期刊文献+
共找到63,973篇文章
< 1 2 250 >
每页显示 20 50 100
Experimental study on the pile-tip resistance bearing characteristics of postgrouting at pile tip
1
作者 ZHANG Runze WANG Hongtao +2 位作者 WANG Lei GONG Weiming WAN Zhihui 《Journal of Southeast University(English Edition)》 2025年第3期295-304,共10页
Postgrouting at the pile tip enhances the performance of cast-in-place piles.To clarify the performance of tip and side resistances,this study analyzed static load test data from two test piles before and after grouti... Postgrouting at the pile tip enhances the performance of cast-in-place piles.To clarify the performance of tip and side resistances,this study analyzed static load test data from two test piles before and after grouting.Mechanisms underlying an improvement in tip resistance and the influence of postgrouting on side resistance were investigated via theoretical analysis.Finally,a design method for tip resistance control via settlement was proposed.Results indicate that the ultimate bearing capacity of piles increases after grouting compared to before,underscoring the importance of tip grouting in gravelly soils and its profound impact on load transmission in pile foundations.Postgrouting at the pile tip enhances the strength as well as initial stiffness of the bearing stratum,ultimately elevating the overall pile foundation-bearing capacity.Additionally,tip grouting helps in strengthening over-all side resistance,especially around the pile tip.The grouting procedure has an impact on the soil’s arching effect at the pile tip;the extent of the arching effect and an increase in horizontal tension close to the pile tip are positively correlated with the effectiveness of grouting reinforcement.The design method for tip resistance control via settlement based on measured data statistics was validated using engineering examples,and the method has a practical reference value. 展开更多
关键词 postgrouting at pile tip pile-tip resistance pile-side resistance negative skin friction enhancement effect precompression effect
在线阅读 下载PDF
Simplified approaches for predicting the nonlinear load-displacement response of single pile and pile groups in unsaturated soils
2
作者 Xinting Cheng Sai K.Vanapalli 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第5期3107-3124,共18页
A simplified analytical approach is proposed for predicting the load-displacement behavior of single piles in unsaturated soils considering the contribution from the nonlinear shear strength and soil stiffness influen... A simplified analytical approach is proposed for predicting the load-displacement behavior of single piles in unsaturated soils considering the contribution from the nonlinear shear strength and soil stiffness influenced by matric suction.This approach includes a Modified Load Transfer Model(MLTM)that can predict the nonlinear relationships between the shear stress and pile-soil relative displacement along the pile shaft,and between the pile base resistance and base settlement.The proposed model is also extended for pile groups to incorporate the interaction effects between individual piles.The analytical approach is validated through a comparative analysis with the measurements from two single pile tests and one pile group test.In addition,a finite element analysis using 3D modeling is carried out to investigate the behavior of pile groups in various unsaturated conditions.This is accomplished with a user-defined subroutine that is written and implemented in ABAQUS to simulate the nonlinear mechanical behavior of unsaturated soils.The predictions derived from the proposed analytical and numerical methods compare well with the measurements of a published experimental study.The proposed methodologies have the potential to be applied in geotechnical engineering practice for the rational design of single piles and pile groups in unsaturated soils. 展开更多
关键词 Unsaturated soils Matric suction pile pile group Load transfer model
在线阅读 下载PDF
Horizontal bearing capacity of post-expanded arm grouting pile foundations
3
作者 Wenbo Zhu Guoliang Dai +3 位作者 Huiyuan Deng Bo Liu Liji Huang Yingying Zhao 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第6期3845-3860,共16页
In order to effectively improve the horizontal bearing capacity of pile foundations,this study proposes post-expanded arm grouting technology and associated pile foundations.The horizontal bearing characteristic of th... In order to effectively improve the horizontal bearing capacity of pile foundations,this study proposes post-expanded arm grouting technology and associated pile foundations.The horizontal bearing characteristic of the post-expanded arm grouting pile was explored through model tests.The test results indicate that the post-expanded arm grouting pile can increase the contact area between the pile and soil,and can improve the strength of the soil.The horizontal bearing capacity of the post-expanded arm grouting pile was approximately 3 times that of the conventional pile.It also shows that the larger the