In this work, we utilize atomistic simulations and dislocation mechanics to explore the formation of in-verse pileups in CrCoNi model alloys and elucidate their unique impact on the strength and ductilityof multi-prin...In this work, we utilize atomistic simulations and dislocation mechanics to explore the formation of in-verse pileups in CrCoNi model alloys and elucidate their unique impact on the strength and ductilityof multi-principal element alloys (MPEAs). The present atomistic simulations on single crystals revealthat during the deformation of CrCoNi, stress gradients lead to the formation of novel inverse disloca-tion pileup. We find that this unique dislocation pattern in a confined volume is due to the elevatedlattice friction and significant stress gradient present in the material. Furthermore, this phenomenon canbe notably promoted by lowering the temperature, increasing the loading rate, and introducing chemicalshort-range ordering. Additional simulations on bicrystals show that these inverse pileups play a criticalrole in suppressing dislocation transmission, reflection, and grain boundary (GB) migration. As a result,they effectively mitigate stress concentration and reduce damage accumulation at GBs, lowering the riskof catastrophic failure due to GB damages. In our theoretical analysis, we utilize dislocation mechanics topredict the formation of the inverse pileup and its subsequent strengthening effect, considering scenarioswith and without obstacles. Our investigations encompass various lattice frictions and stress gradients.Remarkably, our results shed light on the prevailing impact of dislocation hardening in the plastic de-formation of CrCoNi even under the presence of a linear stress gradient, while the contribution of GBstrengthening is found to be comparatively limited. These findings provide valuable insights into the de-formation mechanisms of MPEAs in general and significantly aid their applications as promising structuralmaterials.展开更多
The maximum normal impact resultant force(NIRF)is usually regarded as the sum of the static earth pressure of the dead zone and the dynamic impact pressure of the flowing layer.The influence of the interaction between...The maximum normal impact resultant force(NIRF)is usually regarded as the sum of the static earth pressure of the dead zone and the dynamic impact pressure of the flowing layer.The influence of the interaction between the flowing layer and dead zone on the impact force is ignored.In this study,we classified two impact models with respect to the pileup characteristics of the dead zone.Then,we employed the discrete element method to investigate the influences of the pileup characteristics on the impact force of dry granular flow on a tilted rigid wall.If the final pileup height is equal to the critical value,the maximum NIRF can be estimated using a hydrostatic model,because the main contribution to the maximum NIRF is the static earth pressure of the dead zone.If the final pileup height is less than the critical value,however,the particles in the dead zone are squeezed along the slope surface by the impact ofthe flowing layer on the dead zone,and because of shear effects,the flowing layer causes an entrainment in the dead zone.This results in a decrease in the volume of the dead zone at the moment of maximum NIRF with increases in the slope angle.As such,the maximum NIRF mainly comprises the instant impact force of the flowing layer,so hydro-dynamic models are effective for estimating the maximum NIRF.Impact models will benefit from further study of the components and distribution of the impact force of dry granular flow.展开更多
Optimization algorithms are applied to resolve the second-order pileup(SOP)issue from high counting rates occurring in digital alpha spectroscopy.These are antlion optimizer(ALO)and particle swarm optimization(PSO)alg...Optimization algorithms are applied to resolve the second-order pileup(SOP)issue from high counting rates occurring in digital alpha spectroscopy.These are antlion optimizer(ALO)and particle swarm optimization(PSO)algorithms.Both optimization algorithms are coupled to one of the three proposed peak finder algorithms.Three custom time-domain algorithms are proposed for retrieving SOP peaks,namely peak seek,slope tangent,and fast array algorithms.In addition,an average combinational algorithm is applied.The time occurrence of the retrieved peaks is tested for an elimination of illusive pulses.Conventional methods are inaccurate and timeconsuming.ALO and PSO optimizations are used for the localization of retrieved peaks.Optimum cost values that achieve the best fitness values are demonstrated.Thus,the optimum positions of the detected peak heights are achieved.Evaluation metrics of the optimized algorithms and their influences on the retrieved peaks parameters are established.Comparisons among such algorithms are investigated,and the algorithms are inspected in terms of their computational time and average error.The peak seek algorithm achieves the lowest average computational error for pulse parameters(amplitude and position).However,the fast array algorithm introduces the largest average error for pulse parameters.In addition,the peak seek algorithm coupled with an ALO or PSO algorithm is observed to realize a better performance in terms of the optimum cost and computational time.By contrast,the performance of the peak seek recovery algorithm is improved using the PSO.Furthermore,the computational time of the peak optimization using the PSO is much better than that of the ALO algorithm.As a final conclusion,the accuracy of the peaks detected by the PSO surpasses that for the peaks detected by the ALO.The implemented peak retrieval algorithms are validated through a comparison with experimental results from previous studies.The proposed algorithms achieve a notable precision for compensation of the SOP peaks within the alpha ray spectroscopy at a high counting rate.展开更多
