused on the feasibility of the wastewater treatment and reuse at shorter hydraulic retention time (HRT) of 5.0, 3.2 and 2.13 h. MLSS growth, membrane flux, vacuum values and chemical cleaning periods were also investigated. The experimental results of treating two-phase anaerobic treatment effluent demonstrated that the CODfilt was less than 100 mg/L when the influent COD was between 500-10000 mg/L at HRT of 5.0 h, which could satisfy the normal discharged standard in China. The experimental results to treat cross flow aerobic reactor effluent demonstrated that the average value of CODfilt was 17.28 mg/L when the average value of influent COD was 192.84 mg/L at HRT of 2.13 h during 106 d, which could completely meet the normal standard for water reuse. The maximum MLSS and MLVSS reached 24000 and 14500 mg/L at HRT of 3.2 h respectively. Membrane flux had maximal resume degrees of 94.7% at vacuum value of 0.02 MPa after cleaning. Chemical cleaning periods of membrane module were 150 d. A simulation model of operational parameters was also established based on the theory of back propagation neural network and linear regression of traditional mathematical model. The simulation model showed that the optimum operational parameters were suggested as follows: HRT was 5.0 h, SRT was 100 d, the range of COD loading rate was between 10.664-20.451 kg/(m3.d), the range of MLSS was between 7543-13694 mg/L.展开更多
Evaluating the performance of a biotrickling filter for the treatment of wastewaters produced by a company manufacturing beer was the aim of this study.A pilot scale trickling filter filled with gravel was used as the...Evaluating the performance of a biotrickling filter for the treatment of wastewaters produced by a company manufacturing beer was the aim of this study.A pilot scale trickling filter filled with gravel was used as the experimental biofilter.Pilot scale plant experiments were made to evaluate the performance of the trickling filter aerobic and anaerobic biofilm systems for removal of chemical oxygen demand(COD) and nutrients from synthetic brewery wastewater.Performance evaluation data of the trickling filter were generated under different experimental conditions.The trickling filter had an average efficiency of(86.81±6.95)% as the hydraulic loading rate increased from 4.0 to 6.4 m3/(m2·d).Various COD concentrations were used to adjust organic loading rates from 1.5 to 4.5 kg COD/(m3·d).An average COD removal efficiency of(85.10±6.40)% was achieved in all wastewater concentrations at a hydraulic loading of 6.4 m3/(m2·d).The results lead to a design organic load of 1.5 kg COD/(m3·d) to reach an effluent COD in the range of 50–120 mg/L.As can be concluded from the results of this study,organic substances in brewery wastewater can be handled in a cost-effective and environmentally friendly manner using the gravel-filled trickling filter.展开更多
The first in China pilot tests of fixed-bed methanol-topropylene unit were successfully implemented at the Yangzi Petrochemical Company(YPC).It is told that this technology has opened up a new process for production o...The first in China pilot tests of fixed-bed methanol-topropylene unit were successfully implemented at the Yangzi Petrochemical Company(YPC).It is told that this technology has opened up a new process for production of propylene through coal gasification,and China has possessed both the fluidized-bed methanolto-propylene process(F-MTP)and the展开更多
The experiment system of 1000 m deep sea mining system is built up with the similarity theory. Sine mechanism is used to simulate mining ship to generate lateral shock excitation by ocean wave. Simulation and experime...The experiment system of 1000 m deep sea mining system is built up with the similarity theory. Sine mechanism is used to simulate mining ship to generate lateral shock excitation by ocean wave. Simulation and experiment of spherical joint connecting deep sea mining system has been done in band six marine conditions. The results indicate that the moment of spherical joint connecting deep sea mining is smaller than that of the thread connected ones, the lifting pipe of sphelical joint is "flexible pipe". The flexural torque of the articulated lifting pipe system in pump and buffer is generally periodic variation with some irregularity, the value is stable on 60 N·S, and it is obviously smaller than that of the fixed lifting pipe system; The total displacement exhibits cyclic variation pattern, and the periodicity of them is longer than that of sea current. The results of experiment and simulation are basically consistent. And the analysis in the paper offers theoretical foundation of 1000 m deep sea mining system in China.展开更多
