期刊文献+
共找到24篇文章
< 1 2 >
每页显示 20 50 100
A modified consensus algorithm for multi-UAV formations based on pigeon-inspired optimization with a slow diving strategy
1
作者 ZHANG Tianjie DUAN Haibin 《智能系统学报》 CSCD 北大核心 2017年第4期570-581,共12页
This paper considers the formation control problem for a group of unmanned aerial vehicles( UAVs)employing consensus with different optimizers. A group of UAVs can never accomplish difficult tasks without formation be... This paper considers the formation control problem for a group of unmanned aerial vehicles( UAVs)employing consensus with different optimizers. A group of UAVs can never accomplish difficult tasks without formation because if disordered they do not work any better than a single vehicle,and a single vehicle is limited by its undeveloped intelligence and insufficient load. Among the many formation methods,consensus has attracted much attention because of its effectiveness and simplicity. However,at the beginning of convergence,overshoot and oscillation are universal because of the limitation of communication and a lack of forecasting,which are inborn shortcomings of consensus. It is natural to modify this method with lots of optimizers. In order to reduce overshoot and smooth trajectories, this paper first adopted particle swarm optimization( PSO), then pigeon-inspired optimization( PIO) to modify the consensus. PSO is a very popular optimizer,while PIO is a new method,both work but still retain disadvantages such as residual oscillation. As a result,it was necessary to modify PIO,and a pigeon-inspired optimization with a slow diving strategy( SD-PIO) is proposed. Convergence analysis was performed on the SD-PIO based on the Banach fixed-point theorem and conditions sufficient for stability were achieved.Finally,a series of comparative simulations were conducted to verify the feasibility and effectiveness of the proposed approach. 展开更多
关键词 unmanned aerial vehicle(UAV) formation consensus pigeon-inspired optimization(pio) Banach fixed-point theorem
在线阅读 下载PDF
A multi-strategy pigeon-inspired optimization approach to active disturbance rejection control parameters tuning for vertical take-off and landing fixed-wing UAV 被引量:20
2
作者 Hangxuan HE Haibin DUAN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2022年第1期19-30,I0001,共13页
In this paper.Active Disturbance Rejection Control(ADRC)is utilized in the pitch control of a vertical take-off and landing fixed-wing Unmanned Aerial Vehicle(UAV)to address the problem of height fluctuation during th... In this paper.Active Disturbance Rejection Control(ADRC)is utilized in the pitch control of a vertical take-off and landing fixed-wing Unmanned Aerial Vehicle(UAV)to address the problem of height fluctuation during the transition from hover to level flight.Considering the difficulty of parameter tuning of ADRC as well as the requirement of accuracy and rapidity of the controller,a Multi-Strategy Pigeon-Inspired Optimization(MSPIO)algorithm is employed.Particle Swarm Optimization(PSO),Genetic Algorithm(GA),the basic Pigeon-Inspired Optimization(PIO),and an improved PIO algorithm CMPIO are compared.In addition,the optimized ADRC control system is compared with the pure Proportional-Integral-Derivative(PID)control system and the non-optimized ADRC control system.The effectiveness of the designed control strategy for forward transition is verified and the faster convergence speed and better exploitation ability of the proposed MSPIO algorithm are confirmed by simulation results. 展开更多
关键词 Active Disturbance Rejection Control(ADRC) pigeon-inspired optimization algorithm Transition mode Unmanned Aerial Vehicle(UAV) Vertical take-off and landing
原文传递
An Improved Pigeon-Inspired Optimization for Multi-focus Noisy Image Fusion
3
作者 Yingda Lyu Yunqi Zhang Haipeng Chen 《Journal of Bionic Engineering》 SCIE EI CSCD 2021年第6期1452-1462,共11页