The electron spectrometer of Mars Express (MEX) provides the flux of low energy electrons (<20 keV) near Mars. 96 pieces of continuously measured data are analyzed, and the crossings of the magnetic pileup boundary...The electron spectrometer of Mars Express (MEX) provides the flux of low energy electrons (<20 keV) near Mars. 96 pieces of continuously measured data are analyzed, and the crossings of the magnetic pileup boundary (MPB) can be determined by fitting the energy spectrum of the low energy electrons. The shape and position of the MPB can be gained from these crossings, and they are in good agreement with the results obtained by the Mars Global Surveyor (MGS) and Phobos-2. In addition, we classify these crossings based on the crustal magnetic field nearby. It turns out that the position of MPB near the strong (>50 nT) crustal magnetic field is higher than the position of the MPB near the weak (<10 nT) crustal magnetic field. This result reflects the effect of the crustal magnetic field on the interaction between the Martian atmosphere and solar wind.展开更多
本文报道了在SIMOX(Separation by IMPlanted Oxygen)薄膜材料上制备钛硅化物的研究结果。研究表明,不同厚度的SIMOX薄膜材料上都形成了均匀的TiSi_2,其薄层电阻为4.0—4.5Ω/□,上层Si中的载流子峰值浓度达2×10^(20)/cm^3,获得了...本文报道了在SIMOX(Separation by IMPlanted Oxygen)薄膜材料上制备钛硅化物的研究结果。研究表明,不同厚度的SIMOX薄膜材料上都形成了均匀的TiSi_2,其薄层电阻为4.0—4.5Ω/□,上层Si中的载流子峰值浓度达2×10^(20)/cm^3,获得了一种TiSi_2/n^+-Si/SiO_2/Si的多层结构。形成TiSi_2后,As原子在上层Si中的分布与SIMOX薄膜厚度有关,当上层Si很薄时,As原子在上层Si与SiO_2埋层的界面上的堆积是明显的。展开更多
The combination of ultrahigh strength and excellent ductility of nanotwinned materials is rooted in the interaction between dislocations and twin boundaries(TBs).Quantifying the interaction between TBs and dislocation...The combination of ultrahigh strength and excellent ductility of nanotwinned materials is rooted in the interaction between dislocations and twin boundaries(TBs).Quantifying the interaction between TBs and dislocations not only offers fresh perspectives of designing materials with high strength and ductility,but also becomes the cornerstone of multiscale modeling of materials with TBs.In this work,an atomcontinuum coupling model was adopted to quantitatively investigate the interaction between dislocations and TBs.The simulation shows that the dislocation-TB interaction is much weaker than the interaction between dislocations at the same distance.Simulation of the early stage of dislocation pileups further verifies that the experimentally observed repulsive forces are essentially from the dislocations or kink-like steps on TBs.The interaction between TBs and dislocations with different Burgers vectors was demonstrated referring to the elastic theory of dislocations.With the intrinsic interaction between dislocations and TBs being clarified,this work will promote further development of the multiscale simulation methods,such as discrete dislocation dynamics or phase-field method,of materials with TBs by providing a quantitative description of the interactions between TBs and dislocations.展开更多
文摘In this work, we utilize atomistic simulations and dislocation mechanics to explore the formation of in-verse pileups in CrCoNi model alloys and elucidate their unique impact on the strength and ductilityof multi-principal element alloys (MPEAs). The present atomistic simulations on single crystals revealthat during the deformation of CrCoNi, stress gradients lead to the formation of novel inverse disloca-tion pileup. We find that this unique dislocation pattern in a confined volume is due to the elevatedlattice friction and significant stress gradient present in the material. Furthermore, this phenomenon canbe notably promoted by lowering the temperature, increasing the loading rate, and introducing chemicalshort-range ordering. Additional simulations on bicrystals show that these inverse pileups play a criticalrole in suppressing dislocation transmission, reflection, and grain boundary (GB) migration. As a result,they effectively mitigate stress concentration and reduce damage accumulation at GBs, lowering the riskof catastrophic failure due to GB damages. In our theoretical analysis, we utilize dislocation mechanics topredict the formation of the inverse pileup and its subsequent strengthening effect, considering scenarioswith and without obstacles. Our investigations encompass various lattice frictions and stress gradients.Remarkably, our results shed light on the prevailing impact of dislocation hardening in the plastic de-formation of CrCoNi even under the presence of a linear stress gradient, while the contribution of GBstrengthening is found to be comparatively limited. These findings provide valuable insights into the de-formation mechanisms of MPEAs in general and significantly aid their applications as promising structuralmaterials.
文摘The maximum normal impact resultant force(NIRF)is usually regarded as the sum of the static earth pressure of the dead zone and the dynamic impact pressure of the flowing layer.The influence of the interaction between the flowing layer and dead zone on the impact force is ignored.In this study,we classified two impact models with respect to the pileup characteristics of the dead zone.Then,we employed the discrete element method to investigate the influences of the pileup characteristics on the impact force of dry granular flow on a tilted rigid wall.If the final pileup height is equal to the critical value,the maximum NIRF can be estimated using a hydrostatic model,because the main contribution to the maximum NIRF is the static earth pressure of the dead zone.If the final pileup height is less than the critical value,however,the particles in the dead zone are squeezed along the slope surface by the impact ofthe flowing layer on the dead zone,and because of shear effects,the flowing layer causes an entrainment in the dead zone.This results in a decrease in the volume of the dead zone at the moment of maximum NIRF with increases in the slope angle.As such,the maximum NIRF mainly comprises the instant impact force of the flowing layer,so hydro-dynamic models are effective for estimating the maximum NIRF.Impact models will benefit from further study of the components and distribution of the impact force of dry granular flow.