Biobutanol is an advanced biofuel that can be produced from excess lignocellulose via acetone-butanol-ethanol(ABE)fermentation.Although significant technological progress has been made in this field,attempts at larges...Biobutanol is an advanced biofuel that can be produced from excess lignocellulose via acetone-butanol-ethanol(ABE)fermentation.Although significant technological progress has been made in this field,attempts at largescale lignocellulosic ABE production remain scarce.In this study,1m^(3)scale ABE fermentation was investigated using high inhibitor tolerance Clostridium acetobutylicum ABE-P1201 and steam-exploded corn stover hydrolysate(SECSH).Before expanding the fermentation scale,the detoxification process for SECSH was simplified by process engineering.Results revealed that appropriate pH management during the fed-batch cultivation could largely decrease the inhibition of the toxic components in undetoxified SECSH to the solventogenesis phase of the ABE-P1201 strains,avoiding“acid crash”.Therefore,after naturalizing the pH by Ca(OH)_(2),the undetoxified SECSH,without removal of the solid components,reached 17.68±1.30 g/L of ABE production with 0.34±0.01 g/g of yield in 1 L scale bioreactor.Based on this strategy,the fermentation scale gradually expanded from laboratory-scale apparatus to pilot-scale bioreactors.Finally,17.05±1.20 g/L of ABE titer and 0.32±0.01 g/g of ABE yield were realized in 1m3 bioreactor,corresponding to approximately 145 kg of ABE production from 1 t of dry corn stover.The pilot-scale ABE fermentation demonstrated excellent stability during repeated operations.This study provided a simplified ABE fermentation strategy and verified the feasibility of the pilot process,providing tremendous significance and a solid foundation for the future industrialization of second-generation ABE plants.展开更多
基金supported by the National Key Research and Development Project (Nos.2020YFC1908702 and 2021YFC3200700)the National Natural Science Foundation of China (Nos.52192684 and 52192680).
文摘Sewage sludge in cities of Yangzi River Belt,China,generally exhibits a lower organic content and higher silt contentdue to leakage of drainage system,which caused low bioenergy recovery and carbon emission benefits in conventional anaerobic digestion(CAD).Therefore,this paper is on a pilot scale,a bio-thermophilic pretreatment anaerobic digestion(BTPAD)for low organic sludge(volatile solids(VS)of 4%)was operated with a long-term continuous flow of 200 days.The VS degradation rate and CH_(4) yield of BTPAD increased by 19.93%and 53.33%,respectively,compared to those of CAD.The analysis of organic compositions in sludge revealed that BTPAD mainly improved the hydrolysis of proteins in sludge.Further analysis of microbial community proportions by high-throughput sequencing revealed that the short-term bio-thermophilic pretreatment was enriched in Clostridiales,Coprothermobacter and Gelria,was capable of hydrolyzing acidified proteins,and provided more volatile fatty acid(VFA)for the subsequent reaction.Biome combined with fluorescence quantitative polymerase chain reaction(PCR)analysis showed that the number of bacteria with high methanogenic capacity in BTPAD was much higher than that in CAD during the medium temperature digestion stage,indicating that short-term bio-thermophilic pretreatment could provide better methanogenic conditions for BTPAD.Furthermore,the greenhouse gas emission footprint analysis showed that short-term bio-thermophilic pretreatment could reduce the carbon emission of sludge anaerobic digestion system by 19.18%.
