期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
China Has Successfully Conducted its First Pilot Production of Natural Gas Hydrates 被引量:4
1
作者 HAO Ziguo FEI Hongcai +1 位作者 HAO Qingqing LIU Lian 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2017年第3期1133-1134,共2页
Natural gas methane and hydrates are a chemical compound of water molecules formed under low temperature and high pressure. The decomposition of 1 m^3 of natural gas hydrates can release about 0.8 m^3 of water and 164... Natural gas methane and hydrates are a chemical compound of water molecules formed under low temperature and high pressure. The decomposition of 1 m^3 of natural gas hydrates can release about 0.8 m^3 of water and 164 m3 of natural gas. Thus, natural gas hydrates are characterized by their high-energy density and huge resource potential. It is estimated that the world's total natural gas hydrates resource amount is equivalent to twice the total carbon amount of the global proven conventional fuels and can meet the human energy requirement in the future for 1000 years. They are thus the first choice to replace conventional energy of petroleum and coal. 展开更多
关键词 of AS on China Has Successfully Conducted its First pilot production of Natural Gas Hydrates in
在线阅读 下载PDF
Hot melt emulsification shear method for solid lipid-based suspension:from laboratory-scale to pilot-scale production
2
作者 Chao Li Wenqing Xie +3 位作者 Liwen Yuan Mubbashar Abbas Dongmei Chen Shuyu Xie 《Animal Diseases》 2025年第2期235-247,共13页
The clinical application of solid lipid particles(SLPs)is hampered due to the need for advanced nano/micro-suspension production technology.This research aims to establish a pilot-scale production line employing high-... The clinical application of solid lipid particles(SLPs)is hampered due to the need for advanced nano/micro-suspension production technology.This research aims to establish a pilot-scale production line employing high-speed shears as emulsification equipment.The primary purpose is to manufacture nano/micro-suspensions using solid lipid particles(SLPs).The study also exhaustively introduces and analyzes the regulatory schemes for process parameters and formulations at various stages of production.The process and formulation endured optimization through orthog-onal or single-factor tests at various production steps:laboratory research,small-scale trial production,and pilot production.Quality standards for the product were determined,and key parameters were obtained at each stage.The laboratory research demonstrated that the optimal SLPs comprised 15 mL 3%polyvinyl alcohol(PVA)per 1.0 g tilmicosin and 2.5 g carnauba wax(WAX).During small-scale production,modifications were made to the volume of the aqueous phase,emulsifier concentration,and emulsification strength,setting them to 16 mL,5%,and 2200 r/min,respectively.In the pilot production stage,the shear time was considered optimal at eight min.The impurity,content,polydispersion coefficient(PDI),and size of the pilot product were<3%,5%,0385 and 2.64μm,respectively.Among the several parameters studied,heating temperature,drug-lipid ratio,and emulsifier concentration were identified as the main factors affecting product quality,and they were regulated at 100℃,1:3,and 5%,respectively.A novel hot melt emulsification shear method aided the development of a new solid lipid-based suspension from its preliminary stages in the laboratory to pilot production.This innovation is expected to enhance solid lipid-based suspensions'industrial evolution extensively. 展开更多
关键词 Laboratory research Small-scale production pilot production Quality evaluation Solid lipid particles
原文传递
Optimization of Enzymatic Extraction Process of Polysaccharides from Pseudostellaria heterophylla Fibrous Roots by Response Surface Methodology and Its Pilot Application
3
作者 Huiqing PAN Qi ZHAO +1 位作者 Yanda ZHANG Rongping YANG 《Medicinal Plant》 2024年第5期17-21,共5页
[Objectives]To study and optimize the process conditions of enzymatic hydrolysis technology for extracting polysaccharides from Pseudostellaria heterophylla fibrous roots and its application in workshop pilot tests.[M... [Objectives]To study and optimize the process conditions of enzymatic hydrolysis technology for extracting polysaccharides from Pseudostellaria heterophylla fibrous roots and its application in workshop pilot tests.[Methods]P.heterophylla fibrous roots were taken as the matrix material,and Box Behnken design was used to analyze the extraction time,composite enzyme addition amount,and liquid-solid ratio for response surface optimization experiments,and then applied to the pilot extraction of P.heterophylla fibrous roots.[Results]Response surface analysis showed that all factors had a significant impact on the experimental indicators.The optimal extraction process conditions for polysaccharides from P.heterophylla fibrous roots were extraction time of 2.7 h,compound enzyme addition of 2.5%,and liquid-solid ratio of 32.The yield of polysaccharides from P.heterophylla fibrous roots was 4.83%.The water extraction process of P.heterophylla fibrous roots extraction pilot was used as the control group for response surface optimization of the pilot experiment.The optimization results showed that the extraction time was 3 h,the amount of composite enzyme added was 2.5%,and the liquid-solid ratio was 28.The polysaccharide yield was 4.75%,an increase of 4.63%compared to the control group.[Conclusions]This paper could provide feasibility for the innovation of enzy-matic hydrolysis technology for P.heterophylla fibrous roots and its workshop pilot practice application,as well as a reference for the industrial application of its medicinal resources. 展开更多
关键词 Pseudostellaria heterophylla fibrous roots POLYSACCHARIDES Enzymatic extraction pilot production Response surface opti timization
暂未订购
Influencing factors and optimization on mechanical performance of solid waste-derived rapid repair mortar 被引量:1
4
作者 Jingwei Li Xiangshan Hou +5 位作者 Aiguang Jia Xin Xiao Xujiang Wang Yonggang Yao Ziliang Zhang Wenlong Wang 《Waste Disposal and Sustainable Energy》 EI CSCD 2023年第2期223-234,共12页
There is a great demand for high performance rapid repair mortar(RRM)because of the wide use of cement concrete.Solid-waste-based sulfoaluminate cement(WSAC)is very suitable as a green cementitious material for repair... There is a great demand for high performance rapid repair mortar(RRM)because of the wide use of cement concrete.Solid-waste-based sulfoaluminate cement(WSAC)is very suitable as a green cementitious material for repair materials because of its characteristics of high early-age strength and short setting time.However,the influence and optimization of various factors of WSAC-based RRM,such as water-to-RRM ratio,binder-to-sand ratio and additives,as well as the further solid waste replacement of aggregate,remain to be studied.This paper comprehensively studied the influence of the above factors on the performance of WSAC-based RRM and obtained a green high-performance RRM by optimizing these factors.The experimental results showed that the early and late strength of the obtained RRM is excellent,and the setting time and fluidity are appropriate,which reflected good mechanical properties and construction performance.Ordinary Portland cement(OPC)doping could not improve RRM strength.It was feasible to prepare RRM with gold tailing sand replacing part of the quartz sand.This paper provides data and a theoretical basis for the preparation of high-performance RRM based on solid waste,expanding the high value utilization of solid waste,which is conducive to the development of a low carbon society. 展开更多
关键词 Rapid repair mortar Solid-waste-based sulfoaluminate cement Ordinary Portland cement pilot production Gold tailing sand Environmental friendliness
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部