Scour around bridge pier foundations is a complex phenomenon that can threaten structural stability.Accurate prediction of scour depth around compound piers remains challenging for bridge engineers.This study investig...Scour around bridge pier foundations is a complex phenomenon that can threaten structural stability.Accurate prediction of scour depth around compound piers remains challenging for bridge engineers.This study investigated the effect of foundation elevation on scour around compound piers and developed reliable scour depth prediction models for economical foundation design.Experiments were conducted under clear-water conditions using two circular piers:(1)a uniform pier(with a diameter of D)and(2)a compound pier consisting of a uniform pier resting on a circular foundation(with a foundation diameter(D_(f))of 2D)positioned at various elevations(Z)relative to the channel bed.Results showed that foundation elevation significantly affected scour depth.Foundations at or below the bed(Z/D≥0)reduced scour,while those projecting into the flow field(Z/D<0)increased scour.The optimal foundation elevation was found to be 0.1D below the bed level,yielding a 57%reduction in scour depth compared to the uniform pier due to its shielding effect against downflow and horseshoe vortices.In addition,regression,artificial neural network(ANN),and M5 model tree models were developed using experimental data from this and previous studies.The M5 model outperformed the traditional HEC-18 equation,regression,and ANN models,with a coefficient of determination greater than 0.85.Sensitivity analysis indicated that flow depth,foundation elevation,and diameter significantly influenced scour depth prediction,whereas sediment size had a lesser impact.展开更多
Aiming at the problems of difficulty in balancing construction efficiency and quality,as well as the high safety risks of working at heights during the construction of main piers for highway bridges,this study takes a...Aiming at the problems of difficulty in balancing construction efficiency and quality,as well as the high safety risks of working at heights during the construction of main piers for highway bridges,this study takes a specific bridge project as an example to introduce the technology of hydraulically sliding formwork for the construction of main piers of highway bridges.An in-depth analysis of the project’s construction process found that this technology can effectively improve construction efficiency,ensure the quality of concrete pouring,and significantly reduce the potential safety hazards of working at heights.It provides a reliable technical solution for constructing the main piers of highway bridges and has important reference significance for similar projects.展开更多
In this study,the flow characteristics around a group of three piers arranged in tandem were investigated both numerically and experimentally.The simulation utilised the volume of fluid(VOF)model in conjunction with t...In this study,the flow characteristics around a group of three piers arranged in tandem were investigated both numerically and experimentally.The simulation utilised the volume of fluid(VOF)model in conjunction with the k–ɛmethod(i.e.,for flow turbulence representations),implemented through the ANSYS FLUENT software,to model the free-surface flow.The simulation results were validated against laboratory measurements obtained using an acoustic Doppler velocimeter.The comparative analysis revealed discrepancies between the simulated and measured maximum velocities within the investigated flow field.However,the numerical results demonstrated a distinct vortex-induced flow pattern following the first pier and throughout the vicinity of the entire pier group,which aligned reasonably well with experimental data.In the heavily narrowed spaces between the piers,simulated velocity profiles were overestimated in the free-surface region and underestimated in the areas near the bed to the mid-stream when compared to measurements.These discrepancies diminished away from the regions with intense vortices,indicating that the employed model was capable of simulating relatively less disturbed flow turbulence.Furthermore,velocity results from both simulations and measurements were compared based on velocity distributions at three different depth ratios(0.15,0.40,and 0.62)to assess vortex characteristic around the piers.This comparison revealed consistent results between experimental and simulated data.This research contributes to a deeper understanding of flow dynamics around complex interactive pier systems,which is critical for designing stable and sustainable hydraulic structures.Furthermore,the insights gained from this study provide valuable information for engineers aiming to develop effective strategies for controlling scour and minimizing destructive vortex effects,thereby guiding the design and maintenance of sustainable infrastructure.展开更多