Image fusion technology is the basis of computer vision task,but information is easily affected by noise during transmission.In this paper,an Improved Pigeon-Inspired Optimization(IPIO)is proposed,and used for multi-f... Image fusion technology is the basis of computer vision task,but information is easily affected by noise during transmission.In this paper,an Improved Pigeon-Inspired Optimization(IPIO)is proposed,and used for multi-focus noisy image fusion by combining with the boundary handling of the convolutional sparse representation.By two-scale image decomposition,the input image is decomposed into base layer and detail layer.For the base layer,IPIO algorithm is used to obtain the optimized weights for fusion,whose value range is gained by fusing the edge information.Besides,the global information entropy is used as the fitness index of the IPIO,which has high efficiency especially for discrete optimization problems.For the detail layer,the fusion of its coefficients is completed by performing boundary processing when solving the convolution sparse representation in the frequency domain.The sum of the above base and detail layers is as the final fused image.Experimental results show that the proposed algorithm has a better fusion effect compared with the recent algorithms. 展开更多
关键词 Improved pigeon-inspired optimization Convolutional sparse representation Noisy image fusion Bionic algorithm
在线阅读 下载PDF
Human resource allocation for multiple scientific research projects via improved pigeon-inspired optimization algorithm 被引量:4
4
作者 LIU ChuanBin MA YongHong +1 位作者 YIN Hang YU LeAn 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2021年第1期139-147,共9页
Aiming at the complex and restrictive characteristics of human resource allocation in multiple scientific university research projects, an improved pigeon-inspired optimization(IPIO) algorithm is proposed wherein loss... Aiming at the complex and restrictive characteristics of human resource allocation in multiple scientific university research projects, an improved pigeon-inspired optimization(IPIO) algorithm is proposed wherein loss minimization and the shortest project delay time are considered as optimization goals. Firstly, mathematical modelling of the problem is carried out, and the multi-objective optimization problem is transformed into a single-objective optimization problem by means of a weighted solution. In the second step, the traditional pigeon-inspired optimization(PIO) algorithm is discretized, and an adaptive parameter strategy is adopted to improve the shortcomings of the algorithm itself. Finally, by comparing the simulation results with the original algorithm and the genetic algorithm in the optimization of human resource allocation in multiple projects, the feasibility and superiority of the proposed algorithm in the optimization of human resource allocation in multi-scientific research projects is verified. 展开更多
关键词 human resource allocation multiple scientific research projects improved pigeon-inspired optimization(Ipio)algorithm parameter adaptation
原文传递
Hybrid membrane computing and pigeon-inspired optimization algorithm for brushless direct current motor parameter design 被引量:3
5
作者 DENG YiMin ZHU WeiRen DUAN HaiBin 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2016年第9期1435-1441,共7页
In this paper, a novel approach is proposed for solving the parameter design problem of brushless direct current(BLDC) motor, which is based on the membrane computing(MC) and pigeon-inspired optimization(PIO) algorith... In this paper, a novel approach is proposed for solving the parameter design problem of brushless direct current(BLDC) motor, which is based on the membrane computing(MC) and pigeon-inspired optimization(PIO) algorithm. The motor parameter design problem is converted to an optimization problem with five design parameters and six constraints. The PIO algorithm is introduced into the framework of MC for improving the global convergence performance. The hybrid algorithm can improve the population diversity with better searching efficiency. Comparative simulations are conducted, and comparative results are given to show the feasibility and effectiveness of our proposed hybrid algorithm for high nonlinear optimization problems. 展开更多