plate diameter ratio or grouting volume,the higher the horizontal bearing capacity of the post-expanded arm grouting pile.The maximum bending moment of the post-expanded arm grouting pile was located at the pile plate,and the displacement zero point of the new pile was higher than that of the conventional pile.The soil resistance at the pile plate was significantly higher than that of conventional piles,indicating that the pile plate effectively enhances the soil resistance.The improved p-y curve model and horizontal bearing capacity calculation method for the post-expanded arm grouting pile were proposed by considering the pile plate diameter factor.This method was finally verified by experimental results.The results of this study can provide a reference for calculating the horizontal bearing capacity of the post-expanded arm grouting pile. 展开更多
关键词 pile foundations POST-GROUTING Expanded arm pile Improvement of bearing capacity p-y curve model
在线阅读 下载PDF
Seismic stability analysis of sandy slope with anti-slide pipe piles through shaking table tests and finite element
4
作者 SALEH ASHEGHABADI Mohsen XU Jianmin +2 位作者 JIA Yuyue LIU Junwei WANG Yulin 《Journal of Mountain Science》 2025年第10期3744-3768,共25页
Seismic-induced landslides critically threaten infrastructure and human safety,especially in sandy slopes where conventional stabilization methods often fail under dynamic loading.This study evaluates circular open-en... Seismic-induced landslides critically threaten infrastructure and human safety,especially in sandy slopes where conventional stabilization methods often fail under dynamic loading.This study evaluates circular open-ended anti-slide pipe piles embedded in a two-layer sandy slope with differing geotechnical properties.Ten physical models,including five freefield and five pile-reinforced slopes,were tested on a shaking table.Key seismic responses—acceleration,soil displacement,and bending moments—were monitored using accelerometers,strain gauges,and Digital Image Correlation(DIC).Complementary numerical simulations using Abaqus with a Mohr–Coulomb model validated experimental results.Soil displacement in free-field models under 0.25g shaking was about 3.5 times greater than in reinforced slopes.Bending moments increased with seismic intensity,peaking at depths around five times the pile diameter.Limitations including simplified two-layer soil representation,idealized seismic inputs,and boundary effects inherent to laboratory models restrict direct field application but enable controlled analysis.By combining physical experiments with numerical modeling,the study provides a robust and validated framework for seismic slope stabilization.This integrated approach enhances understanding of soil–pile interaction under seismic loads and offers targeted insights for developing safer and more reliable geotechnical design strategies in earthquake-prone areas. 展开更多
关键词 Anti-slide piles Shaking table tests Sloping lands Soil-pile models Free-field models
原文传递
Analytic method of skin friction for plum blossom pile foundations considering pile-soil interaction under vertical load
5
作者 LI Long JIANG Quan DENG You-sheng 《Journal of Central South University》 2025年第9期3336-3347,共12页
Plum blossom pile is a new type of special-shaped pile, which is proposed based on the principle of maximum perimeter with the same cross-sectional area. To advance this technique, primarily for the design of plum blo... Plum blossom pile is a new type of special-shaped pile, which is proposed based on the principle of maximum perimeter with the same cross-sectional area. To advance this technique, primarily for the design of plum blossom piles, it is important to investigate the skin friction behavior of plum blossom pile foundations precluding any straightforward constitutive model. In this work, an analytic method dependent on the cross-sectional geometry and the vertical shearing effects is proposed by means of equilibrium analysis to calculate the effective vertical stress in the surrounding soil, the skin friction/negative skin friction, and the axial force/dragload of a plum blossom pile. Additionally, the curves of skin friction of piles are investigated with the same conditions. The results show that the curves of skin friction of piles deduced according to the developed analytic method agree well with the FEM results and related literature solution, which validates the solution. The axial force of the pile decreases with the increase of the shear action coefficient in the buried depth direction under the vertical concentrated load when considering the vertical shearing effects on the pile-soil interfaces. 展开更多
关键词 plum blossom pile skin friction pile-soil interaction vertical shearing effects negative skin friction
在线阅读 下载PDF
Enhanced Load-Settlement Curve Forecasts for Open-Ended Pipe Piles Incorporating Soil Plug Constraints Using Shallow and Deep Neural Networks
6
作者 Luttfi A.AL-HADDAD Mohammed Y.FATTAH +2 位作者 Wissam H.S.AL-SOUDANI Sinan A.AL-HADDAD Alaa Abdulhady JABER 《China Ocean Engineering》 2025年第3期562-572,共11页