Bridge pier failures from granular flow impacts are common.Installing defense piles upstream is an effective mitigation strategy,yet their protective mechanisms and standardized design guidelines are unclear.This stud...Bridge pier failures from granular flow impacts are common.Installing defense piles upstream is an effective mitigation strategy,yet their protective mechanisms and standardized design guidelines are unclear.This study employed 3D discrete element method to analyze the influence of defense pile size and placement on its performance across 219 scenarios,providing a detailed examination of their protective mechanisms.Results show that optimizing these factors can reduce the maximum impact force on bridge piers by up to 94%.In terms of size,a critical height threshold is identified,beyond which increasing pile height does not enhance protection.This threshold depends on the movement height of granular particles at the slope base.Protection effectiveness varies with pile size:when H≤0.05 h(H is the height of defense piles,h is the height of bridge),protection marginally improves with increasing height and diameter;for 0.05 h<H<0.15 h,protection strongly correlates with both parameters;for H≥0.15 h,diameter becomes the dominant factor.In terms of placement,an optimal longitudinal distance exists between the defense pile and the bridge pier.The larger the diameter,the greater the optimal longitudinal distance.However,the transverse distance is inversely related to protection effectiveness.Mechanistic analysis shows that defense piles are more effective at redirecting particles to prevent direct collisions with the pier(contributing 100%impact energy reduction before the non-dimensional travel time t*=7.01 and 63%–100%afterward)than at reducing particle velocity.This study provides insights into the protective mechanisms of defense piles and informs strategies for optimizing bridge pier protection in granular flow-prone regions.展开更多
To mitigate the challenges in managing the damage level of reinforced concrete(RC)pier columns subjected to cyclic reverse loading,this study conducted a series of cyclic reverse tests on RC pier columns.By analyzing ...To mitigate the challenges in managing the damage level of reinforced concrete(RC)pier columns subjected to cyclic reverse loading,this study conducted a series of cyclic reverse tests on RC pier columns.By analyzing the outcomes of destructive testing on various specimens and fine-tuning the results with the aid of the IMK(Ibarra Medina Krawinkler)recovery model,the energy dissipation capacity coefficient of the pier columns were able to be determined.Furthermore,utilizing the calibrated damage model parameters,the damage index for each specimen were calculated.Based on the obtained damage levels,three distinct pre-damage conditions were designed for the pier columns:minor damage,moderate damage,and severe damage.The study then predicted the variations in hysteresis curves and damage indices under cyclic loading conditions.The experimental findings reveal that the displacement at the top of the pier columns can serve as a reliable indicator for controlling the damage level of pier columns post-loading.Moreover,the calibrated damage index model exhibits proficiency in accurately predicting the damage level of RC pier columns under cyclic loading.展开更多
Here,a seismic-response analysis model was proposed for evaluating the nonlinear seismic response of a pile-supported bridge pier under frozen and thawed soil conditions.The effect of a seasonally frozen soil layer on...Here,a seismic-response analysis model was proposed for evaluating the nonlinear seismic response of a pile-supported bridge pier under frozen and thawed soil conditions.The effect of a seasonally frozen soil layer on the seismic vulnerability of a pile-supported bridge pier was evaluated based on reliability theory.Although the frozen soil layer inhibited the seismic response of the ground surface to a certain extent,it exacerbated the acceleration response at the bridge pier top owing to the low radiation damping effect of the frozen soil layer.Furthermore,the frozen soil layer reduced the lateral displacement of the bridge pier top relative to the ground surface by approximately 80%,thereby preventing damage caused by earthquakes,such as falling girders.Compared to the thawed state of the ground surface,the bending moment of the bridge pier in frozen ground increases.However,the bending moment of the pile foundation in frozen ground decreases,thereby lessening the seismic vulnerability of the bridge pile foundation.The results of this can provide a reference for the seismic response analysis and seismic risk assessment of pile-supported bridges in seasonally frozen regions.展开更多
This article provides an overview of the current development status of prestressed segmental precast and assembled piers,Emphasis was placed on analyzing the stress characteristics of bridge piers under impact.The con...This article provides an overview of the current development status of prestressed segmental precast and assembled piers,Emphasis was placed on analyzing the stress characteristics of bridge piers under impact.The concept of recoverable functional design and its application prospects were elaborated,and finally,the research on the impact resistance performance of prestressed segmental precast and assembled pierswas discussed.Research has shown that optimizing design and material selection can effectively enhance the impact resistance and structural durability of bridge piers.At the same time,the introduction of the concept of recoverable functionality provides new ideas for the rapid repair and functional recovery of bridge piers,which helps to improve the recovery efficiency of bridges after extreme events.Future research should focus on the evaluation methods of impact resistance performance,new connection technologies,in-depth application of recoverable functional design,a combination of impact simulation experiments and numerical analysis,and exploration of comprehensive disaster prevention and reduction strategies.These research results will also promote the further development and innovation of prefabricated assembly technology in bridge engineering,bringing new ideas and methods to the field of engineering construction.展开更多