关键词 brushless direct current(BLDC) motor pigeon-inspired optimizationpio membrane computing(MC)
原文传递
Fuzzy energy management strategy for parallel HEV based on pigeon-inspired optimization algorithm 被引量:15
6
作者 PEI JiaZheng SU YiXin ZHANG DanHong 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2017年第3期425-433,共9页
Improvements in fuel consumption and emissions of hybrid electric vehicle(HEV)heavily depend upon an efficient energy management strategy(EMS).This paper presents an optimizing fuzzy control strategy of parallel hybri... Improvements in fuel consumption and emissions of hybrid electric vehicle(HEV)heavily depend upon an efficient energy management strategy(EMS).This paper presents an optimizing fuzzy control strategy of parallel hybrid electric vehicle em- 展开更多
关键词 parallel hybrid electric vehicles(parallel HEV) energy management strategy(EMS) fuzzy controller pigeon-inspired optimizationpio algorithm quantum evolution chaotic search
原文传递
基于CGAPIO的航天器编队重构路径规划方法 被引量:5
7
作者 华冰 孙胜刚 +1 位作者 吴云华 陈志明 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2021年第2期223-230,共8页
针对航天器编队重构的路径规划问题,考虑燃料消耗和碰撞概率等约束条件,以及基本鸽群算法存在的问题,提出一种基于混沌初始化和高斯扰动的自适应鸽群(CGAPIO)算法。为了得到多样性和覆盖性更好的鸽群初始值,采用Tent Map混沌模型进行鸽... 针对航天器编队重构的路径规划问题,考虑燃料消耗和碰撞概率等约束条件,以及基本鸽群算法存在的问题,提出一种基于混沌初始化和高斯扰动的自适应鸽群(CGAPIO)算法。为了得到多样性和覆盖性更好的鸽群初始值,采用Tent Map混沌模型进行鸽群初始化操作;在地图和指南针算子阶段,为提高全局搜索能力,引入了自适应的权重因子和学习因子更新个体的位置和速度;在地标算子阶段,为避免算法陷入局部最优,将高斯扰动加入到鸽群中心位置。仿真实验结果表明:CGAPIO算法与基本鸽群算法和粒子群算法相比,提高了全局搜索能力,避免了局部最优,规划得到的路径更加平滑,各航天器碰撞概率较低,编队重构消耗的总燃料至少减少了12%。 展开更多
关键词 航天器编队 路径规划 鸽群(pio)算法 编队重构 自适应因子
原文传递
Improved Pigeon-Inspired Optimization in an Integrated Obstacle Avoidance Method for Mars UAV Formation 被引量:3
8
作者 Teng Liao Boyi Chen +1 位作者 Qichao Zhou Yanbin Liu 《Guidance, Navigation and Control》 2023年第1期117-136,共20页
This paper models the Mars UAV formation exploring the surface of Mars,and then the formation obstacle avoidance is brought up with the assumptions of the Mars circumstance and the UAVs.Based on their specialty,constr... This paper models the Mars UAV formation exploring the surface of Mars,and then the formation obstacle avoidance is brought up with the assumptions of the Mars circumstance and the UAVs.Based on their specialty,constrained Delaunay triangulation,Yen-K shortest path algorithm,the collaborative function,and the improved pigeon-inspired optimization(PIO)algorithm are integrated to solve the obstacle avoidance for the formation.Since the steering maneuver costs much energy and increases instabilities vulnerable in extraterrestrial exploration,the paper focuses on the route smoothness problem.The PIO is improved to be suitable for smooth routes and is compatible with other PIO variants.The simulation results show that the sum of the steering angle,namely the performance index,is e®ectively reduced and satises the obstacle avoidance requirements for Mars UAV formation. 展开更多
关键词 Mars UAV route planning pigeon-inspired optimization(pio)algorithm
在线阅读 下载PDF
Fractional Order Darwinian Pigeon-Inspired Optimization for Multi-UAV Swarm Controller 被引量:4
9
作者 Bingda Tong Chen Wei Yuhui Shi 《Guidance, Navigation and Control》 2022年第2期80-98,共19页
This paper presents a novel multiple unmanned aerial vehicde(UAV)swarm cotoller based on the fractional alculus theory.This controller i designed baed on fractional order Darwinian pigeon-inepired optimization(F 0DPI0... This paper presents a novel multiple unmanned aerial vehicde(UAV)swarm cotoller based on the fractional alculus theory.This controller i designed baed on fractional order Darwinian pigeon-inepired optimization(F 0DPI0)and PID algorithm.Several comparative simulations are conducted in the paper.The simulation results reveal that FODPIObased muli-UAV formation controller is superior to the basic PIO and dilTerential evolution(DE)method.The fractional oelfcdent in F ODPIO algorithm makes it eflective optimbation with fast convergence rate,small oversboot,and better stability.Therefore,the contnoller propoeed in this paper is fessible and robust. 展开更多