This study investigates the load-bearing capacity of open-ended pipe piles in sandy soil, with a specific focus on the impact of soil plug constraints at four levels(no plug, 25% plug, 50% plug, and full plug). Levera... This study investigates the load-bearing capacity of open-ended pipe piles in sandy soil, with a specific focus on the impact of soil plug constraints at four levels(no plug, 25% plug, 50% plug, and full plug). Leveraging a dataset comprising open-ended pipe piles with varying geometrical and geotechnical properties, this research employs shallow neural network(SNN) and deep neural network(DNN) models to predict plugging conditions for both driven and pressed installation types. This paper underscores the importance of key parameters such as the settlement value,applied load, installation type, and soil configuration(loose, medium, and dense) in accurately predicting pile settlement. These findings offer valuable insights for optimizing pile design and construction in geotechnical engineering,addressing a longstanding challenge in the field. The study demonstrates the potential of the SNN and DNN models in precisely identifying plugging conditions before pile driving, with the SNN achieving R2 values ranging from0.444 to 0.711 and RMSPE values ranging from 24.621% to 48.663%, whereas the DNN exhibits superior performance, with R2 values ranging from 0.815 to 0.942 and RMSPE values ranging from 4.419% to 10.325%. These results have significant implications for enhancing construction practices and reducing uncertainties associated with pile foundation projects in addition to leveraging artificial intelligence tools to avoid long experimental procedures. 展开更多
关键词 pipe piles soil plug artificial neural network bearing capacity forecasts
在线阅读 下载PDF
Cyclic Response Characteristics of Rigid Piles in Dense Sand Under One-way Oblique Tensile Loads
7
作者 HUANG Ting DAI Guo-liang +2 位作者 TIAN Ying-hui ZHANG Ji-sheng XU Qing-yun 《China Ocean Engineering》 2025年第4期698-707,共10页
The behavior of rigid piles in sandy soils under one-way cyclic oblique tensile loading represents a critical design consideration for floating renewable devices.These piles,when moored with catenary or taut moorings,... The behavior of rigid piles in sandy soils under one-way cyclic oblique tensile loading represents a critical design consideration for floating renewable devices.These piles,when moored with catenary or taut moorings,experience one-way cyclic tensile loads at inclinations ranging from 0°(horizontal)to 90°(vertical).However,the combined effects of cyclic loading and load inclination remain inadequately understood.This study presents findings from centrifuge tests conducted on rough rigid piles installed in dense sand samples.The results demonstrate that load inclinations significantly influence both cyclic response and ultimate capacity of the piles.Based on the observed cyclic response characteristics,the vertical cyclic load amplitude should not exceed 25%of the ultimate bearing capacity to maintain pile stability.A power expression(with exponent m values ranging from 0.055 to 0.065)is proposed for predicting cumulative pile displacement under unidirectional cyclic loading at inclinations from 0°to 60°.The cyclic response exhibits reduced sensitivity to horizontal cyclic load magnitude,with m-value increasing from 0.06 to 0.14 as load magnitude increases from 0.3 to 0.9.For piles maintaining stability under oblique cyclic loading,the average normalized secant stiffness exceeds 1 and increases with decreasing inclination,indicating enhanced pile stiffness under cyclic loading.For load inclinations below 30°,pile stiffness can be determined using logarithmic function. 展开更多
关键词 pile centrifuge test oblique load ultimate capacity cyclic response power expression STIFFNESS
在线阅读 下载PDF
Transmedia seepage characteristics of slope-concrete stabilizing piles interface systems in cold regions
8
作者 FENG Xue WANG Boxin +2 位作者 WANG Qing CHEN Huie FU Lanting 《Journal of Mountain Science》 2025年第3期1015-1028,共14页
Understanding the factors triggering slope failure is essential to ensure the safety of buildings and transportation infrastructure on slopes. Specifically,the failure of stabilizing piles due to groundwater migration... Understanding the factors triggering slope failure is essential to ensure the safety of buildings and transportation infrastructure on slopes. Specifically,the failure of stabilizing piles due to groundwater migration and freeze–thaw(FT) cycles is a significant factor causing slope failure. This study aims to investigate the transmedia seepage characteristics at slope–concrete stabilizing pile interface systems by using silty clay and concrete with varying microstructure characteristics under FT cycles. To this end, a self-developed indoor test device for transmedia water migration, combined with a macro-meso-micro multiscale testing approach, was used