In bridge engineering,monitoring pier offsets is crucial for ensuring both structural safety and construction quality.The total station measurement method using a reflector is widely employed,offering significant adva...In bridge engineering,monitoring pier offsets is crucial for ensuring both structural safety and construction quality.The total station measurement method using a reflector is widely employed,offering significant advantages in specific scenarios.During measurements,errors are influenced by various factors.Initially,misalignment causes the lateral relative error to increase before decreasing,while longitudinal relative errors fluctuate due to instrument characteristics and operational factors.Lateral movements have a more pronounced impact on these errors.Investigating the positioning layout of pier offsets holds substantial importance as it enables precise displacement monitoring,prevents accidents,aids in maintenance planning,provides valuable references for design and construction,and enhances the pier’s resistance to deflection.Controlling and correcting subsequent errors is essential to ensure the overall safety of the bridge structure.展开更多
To address local concrete damage in joint areas at the footing of prefabricated assembled self-centering bridge piers(PASPs)in seismic design,a damage transfer configuration(DTC)was proposed,based on the bridge pier s...To address local concrete damage in joint areas at the footing of prefabricated assembled self-centering bridge piers(PASPs)in seismic design,a damage transfer configuration(DTC)was proposed,based on the bridge pier structure configuration and the mechanism of local damage formation.Integrating the DTC into the PASP,numerical models of a previous experimental reference PASP and a PASP with damage transfer configuration(DTPASP)were established using the finite element software ABAQUS with a concrete damage plasticity(CDP)model.The models were then compared with experimental results regarding damage distribution,hysteresis curves,energy dissipation capacity,the joint opening degree,and residual displacement.The findings indicate that the finite element model developed in this study can well reflect the experimental results of the reference PASP.The incorporation of the DTC proved to be beneficial in preserving structural integrity,bearing capacity,and the functionality of the core structure of bridge piers following an earthquake.Meanwhile,this addition did not exert a significant influence on the seismic behavior of the core structure of the bridge pier.展开更多
Reinforcement corrosion is the main cause of performance deterioration of reinforced concrete(RC)structures.Limited research has been performed to investigate the life-cycle cost(LCC)of coastal bridge piers with nonun...Reinforcement corrosion is the main cause of performance deterioration of reinforced concrete(RC)structures.Limited research has been performed to investigate the life-cycle cost(LCC)of coastal bridge piers with nonuniform corrosion using different materials.In this study,a reliability-based design optimization(RBDO)procedure is improved for the design of coastal bridge piers using six groups of commonly used materials,i.e.,normal performance concrete(NPC)with black steel(BS)rebar,high strength steel(HSS)rebar,epoxy coated(EC)rebar,and stainless steel(SS)rebar(named NPC-BS,NPC-HSS,NPC-EC,and NPC-SS,respectively),NPC with BS with silane soakage on the pier surface(named NPC-Silane),and high-performance concrete(HPC)with BS rebar(named HPC-BS).First,the RBDO procedure is improved for the design optimization of coastal bridge piers,and a bridge is selected to illustrate the procedure.Then,reliability analysis of the pier designed with each group of materials is carried out to obtain the time-dependent reliability in terms of the ultimate and serviceability performances.Next,the repair time of the pier is predicted based on the time-dependent reliability indices.Finally,the time-dependent LCCs for the pier are obtained for the selection of the optimal design.展开更多
Sudden earthquakes pose a threat to the running safety of trains on high-speed railway bridges,and the stiffness of piers is one of the factors affecting the dynamic response of train-track-bridge system.In this paper...Sudden earthquakes pose a threat to the running safety of trains on high-speed railway bridges,and the stiffness of piers is one of the factors affecting the dynamic response of train-track-bridge system.In this paper,a experiment of a train running on a high-speed railway bridge is performed based on a dynamic experiment system,and the corresponding numerical model is established.The reliability of the numerical model is verified by experiments.Then,the experiment and numerical data are analyzed to reveal the pier height effects on the running safety of trains on bridges.The results show that when the pier height changes,the frequency of the bridge below the 30 m pier height changes greater;the increase of pier height causes the transverse fundamental frequency of the bridge close to that of the train,and the shaking angle and lateral displacement of the train are the largest for bridge with 50 m pier,which increases the risk of derailment;with the pier height increases from 8 m to 50 m,the derailment coefficient obtained by numerical simulations increases by 75% on average,and the spectral intensity obtained by experiments increases by 120% on average,two indicators exhibit logarithmic variation.展开更多
A novel seismic design method, namely split-pier seismic design, is proposed. A vertical gap and connect elements are set in split-piers. The lateral stiffness of piers is reduced by cracking of the connect elements u...A novel seismic design method, namely split-pier seismic design, is proposed. A vertical gap and connect elements are set in split-piers. The lateral stiffness of piers is reduced by cracking of the connect elements under severe earthquake, and the seismic response of bridges is reduced by avoiding the site predominant periods. A model of tied-arch rigid frame bridge with split-piers was designed. Seismic performance was investigated by pseudo-static experimentation on the scale model, The failure process of split-piers, the hysteresis characteristic and the effect of split-piers on the superstructure are presented. Results show that the split-pier has better seismic performance than common ductile piers do.展开更多