关键词 pigeon-inspired optimization(pio) fractional order Darwinian pigeon-inspired optimization(FODpio) unmanned aerial vehicle(UAV) formation control
在线阅读 下载PDF
Novel PIO Algorithm with Multiple Selection Strategies for Many-Objective Optimization Problems 被引量:3
10
作者 Zhihua Cui Lihong Zhao +3 位作者 Youqian Zeng Yeqing Ren Wensheng Zhang Xiao-Zhi Gao 《Complex System Modeling and Simulation》 2021年第4期291-307,共17页
With the increase of problem dimensions,most solutions of existing many-objective optimization algorithms are non-dominant.Therefore,the selection of individuals and the retention of elite individuals are important.Ex... With the increase of problem dimensions,most solutions of existing many-objective optimization algorithms are non-dominant.Therefore,the selection of individuals and the retention of elite individuals are important.Existing algorithms cannot provide sufficient solution precision and guarantee the diversity and convergence of solution sets when solving practical many-objective industrial problems.Thus,this work proposes an improved many-objective pigeon-inspired optimization(ImMAPIO)algorithm with multiple selection strategies to solve many-objective optimization problems.Multiple selection strategies integrating hypervolume,knee point,and vector angles are utilized to increase selection pressure to the true Pareto Front.Thus,the accuracy,convergence,and diversity of solutions are improved.ImMAPIO is applied to the DTLZ and WFG test functions with four to fifteen objectives and compared against NSGA-III,GrEA,MOEA/D,RVEA,and many-objective Pigeon-inspired optimization algorithm.Experimental results indicate the superiority of ImMAPIO on these test functions. 展开更多
关键词 pigeon-inspired optimization algorithm many-objective optimization problem multiple selection strategy elite individual retention
原文传递
Hierarchical Decision-Making Framework for Multi-UAV Task Assignment via Enhanced Pigeon-Inspired Optimization
11
作者 Weike Chen Xingshuo Hai +2 位作者 Yanming Hu Qiang Feng Zili Wang 《Guidance, Navigation and Control》 2023年第4期1-25,共25页
Effective task assignment decisions are paramount for ensuring reliable task execution in multi-UAV systems.However,in the development of feasible plans,challenges stemming from extensive and prolonged task requiremen... Effective task assignment decisions are paramount for ensuring reliable task execution in multi-UAV systems.However,in the development of feasible plans,challenges stemming from extensive and prolonged task requirements are encountered.This paper establishes a decision-making framework for multiple unmanned aerial vehicles(multi-UAV)based on the well-known pigeon-inspired optimization(PIO)algorithm.By addressing the problem from a hierarchical structural perspective,the initial stage involves minimizing the global objective of the flight distance cost after obtaining the entire task distribution and task requirements,utilizing the global optimization capability of the classical PIO algorithm to allocate feasible task spaces for each UAV.In the second stage,building upon the decisions made in the preceding stage,each UAV is abstracted as an agent maximizing its own task execution benefits.An improved version of the PIO algorithm modified with a sine-cosine search mechanism is proposed,enabling the acquisition of the optimal task execution sequence.Simulation experiments involving two different scales of UAVs validate the effectiveness of the proposed methodology.Moreover,dynamic events such as UAV damage and task changes are considered in the simulation to validate the efficacy of the two-stage framework. 展开更多
关键词 DECISION-MAKING multiple unmanned aerial vehicles(multi-UAV) pigeon-inspired optimization(pio) task assignment
在线阅读 下载PDF
Image Segmentation Model for Vicinagearth Security Technology of Unmanned Aerial Vehicle Using Improved Pigeon-Inspired Optimization