to analyze the laws and mechanisms of transmedia seepage at the interface systems. The effect of the medium's microstructure characteristics on the transmedia seepage behavior at the interface systems under FT cycles was also assessed. Results indicated that the transmedia water migration exhibited particularity due to the migration of soil particles and the low permeability characteristics of concrete. The water content in the media increased significantly within the range of 1/3–2/3 of the height from the interface for soil and within 5 mm from the interface for concrete.FT cycles promoted the increase and penetration of cracks within the medium, enhancing the permeability of the slope-concrete stabilizing pile interface systems.With the increase in FT cycles, the porosity inside the medium first decreased and then increased, and the porosity reached the minimum after 25 FT cycles and the maximum after 75 FT cycles, and the water content of the medium after water migration was positively correlated with the porosity. FT cycles also significantly influenced the temporal variation characteristics of soil moisture and the migration path of water in concrete. The study results could serve as a reference for related research on slope stability assessment. 展开更多
关键词 SLOPE Concrete stabilizing piles Interface systems Transmedia seepage Freeze–thaw cycles MICROSTRUCTURE
原文传递
Centrifuge modelling of permeable pipe pile in consideration of pile driving process, soil consolidation, and axial loading
9
作者 Meijuan Xu Pengpeng Ni Guoxiong Mei 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第6期3861-3871,共11页
Precast driven piles are extensively used for infrastructure on soft soils,but the buildup of excess pore water pressure associated with pile driving is a challenging issue.The process of soil consolidation could take... Precast driven piles are extensively used for infrastructure on soft soils,but the buildup of excess pore water pressure associated with pile driving is a challenging issue.The process of soil consolidation could take several months.Measures are sought to shorten the drainage path in the ground,and permeable pipe pile is a concept that involves drainage channels at the peak pore pressure locations around the pile circumference.Centrifuge tests were conducted to understand the responses of permeable pipe pile treated ground,experiencing the whole pile driving,soil consolidating,and axially loading process.Results show that the dissipation rate of pore pressures can be improved,especially at a greater depth or at a shorter distance from the pile,since the local hydraulic gradient was higher.Less significant buildup of pore pressures can be anticipated with the use of permeable pipe pile.For this,the bearing capacity of composite foundation with permeable pipe pile can be increased by over 36.9%,compared to the case with normal pipe pile at a specific time period.All these demonstrate the ability of permeable pipe pile in accelerating the consolidation process,mobilizing the bearing capacity of treated ground at an early stage,and minimizing the set-up effect. 展开更多
关键词 Permeable pipe pile Centrifuge modelling Pore pressure buildup CONSOLIDATION Bearing capacity
在线阅读 下载PDF
Dynamic Response of Bridge Pile Foundations under Pile-Soil-Fault Interaction in Seismic Areas
10
作者 Yujie Li Zhongju Feng +2 位作者 Fuchun Wang Jiang Guan Xiaoqian Ma 《Computer Modeling in Engineering & Sciences》 2025年第5期1549-1573,共25页
To study the dynamic response rules of pile foundations of mega-bridges over faults in strong seismic areas,a finite element model of the pile foundation-soil-fault interaction of the Haiwen Bridge is established.The ... To study the dynamic response rules of pile foundations of mega-bridges over faults in strong seismic areas,a finite element model of the pile foundation-soil-fault interaction of the Haiwen Bridge is established.The 0.2-0.6 g peak acceleration of the 5010 seismic waves is input to study the effect of the seismic wave of different intensities and the distance changes between the fault and the pile foundation on the dynamic response of the pile body.The results show that the soil layer covering the bedrock amplifies the peak pile acceleration,and the amplifying effect decreases with increasing seismic wave intensity.However,bedrock has less of an effect on peak acceleration.The relative pile displacement shows the mechanical properties of elastic long piles.The pile foundation generates a large bending moment at the bedrock face and the upper soil layer interface,and a large shear force at the pile top and the soft-hard soil body interface.The relative displacement,bending,and shear bearing characteristics of the pile foundations on the upper and lower plates of the fault are significantly different.The deformation characteristics are affected by faults in a region ten times the pile diameter.Analysis of the dynamic p-y curves shows that the soil resistance on the pile side of the lower plate at the same depth is greater than that of the upper plate.Sensitivity of the dynamic response of pile foundations on either side of the fault to the effects of seismic intensity and distance between the pile foundation and the fault:distance l seismic intensity q. 展开更多