文摘To achieve high efficiency of nitrogen and phosphorus removal and to investigate the rule of simultaneous nitrification and denitrification phosphorus removal (SNDPR), a whole course of SNDPR damage and recovery was studied in a pilot-scale, anaerobicanoxic oxidation ditch (OD), where the volumes of anaerobic zone, anoxic zone, and ditches zone of the OD system were 7, 21, and 280 L, respectively. The reactor was fed with municipal wastewater with a flow rate of 336 L/d. The concept of simultaneous nitrification and denitrification (SND) rate (rSND) was put forward to quantify SND. The results indicate that: (1) high nitrogen and phosphorus removal efficiencies were achieved during the stable SND phase, total nitrogen (TN) and total phosphate (TP) removal rates were 80% and 85%, respectively; (2) when the system was aerated excessively, the stability of SND was damaged, and rSND dropped from 80% to 20% or less; (3) the natural logarithm of the ratio of NOx to NH4^+ in the effluent had a linear correlation to oxidation-reduction potential (ORP); (4) when NO3^- was less than 6 mg/L, high phosphorus removal efficiency could be achieved; (5) denitrifying phosphorus removal (DNPR) could take place in the anaerobic-anoxic OD system. The major innovation was that the SND rate was devised and quantified.
基金supported by the National Natural Science Foundation of China(6110602261574013)
文摘The influence of cells groupings factor to the performance of the cells groupings time-shift pilot scheme is researched for the multiple cells large scale antennas systems(LSAS). The former researches have confirmed that the cells groupings time-shift pilots scheme is effective to reduce inter-cell interference, especially pilot contamination, which results from the pilot reuse in adjacent cells. However, they have not specified reasonable cells groupings factor, which plays a critical role in the general performance of the LSAS. Therefore, this problem is researched in details. The time for reverse-link data transmission will be compressed, when the groupings factor surpasses a certain range. Thus it is not always beneficial to increase the cells groupings factor without limitation. Furthermore,a reasonable cells groupings factor is deduced from the perspective of optimization to enhance the system performance. Simulations verify the proposed cell grouping factor.
基金Project supported by the Hi-Tech Research and Development Program (863) of China (No. 2002AA601310).
文摘The lack and pollution of water resource make wastewater reuse necessary. The pilot scale long-term tests for submerged membrane bioreactor were conducted to treat the effluents of anaerobic or aerobic treatment process for the high-strength Chinese traditional medicine wastewater. This article was focused on the feasibility of the wastewater treatment and reuse at shorter hydraulic retention time (HRT) of 5.0, 3.2 and 2.13 h. MLSS growth, membrane flux, vacuum values and chemical cleaning periods were also investigated. The experimental results of treating two-phase anaerobic treatment effluent demonstrated that the CODfilt was less than 100 mg/L when the influent COD was between 500-10000 mg/L at HRT of 5.0 h, which could satisfy the normal discharged standard in China. The experimental results to treat cross flow aerobic reactor effluent demonstrated that the average value of CODfilt was 17.28 mg/L when the average value of influent COD was 192.84 mg/L at HRT of 2.13 h during 106 d, which could completely meet the normal standard for water reuse. The maximum MLSS and MLVSS reached 24000 and 14500 mg/L at HRT of 3.2 h respectively. Membrane flux had maximal resume degrees of 94.7% at vacuum value of 0.02 MPa after cleaning. Chemical cleaning periods of membrane module were 150 d. A simulation model of operational parameters was also established based on the theory of back propagation neural network and linear regression of traditional mathematical model. The simulation model showed that the optimum operational parameters were suggested as follows: HRT was 5.0 h, SRT was 100 d, the range of COD loading rate was between 10.664-20.451 kg/(m3.d), the range of MLSS was between 7543-13694 mg/L.