12
作者 Hang Su Yongbin Sun +1 位作者 Zhigang Zeng Haibin Duan 《Guidance, Navigation and Control》 2024年第3期11-44,共34页
The vicinagearth security technology system covers a wide range of fields such as low-altitude security, underwater security, and cross-domain security. Among them, unmanned aerial vehicle(UAV) security will become on... The vicinagearth security technology system covers a wide range of fields such as low-altitude security, underwater security, and cross-domain security. Among them, unmanned aerial vehicle(UAV) security will become one of the evolving forms of its security technology, and how to improve the segmentation and recognition ability of UAV visual reconnaissance system for maritime targets through improvement will become the key to low-altitude security. Due to the fact that maritime target images are characterized by complex weather, strong interference,high speed requirement and large data volume, the traditional segmentation methods are not suitable for maritime small-target(MST) segmentation and recognition. Therefore, this paper proposes a threshold image segmentation(TIS) method based on an improved pigeon-inspired optimization(PIO) algorithm to provide a better method for segmentation and recognition of MST. First, this study proposes CCPIO based on the horizontal crossover search(HCS) and vertical crossover search(VCS) strategy, which effectively improves the search efficiency of PIO and the ability to jump out of local optimum. And the optimization performance of CCPIO is effectively verified by comparing it with 10 peer algorithms through benchmark function experiments. Further, in this paper, the proposed CCPIO-TIS segmentation model is proposed by combining CCPIO with non-local means, 2D histogram, and Kapur's entropy. The proposed CCPIO-TIS model is also used for the segmentation and recognition of real MST images, and the results of the experimental comparison and evaluation analysis show that the proposed model has higher quality segmentation results than 12 models of the same type. In summary,this study can provide an efficient and accurate artificial intelligence model for segmentation and recognition of maritime small-target. 展开更多
关键词 Vicinagearth security technology system unmanned aerial vehicle(UAV) recognition of maritime small-target image segmentation META-HEURISTIC pigeon-inspired optimization(pio)
在线阅读 下载PDF
Group Coevolution and Immigration Pigeon-Inspired Optimized Dual-layer Controller for Aerial Manipulator Trajectory Tracking
13
作者 Lin Bin Chen Wei 《Guidance, Navigation and Control》 2023年第1期21-45,共25页
The aerial manipulator expands the scope of unmanned aerial vehicle(UAV)'s application as well as increases the di±culties in the design of the controller.To better control the aerial manipulator for di®... The aerial manipulator expands the scope of unmanned aerial vehicle(UAV)'s application as well as increases the di±culties in the design of the controller.To better control the aerial manipulator for di®erent trajectories tracking under di®erent conditions,a new dual-layer controller is designed in this paper.The integral backstepping sliding mode controller(IBSMC)is applied to the outer-loop controller and backstepping controller(BC)is applied to the innerloop controller.To improve the performance of the system,an improved pigeon-inspired optimization(PIO)algorithm called group coevolution and immigration pigeon-inspired optimization(GCIPIO)algorithm is proposed to optimize the controller parameters of IBSMC.GCIPIO algorithm utilizes the group coevolution and immigration mechanisms.A series of simulations are conducted to show the advantage of the proposed method.The results illustrate that the proposed method ensures the closed-loop system has less end-e®ector tracking error. 展开更多
关键词 Aerial manipulator pigeon-inspired optimization(pio) integral backstepping sliding mode controller(IBSMC) coevolution IMMIGRATION trajectory tracking.