关键词 Bridge pile foundation seismic response FAULT upper plate effect mechanical behavior numerical simulate
在线阅读 下载PDF
Identification of bored pile defects utilizing torsional low strain integrity test:Theoretical basis and numerical analysis
11
作者 Yunpeng Zhang Hongxuan Ji +2 位作者 Lulu Zhang M.Hesham El Naggar Wenbing Wu 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第5期3035-3053,共19页
The torsional low strain integrity test(TLSIT),known for its advantages such as a smaller detection blind zone,improved identification of shallowly buried defects,stable phase velocity for signal interpretation,and be... The torsional low strain integrity test(TLSIT),known for its advantages such as a smaller detection blind zone,improved identification of shallowly buried defects,stable phase velocity for signal interpretation,and better adaptability for existing pile testing.However,it lacks a comprehensive understanding of the authentic three-dimensional(3D)strain wave propagation mechanism,particularly wave reflection and transmission at defects.To address this gap,a novel 3D theoretical framework is introduced in this context to model the authentic 3D wave propagation during the TLSIT.The proposed approach is validated by comparing its results with those obtained from 3D finite element method(FEM)simulations and simplified 1D(one-dimensional)and 3D analytical solutions.Additionally,a parametric study is conducted to enhance insights into the formation mechanism of high-frequency interference observed during the TLSIT.Finally,a defect identification study is performed to provide guidance for interpreting the wave spectrum in terms of defect characteristics. 展开更多
关键词 pile foundations Non-destructive integrity test TORSION 3D strain wave propagation Low strain High-frequency interference
在线阅读 下载PDF
Dynamic Response and Failure Analysis of Steel Sheet Pile Support Structures in Bank Slopes under Pile Driving Impact Loads
12
作者 Ling Ji Nan Jiang +3 位作者 Yingbo Ren Tao Yin Haibo Wang Bing Cheng 《Computer Modeling in Engineering & Sciences》 2025年第7期267-288,共22页
During the construction of bank slopes involving pile driving,ensuring slope stability is crucial.This requires the design of appropriate support systems and a thorough evaluation of the failure mechanisms of pile str... During the construction of bank slopes involving pile driving,ensuring slope stability is crucial.This requires the design of appropriate support systems and a thorough evaluation of the failure mechanisms of pile structures under dynamic loading conditions.Based on the Huarong Coal Wharf project,various support schemes are analyzed using numerical simulation methods to calculate and compare slope stability coefficients.The optimal scheme is then identified.Under the selected support scheme,a numerical model of double-row suspended steel sheet piles is developed to investigate the dynamic response of the pile structures under pile driving loads.A time-history analysis is performed to assess the slope’s dynamic stability.The results show that the maximum displacements of the upper and lower steel sheet pile rows are 2.51 and 3.14 cm,respectively.The maximum principal stresses remain below 20 MPa in both rows,while the maximum von Mises stresses are 20.85 MPa for the upper row and 25.40 MPa for the lower row.The dominant frequencies of the steel sheet pile structures fall between 30 and 35 Hz,with a frequency bandwidth ranging from 0 to 500 Hz.The stability coefficient of the pile structures varies over time during the pile driving process,ultimately reaching a value of 1.26—exceeding the required safety threshold.This research provides practical guidance for designing support systems in wharf piling projects and offers a reliable basis for evaluating the safety performance of steel sheet piles in bank slopes. 展开更多
关键词 Bank slope steel sheet pile dynamic response failure analysis safety assessment
在线阅读 下载PDF
Experimental and Numerical Study on Local Scour of Pile Group Foundations for Offshore Wind Turbines Under Wave-Current Interactions
13
作者 YU Heng ZHANG Yu-hang +1 位作者 JIA Jia-yu ZHANG Jin-feng 《China Ocean Engineering》 2025年第3期493-503,共11页