文摘Optimization algorithms are applied to resolve the second-order pileup(SOP)issue from high counting rates occurring in digital alpha spectroscopy.These are antlion optimizer(ALO)and particle swarm optimization(PSO)algorithms.Both optimization algorithms are coupled to one of the three proposed peak finder algorithms.Three custom time-domain algorithms are proposed for retrieving SOP peaks,namely peak seek,slope tangent,and fast array algorithms.In addition,an average combinational algorithm is applied.The time occurrence of the retrieved peaks is tested for an elimination of illusive pulses.Conventional methods are inaccurate and timeconsuming.ALO and PSO optimizations are used for the localization of retrieved peaks.Optimum cost values that achieve the best fitness values are demonstrated.Thus,the optimum positions of the detected peak heights are achieved.Evaluation metrics of the optimized algorithms and their influences on the retrieved peaks parameters are established.Comparisons among such algorithms are investigated,and the algorithms are inspected in terms of their computational time and average error.The peak seek algorithm achieves the lowest average computational error for pulse parameters(amplitude and position).However,the fast array algorithm introduces the largest average error for pulse parameters.In addition,the peak seek algorithm coupled with an ALO or PSO algorithm is observed to realize a better performance in terms of the optimum cost and computational time.By contrast,the performance of the peak seek recovery algorithm is improved using the PSO.Furthermore,the computational time of the peak optimization using the PSO is much better than that of the ALO algorithm.As a final conclusion,the accuracy of the peaks detected by the PSO surpasses that for the peaks detected by the ALO.The implemented peak retrieval algorithms are validated through a comparison with experimental results from previous studies.The proposed algorithms achieve a notable precision for compensation of the SOP peaks within the alpha ray spectroscopy at a high counting rate.
文摘The electron spectrometer of Mars Express (MEX) provides the flux of low energy electrons (<20 keV) near Mars. 96 pieces of continuously measured data are analyzed, and the crossings of the magnetic pileup boundary (MPB) can be determined by fitting the energy spectrum of the low energy electrons. The shape and position of the MPB can be gained from these crossings, and they are in good agreement with the results obtained by the Mars Global Surveyor (MGS) and Phobos-2. In addition, we classify these crossings based on the crustal magnetic field nearby. It turns out that the position of MPB near the strong (>50 nT) crustal magnetic field is higher than the position of the MPB near the weak (<10 nT) crustal magnetic field. This result reflects the effect of the crustal magnetic field on the interaction between the Martian atmosphere and solar wind.
文摘本文报道了在SIMOX(Separation by IMPlanted Oxygen)薄膜材料上制备钛硅化物的研究结果。研究表明,不同厚度的SIMOX薄膜材料上都形成了均匀的TiSi_2,其薄层电阻为4.0—4.5Ω/□,上层Si中的载流子峰值浓度达2×10^(20)/cm^3,获得了一种TiSi_2/n^+-Si/SiO_2/Si的多层结构。形成TiSi_2后,As原子在上层Si中的分布与SIMOX薄膜厚度有关,当上层Si很薄时,As原子在上层Si与SiO_2埋层的界面上的堆积是明显的。
基金financially supported by the Shenzhen-Hong Kong Science and Technology Innovation Cooperation Zone Shenzhen Park Project(Grant No.HZQB-KCZYB-2020030)the National Natural Science Foundation of China(Grant Nos.12072062,11772082,12072061)+2 种基金the Liaoning Revitalization Talents Program(Grant No.XLYC1807193)Key Research and Development Project of Liaoning Province(Grant No.2020JH2/10500003)the Fundamental Research Funds for the Central Universities(Grant No.DUT20LAB203)。
文摘The combination of ultrahigh strength and excellent ductility of nanotwinned materials is rooted in the interaction between dislocations and twin boundaries(TBs).Quantifying the interaction between TBs and dislocations not only offers fresh perspectives of designing materials with high strength and ductility,but also becomes the cornerstone of multiscale modeling of materials with TBs.In this work,an atomcontinuum coupling model was adopted to quantitatively investigate the interaction between dislocations and TBs.The simulation shows that the dislocation-TB interaction is much weaker than the interaction between dislocations at the same distance.Simulation of the early stage of dislocation pileups further verifies that the experimentally observed repulsive forces are essentially from the dislocations or kink-like steps on TBs.The interaction between TBs and dislocations with different Burgers vectors was demonstrated referring to the elastic theory of dislocations.With the intrinsic interaction between dislocations and TBs being clarified,this work will promote further development of the multiscale simulation methods,such as discrete dislocation dynamics or phase-field method,of materials with TBs by providing a quantitative description of the interactions between TBs and dislocations.