基金Project(No.7117130553459)supported by the Landeszentralkasse M-V Stipendium,Germany
文摘Evaluating the performance of a biotrickling filter for the treatment of wastewaters produced by a company manufacturing beer was the aim of this study.A pilot scale trickling filter filled with gravel was used as the experimental biofilter.Pilot scale plant experiments were made to evaluate the performance of the trickling filter aerobic and anaerobic biofilm systems for removal of chemical oxygen demand(COD) and nutrients from synthetic brewery wastewater.Performance evaluation data of the trickling filter were generated under different experimental conditions.The trickling filter had an average efficiency of(86.81±6.95)% as the hydraulic loading rate increased from 4.0 to 6.4 m3/(m2·d).Various COD concentrations were used to adjust organic loading rates from 1.5 to 4.5 kg COD/(m3·d).An average COD removal efficiency of(85.10±6.40)% was achieved in all wastewater concentrations at a hydraulic loading of 6.4 m3/(m2·d).The results lead to a design organic load of 1.5 kg COD/(m3·d) to reach an effluent COD in the range of 50–120 mg/L.As can be concluded from the results of this study,organic substances in brewery wastewater can be handled in a cost-effective and environmentally friendly manner using the gravel-filled trickling filter.
文摘The first in China pilot tests of fixed-bed methanol-topropylene unit were successfully implemented at the Yangzi Petrochemical Company(YPC).It is told that this technology has opened up a new process for production of propylene through coal gasification,and China has possessed both the fluidized-bed methanolto-propylene process(F-MTP)and the
基金This research was financially supported by China Ocean Mineral Resources Reasearch and Design Association (GrantNo DY105-03-02-17)Ph.D Programs Foundation of Ministry of Education of China (Grant No20060008025)
文摘The experiment system of 1000 m deep sea mining system is built up with the similarity theory. Sine mechanism is used to simulate mining ship to generate lateral shock excitation by ocean wave. Simulation and experiment of spherical joint connecting deep sea mining system has been done in band six marine conditions. The results indicate that the moment of spherical joint connecting deep sea mining is smaller than that of the thread connected ones, the lifting pipe of sphelical joint is "flexible pipe". The flexural torque of the articulated lifting pipe system in pump and buffer is generally periodic variation with some irregularity, the value is stable on 60 N·S, and it is obviously smaller than that of the fixed lifting pipe system; The total displacement exhibits cyclic variation pattern, and the periodicity of them is longer than that of sea current. The results of experiment and simulation are basically consistent. And the analysis in the paper offers theoretical foundation of 1000 m deep sea mining system in China.
基金funded by the National Key Research and Development Program of China(grant number:2022YFC2106300).
文摘Biobutanol is an advanced biofuel that can be produced from excess lignocellulose via acetone-butanol-ethanol(ABE)fermentation.Although significant technological progress has been made in this field,attempts at largescale lignocellulosic ABE production remain scarce.In this study,1m^(3)scale ABE fermentation was investigated using high inhibitor tolerance Clostridium acetobutylicum ABE-P1201 and steam-exploded corn stover hydrolysate(SECSH).Before expanding the fermentation scale,the detoxification process for SECSH was simplified by process engineering.Results revealed that appropriate pH management during the fed-batch cultivation could largely decrease the inhibition of the toxic components in undetoxified SECSH to the solventogenesis phase of the ABE-P1201 strains,avoiding“acid crash”.Therefore,after naturalizing the pH by Ca(OH)_(2),the undetoxified SECSH,without removal of the solid components,reached 17.68±1.30 g/L of ABE production with 0.34±0.01 g/g of yield in 1 L scale bioreactor.Based on this strategy,the fermentation scale gradually expanded from laboratory-scale apparatus to pilot-scale bioreactors.Finally,17.05±1.20 g/L of ABE titer and 0.32±0.01 g/g of ABE yield were realized in 1m3 bioreactor,corresponding to approximately 145 kg of ABE production from 1 t of dry corn stover.The pilot-scale ABE fermentation demonstrated excellent stability during repeated operations.This study provided a simplified ABE fermentation strategy and verified the feasibility of the pilot process,providing tremendous significance and a solid foundation for the future industrialization of second-generation ABE plants.