Under the combination of currents and waves, seabed scour occurs around offshore wind turbine foundations, which affects the stability and safe operation of offshore wind turbines. In this study, physical model experi... Under the combination of currents and waves, seabed scour occurs around offshore wind turbine foundations, which affects the stability and safe operation of offshore wind turbines. In this study, physical model experiments under unidirectional flow, bidirectional flow, and wave-current interactions with different flow directions around the pile group foundation were first conducted to investigate the development of scour around the pile group foundation.Additionally, a three-dimensional scour numerical model was established via the open-source software REEF3D to simulate the flow field and scour around the prototype-scale foundation. The impact of flow on scour was discussed.Under unidirectional flow, scour equilibrium was reached more quickly, with the maximum scour depth reaching approximately 1.2 times the pile diameter and the extent of the scour hole spanning about 4.9 times the pile diameter.Compared with those under unidirectional flow, the scour depths under combinations of currents and waves, as well as bidirectional flow, were slightly smaller. However, the morphology of scour holes was more uniform and symmetrical. The numerical simulation results show good agreement with the experimental data, demonstrating the impact of varying flow directions on the velocity distribution around the foundation, the morphology of scour holes, and the location of the maximum scour depth. 展开更多
关键词 offshore wind turbines pile group foundation local scour wave-current interaction numerical simulation
在线阅读 下载PDF
Numerical Simulation of M-Shaped Multi-Row Pile-Supported Foundation Pit Excavation Based on ABAQUS
14
作者 Meng Chen Chuanteng Huang +3 位作者 Shuang Pu Jilun Cai Zuocai Li Yufu Huang 《Journal of World Architecture》 2025年第3期55-63,共9页
The M-shaped multi-row pile foundation retaining structure represents an enhanced version of conventional multi-row anti-sliding support systems.To date,the implementation of M-shaped pile configurations in foundation... The M-shaped multi-row pile foundation retaining structure represents an enhanced version of conventional multi-row anti-sliding support systems.To date,the implementation of M-shaped pile configurations in foundation pit excavations has not been extensively investigated,with particularly scant research focusing on their load-bearing mechanisms and stress redistribution characteristics.Furthermore,numerical modeling methodologies for such geometrically optimized pile networks remain underdeveloped compared to practical engineering applications,creating a notable research-practice gap in geotechnical engineering.A comparative finite element analysis was systematically conducted using ABAQUS software to establish three distinct excavation support configurations:single-row cantilever retaining structures,three-row cantilever configurations,and M-shaped multi-row pile foundation systems.Subsequent numerical simulations enabled quantitative comparisons of critical performance indicators,including pile stress distribution patterns,lateral displacement profiles,and bending moment diagrams across different structural typologies.The parametric investigation revealed characteristic mechanical responses associated with each configuration,establishing corresponding mechanical principles governing the interaction between pile topology and soil-structure behavior towers.The findings of this study provide critical references for the design optimization of M-shaped multi-row pile foundation retaining systems. 展开更多
关键词 M-shaped multi-row piles Foundation pit excavation Numerical simulation ABAQUS
在线阅读 下载PDF
Influence of helical blades on the horizontal bearing capacity of spiral piles for offshore wind power
15
作者 DING Hongyan HAN Tianqi +2 位作者 ZHANG Puyang LUO Jianhua LE Conghuan 《Journal of Southeast University(English Edition)》 2025年第3期314-324,共11页
Spiral pile foundations,as a promising type of foundation,are of significant importance for the development of offshore wind energy,particularly as it moves toward deeper waters.This study conducted a physical experim... Spiral pile foundations,as a promising type of foundation,are of significant importance for the development of offshore wind energy,particularly as it moves toward deeper waters.This study conducted a physical experiment on a three-spiral-pile jacket foundation under deep-buried sandy soil conditions.During the experiment,horizontal displacement was applied to the structure to thoroughly investigate the bearing characteristics of the three-spiral-pile jacket foundation.This study also focused on analyzing the bearing mechanisms of conventional piles compared with spiral piles with different numbers of blades.Three different working conditions were set up and compared,and key data,such as the horizontal bearing capacity,pile shaft axial force,and spiral blade soil pressure,were measured and analyzed.The results show the distinct impacts of the spiral blades on the compressed and tensioned sides of the foundation.Specifically,on the compressed side,the spiral blades effectively enhance the restraint of the soil on the pile foundation,whereas on the tensioned side,an excessive number of spiral blades can negatively affect the structural tensile performance to some extent.This study also emphasizes that the addition of blades to the side of a single pile is the most effective method for increasing the bearing capacity of the foundation.This research aims to provide design insights into improving the bearing capacity of the foundation. 展开更多