在线阅读 下载PDF
基于智能优化算法的T-S模糊模型辨识 被引量:7
14
作者 刘福才 窦金梅 王树恩 《系统工程与电子技术》 EI CSCD 北大核心 2013年第12期2643-2650,共8页
将智能算法应用在T-S模糊模型的辨识方面,是模糊系统辨识的一种新途径。文中对几种智能优化算法,如遗传算法(genetic algorithm,GA)、粒子群(particle swarm optimization,PSO)算法、菌群优化(bacterial foraging optimization,BFO)算... 将智能算法应用在T-S模糊模型的辨识方面,是模糊系统辨识的一种新途径。文中对几种智能优化算法,如遗传算法(genetic algorithm,GA)、粒子群(particle swarm optimization,PSO)算法、菌群优化(bacterial foraging optimization,BFO)算法等的优化原理和在模糊辨识方面的应用现状进行了综述和分析,并给出了它们在T-S模糊模型辨识中对参数进行优化的过程。最后将这些优化方法用于一非线性动态系统的建模,并对仿真结果进行了对比和详细的分析,为进一步了解这几种优化方法在模糊模型辨识参数优化方面的作用提供了仿真实验依据。 展开更多
关键词 T—S模型辨识 群智能算法 遗传算法 菌群优化算法 粒子群算法
在线阅读 下载PDF
基于改进鸽群算法的光伏阵列MPPT方法 被引量:11
15
作者 陈忠华 刘博 +1 位作者 郭瑞 唐俊 《电力系统及其自动化学报》 CSCD 北大核心 2021年第8期32-40,共9页
针对光伏系统最大功率点跟踪MPPT(maximum powerpointtracking)控制方法在多峰状态下易陷入局部最优,导致光伏系统输出效率较低的不足,提出一种基于学习因子改进鸽群算法的MPPT控制方法。首先对光伏阵列输出多峰值进行分析,在鸽群算法... 针对光伏系统最大功率点跟踪MPPT(maximum powerpointtracking)控制方法在多峰状态下易陷入局部最优,导致光伏系统输出效率较低的不足,提出一种基于学习因子改进鸽群算法的MPPT控制方法。首先对光伏阵列输出多峰值进行分析,在鸽群算法中引入学习因子,通过前后两阶段学习因子的相互交流,有效增强了全局寻优能力。然后提出改进鸽群算法光伏MPPT控制策略和算法重启策略,较好地改善了输出功率的稳态振荡。通过仿真结果表明,基于改进鸽群算法的MPPT控制方法在多峰状态下能够有效规避陷入局部最优,具有较好的追踪效果,有效地提高了光伏系统的输出效率。 展开更多
关键词 光伏系统 最大功率点跟踪控制 改进鸽群算法 多峰状态 学习因子
在线阅读 下载PDF
基于改进鸽群算法的含分布式电源配电网故障定位 被引量:19
16
作者 任志玲 刘卫东 +2 位作者 杨柳 王诗翱 罗添元 《电源学报》 CSCD 北大核心 2022年第4期171-178,共8页
分布式电源DGs(distributed generations)接入配电网中,使得配电网由传统的单电源辐射状网络变成多电源复杂网络,增加了配电网故障定位的难度。针对DG接入配电网定位问题,提出了一种基于改进鸽群算法的故障区段定位方法。首先,建立了适... 分布式电源DGs(distributed generations)接入配电网中,使得配电网由传统的单电源辐射状网络变成多电源复杂网络,增加了配电网故障定位的难度。针对DG接入配电网定位问题,提出了一种基于改进鸽群算法的故障区段定位方法。首先,建立了适用于含多个分布式电源的开关函数并对电流编码方式重新定义。其次,对基本鸽群算法中的指南针因子和地标算子进行改进,并通过结合模拟退火算法防止其陷入局部最优,提高了算法的容错性。仿真结果表明,该算法适用于含分布式电源配电网的单重和多重故障区段定位,且在相同故障情况下,改进鸽群算法分别比传统鸽群算法和遗传算法在迭代时间上分别降低了17.019%和43.763%,具有一定的实时性。 展开更多