关键词 offshore wind power spiral pile helical blade bearing capacity
在线阅读 下载PDF
Protective effect and mechanisms of defense pile on bridge pier impacted by granular flows
16
作者 WU Yihan ZHU Zhiyuan +1 位作者 ZHENG Lu BI Yuzhang 《Journal of Mountain Science》 2025年第8期2960-2980,共21页
Bridge pier failures from granular flow impacts are common.Installing defense piles upstream is an effective mitigation strategy,yet their protective mechanisms and standardized design guidelines are unclear.This stud... Bridge pier failures from granular flow impacts are common.Installing defense piles upstream is an effective mitigation strategy,yet their protective mechanisms and standardized design guidelines are unclear.This study employed 3D discrete element method to analyze the influence of defense pile size and placement on its performance across 219 scenarios,providing a detailed examination of their protective mechanisms.Results show that optimizing these factors can reduce the maximum impact force on bridge piers by up to 94%.In terms of size,a critical height threshold is identified,beyond which increasing pile height does not enhance protection.This threshold depends on the movement height of granular particles at the slope base.Protection effectiveness varies with pile size:when H≤0.05 h(H is the height of defense piles,h is the height of bridge),protection marginally improves with increasing height and diameter;for 0.05 h<H<0.15 h,protection strongly correlates with both parameters;for H≥0.15 h,diameter becomes the dominant factor.In terms of placement,an optimal longitudinal distance exists between the defense pile and the bridge pier.The larger the diameter,the greater the optimal longitudinal distance.However,the transverse distance is inversely related to protection effectiveness.Mechanistic analysis shows that defense piles are more effective at redirecting particles to prevent direct collisions with the pier(contributing 100%impact energy reduction before the non-dimensional travel time t*=7.01 and 63%–100%afterward)than at reducing particle velocity.This study provides insights into the protective mechanisms of defense piles and informs strategies for optimizing bridge pier protection in granular flow-prone regions. 展开更多
关键词 Granular flow Defense pile Bridge pier Discrete element method
原文传递
Experimental investigation on response of biocemented coral sand pile composite foundation under seismic waves
17
作者 Xiangwei Fang Chao Chen +3 位作者 Ganggang Zhou Zhixiong Chen Chunyan Wang Luqi Wang 《Biogeotechnics》 2025年第2期62-71,共10页
The biocemented coral sand pile composite foundation represents an innovative foundation improvement technology,utilizing Microbially Induced Carbonate Precipitation(MICP)to consolidate a specific volume of coral sand... The biocemented coral sand pile composite foundation represents an innovative foundation improvement technology,utilizing Microbially Induced Carbonate Precipitation(MICP)to consolidate a specific volume of coral sand within the foundation into piles with defined strength,thereby enabling them to collaboratively bear external loads with the surrounding unconsolidated coral sand.In this study,a series of shaking table model tests were conducted to explore the dynamic response of the biocemented coral sand pile composite foundation under varying seismic wave types and peak accelerations.The surface macroscopic phenomena,excess pore water pressure ratio,acceleration response,and vertical settlement were measured and analysed in detail.Test results show that seismic wave types play a decisive role in the macroscopic surface phenomena and the response of the excess pore water pressure ratio.The cumulative settlement of the upper structure under the action of Taft waves was about 1.5 times that of El Centro waves and Kobe waves.The most pronounced liquefaction phenomena were recorded under the Taft wave,followed by the El Centro wave,and subsequently the Kobe wave.An observed positive correlation was established between the liquefaction phenomenon and the Aristotelian in-tensity of the seismic waves.However,variations in seismic wave types exerted minimal influence on the ac-celeration amplification factor of the coral sand foundation.Analysis of the acceleration amplification factor revealed a triphasic pattern-initially increasing,subsequently decreasing,and finally increasing again-as burial depth increased,in relation to the peak value of the input acceleration.This study confirms that the biocemented coral sand pile composite foundation can effectively enhance the liquefaction resistance of coral sand foundations.. 展开更多
关键词 Coral sand Biocemented coral sand pile Composite foundation LIQUEFACTION Shaking table test
在线阅读 下载PDF
Experimental and Numerical Study on the Load-Displacement Curves of Uplift Piles Embedded in Marine Sedimentary Soft Soil via Piezocone Penetration Tests
18
作者 WU Meng LIU Dong-ming +3 位作者 ZHAO Ze-ning WANG Cai-jin CAI Guo-jun DUAN Wei 《China Ocean Engineering》 2025年第2期316-328,共13页
With the increasing construction of port facilities,cross-sea bridges,and offshore engineering projects,uplift piles embedded in marine sedimentary soft soil are becoming increasingly necessary.The load-displacement c... With the increasing construction of port facilities,cross-sea bridges,and offshore engineering projects,uplift piles embedded in marine sedimentary soft soil are becoming increasingly necessary.The load-displacement curve of uplift piles is crucial for evaluating their uplift bearing characteristics,which facilitates the risk evaluation,design,and construction of large infrastructural supports.In this study,a load-displacement curve model based on piezocone penetration test(CPTU)data is proposed via the load transfer method.Experimental tests are conducted to analyze the uplift bearing characteristics and establish a correlation between the proposed model and CPTU data.The results of the proposed load-displacement curve are compared with the results from numerical simulations and those calculated by previous methods.The results show that the proposed curves appropriately evaluated the uplift bearing characteristics and improved the accuracy in comparison with previous methods. 展开更多
关键词 uplift pile load-displacement curve piezocone penetration test
在线阅读 下载PDF
Repetitive control without inductance decoupling for VSR control strategy of DC charging pile
19
作者 LIU Peijin SUN Changhe +2 位作者 HE Lin ZHANG Xiangrui FENG Zhengming 《Journal of Measurement Science and Instrumentation》 2025年第1期96-106,共11页
A control strategy of repetitive control without inductorance decoupling was proposed to address the problem of high total harmonic distortion(THD)rate of the network-side current caused by the reduced stability of th... A control strategy of repetitive control without inductorance decoupling was proposed to address the problem of high total harmonic distortion(THD)rate of the network-side current caused by the reduced stability of the rectifier module of the DC charging pile under weak grid as well as the dead zone and nonlinearity of switching devices during charging.Firstly,the parallel repetitive control was constructed in the inner current loop,and the proportional-integral(PI)+repetitive controller based on parallel structure was designed.For system compensation,a second-order low-pass filter was selected to correct the system,and the network-side current harmonics were actively suppressed without increasing the filtering device,which effectively improves the quality of grid-connected current.Secondly,based on the synthetic vector method,the controller parameters were designed to realize the elimination of main pole by establishing two synchronous rotation coordinate system vector differential equations,so as to realize the inductanceless decoupling to cope with the influence of network-side inductance fluctuation on the stability of the control system under weak grid.By theoretical analysis and simulation,the proposed control strategy was embedded into the self-developed digital signal processor for the rectifier module of DC charging pile,simulated dynamic and steady-state operation experiments were conducted,and comparative analysis was performed to prove the feasibility of the proposed control strategy. 展开更多
关键词 weak grid DC charging pile voltage source rectifier(VSR) repetitive control inductanceless decoupling
在线阅读 下载PDF
Construction Technology of Irrigation Pile in the Rock-Soluble Development Area
20
作者 Yalun You Yaokai Huang +2 位作者 Bin Li Jiannan Jiang Zhiqing Jiang 《Journal of World Architecture》 2025年第5期105-111,共7页
In the Shenzhen region,where strong karst development is widely distributed,karst caves pose significant difficulties and risks to pile foundation construction.This paper,based on the Yanba Expressway Municipalization... In the Shenzhen region,where strong karst development is widely distributed,karst caves pose significant difficulties and risks to pile foundation construction.This paper,based on the Yanba Expressway Municipalization Reconstruction Project and referencing previous engineering experiences,proposes the application of sleeve valve pipe grouting technology for pre-treatment of small-to medium-sized and bead-shaped karst caves.Specific implementation measures and construction precautions are presented.Practical results demonstrate that the pre-treated karst cave areas achieved stable soil conditions,providing favorable prerequisites for subsequent pile foundation construction.The method proves convenient and feasible in operation,substantially reducing safety and quality risks during construction.This successful practice offers valuable experience for similar projects. 展开更多
关键词 Strongly developed karst Karst cave Sleeve valve pipe grouting pile foundation construction
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部