关键词 分布式电源 配电网 故障定位 鸽群算法 模拟退火算法
在线阅读 下载PDF
基于鸽群优化改进的粒子滤波算法 被引量:7
17
作者 韩锟 张赫 《传感器与微系统》 CSCD 2018年第11期139-141,144,共4页
针对粒子滤波算法重采样导致的样本贫化问题,提出基于鸽群优化(PIO)思想改进的粒子滤波算法。将鸽群不断从较远位置飞向适应度值高的地方的归巢过程引入到粒子滤波中,驱使粒子不断向高似然区域移动,并将自适应交叉操作加入到鸽群优化过... 针对粒子滤波算法重采样导致的样本贫化问题,提出基于鸽群优化(PIO)思想改进的粒子滤波算法。将鸽群不断从较远位置飞向适应度值高的地方的归巢过程引入到粒子滤波中,驱使粒子不断向高似然区域移动,并将自适应交叉操作加入到鸽群优化过程当中,保障样本多样性。通过非线性模型仿真实验表明,所提算法相对于标准粒子滤波算法,精度提高了45%,稳定性提高了72%,同时降低了状态估计所需的粒子数量。 展开更多
关键词 粒子滤波 样本贫化 鸽群优化算法 自适应交叉 状态估计
在线阅读 下载PDF
基于自适应学习策略的改进鸽群优化算法 被引量:13
18
作者 胡耀龙 冯强 +1 位作者 海星朔 任羿 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2020年第12期2348-2356,共9页
鸽群优化(PIO)算法已广泛用于无人机编队和控制参数优化等领域,但标准PIO算法容易陷入局部最优。提出了一种基于自适应学习策略的改进鸽群优化(ALPIO)算法。该算法引入了基于容差的搜索方向调整策略、基于自学习的候选者生成策略以及基... 鸽群优化(PIO)算法已广泛用于无人机编队和控制参数优化等领域,但标准PIO算法容易陷入局部最优。提出了一种基于自适应学习策略的改进鸽群优化(ALPIO)算法。该算法引入了基于容差的搜索方向调整策略、基于自学习的候选者生成策略以及基于竞争学习的预测策略,通过增强种群的多样性,可提高算法全局最优概率,其已在8个基准函数上进行测试。仿真试验结果表明:所提算法在多峰函数优化问题中的收敛精度和收敛速度有了显著提升,并且能够更有效避免陷入局部最优解。 展开更多
关键词 鸽群优化(pio)算法 局部最优 自适应学习策略 种群多样性 全局最优
原文传递
基于有限忍耐度鸽群优化的无人机近距空战机动决策 被引量:1
19
作者 郑志强 段海滨 《计算机应用》 CSCD 北大核心 2024年第5期1401-1407,共7页
由于对抗双方态势的快速变化,无人机近距空战机动自主决策困难且复杂,是空中对抗的一个难点。对此,提出一种基于有限忍耐度鸽群优化(FTPIO)算法的无人机近距空战机动决策方法。该方法主要包括基于机动动作库的对手行动预测和基于FTPIO... 由于对抗双方态势的快速变化,无人机近距空战机动自主决策困难且复杂,是空中对抗的一个难点。对此,提出一种基于有限忍耐度鸽群优化(FTPIO)算法的无人机近距空战机动决策方法。该方法主要包括基于机动动作库的对手行动预测和基于FTPIO算法的机动控制量和执行时间优化求解两个部分。为提升基本鸽群优化(PIO)算法的全局探索能力,引入有限忍耐度策略,在鸽子个体几次迭代中没有找到更优解时对其属性进行一次重置,避免陷入局部最优陷阱。该方法采用的优化变量是无人机运动模型控制变量的增量,打破了机动库的限制。通过和极小极大方法、基本PIO算法和粒子群优化(PSO)算法的仿真对抗测试结果表明,所提出的机动决策方法能够在近距空战中有效击败对手,产生更为灵活的欺骗性机动行为。 展开更多
关键词 鸽群优化算法 近距空战 机动决策 无人机 有限忍耐度策略
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部