The equations of the lateral deflection curve of the short pier shear wall under a lateral concentrated load at any level are derived by employing a continuous approach. Lateral flexibility matrixes for the dynamic an...The equations of the lateral deflection curve of the short pier shear wall under a lateral concentrated load at any level are derived by employing a continuous approach. Lateral flexibility matrixes for the dynamic analysis are also obtained by repeatedly calculating the lateral unit load on the wall at each level where a lumped mass located. Dynamic analyses are implemented for short pier shear walls with different parameters, called the integrative coefficient and the pier strength coefficient related to the dimensions of walls. The influences of two coefficients on the dynamic performances of the structure are studied. Results indicate that with the increase of the integrative coefficient, the periods of top two modes apparently decrease but the other periods of higher frequency modes show little variation when the pier strength coefficient remains constant. Similarly, if the integrative coefficient is constant, the top two periods of the free vibration decrease with the increase of the integrative coefficient but the other periods of higher frequency modes show less variation.展开更多
To study the seismic performance of double-skin steelconcrete composite box( DSCB) piers, a total of 11 DSCB pier specimens were tested under bidirectional cyclic loading. The effects of the loading pattern, the ste...To study the seismic performance of double-skin steelconcrete composite box( DSCB) piers, a total of 11 DSCB pier specimens were tested under bidirectional cyclic loading. The effects of the loading pattern, the steel plate thickness, the axial load ratio, the slenderness ratio and the aspect ratio were taken into consideration. The damage evolution process and failure modes of the tested specimens are presented in detail. Test results are also discussed in terms of the hysteretic curve, skeleton curve, ductility and energy dissipation capacity of DSCB pier specimens. It can be concluded that the hysteretic performance of DSCB piers in one direction is affected and weakened by the cyclic loading in the other direction. DSCB piers under bidirectional cyclic loading exhibit good performance in terms of load carrying capacity, ductility, and energy dissipation capacity. Overall, DSCB piers can meet the basic aseismic requirements. The research results can be taken as a reference for using DSCB piers as high piers in bridges in strong earthquakeprone areas.展开更多
Rock-embedded foundations with good uplift and bearing capacity are often used in mountains or hilly areas.However,there are soil layers with a certain thickness on the rocks in these mountainous areas,and the utiliza...Rock-embedded foundations with good uplift and bearing capacity are often used in mountains or hilly areas.However,there are soil layers with a certain thickness on the rocks in these mountainous areas,and the utilization of those soil layers is a problem worthy of attention in foundation construction.Considering construction-and cost-related factors,traditional single-form foundations built on such sites often cannot provide sufficient resistance against uplift.Therefore,an anchored pier foundation composed of anchors and belled piers,specifically constructed for such conditions,can be invaluable in practice.This paper introduces an experimental and analytical study to investigate the uplift capacity and the uplift mobilization coefficients(UMCs)of the anchored pier foundation.In this study,three in-situ monotonic pullout tests were carried out to analyze the load–displacement characteristics,axial force distribution,load transfer mechanism,and failure mechanism.A hyperbolic model is used to fit the load–displacement curves and to reveal the asynchrony of the ultimate limit states(ULSs)of the anchor group and the belled pier.Based on the results,the uplift capacity can be calculated by the UMCs and the anchor group and pier uplift capacities.Finally,combined with the estimation of the deformation modulus of the soil and rock,the verification calculation of the uplift capacity and UMC was carried out on the test results from different anchored pier foundations.展开更多
An accurate finite element ( FE) model was constructed to examine the hysteretic behavior of double-skin steel-concrete composite box ( DSCB) piers for further understanding the seismic performance of DSCB piers;...An accurate finite element ( FE) model was constructed to examine the hysteretic behavior of double-skin steel-concrete composite box ( DSCB) piers for further understanding the seismic performance of DSCB piers; where the local buckling behavior of steel tubes, the confinement of the in-filled concrete and the interface action between steel tube and in-filled concrete were considered. The accuracy of the proposed FE model was verified by the bidirectional cyclic loading test results. Based on the validated FE model, the effects of some key parameters, such as section width to steel thickness ratio, slenderness ratio, aspect ratio and axial load ratio on the hysteretic behavior of DSCB piers were investigated. Finally, the skeleton curve model of DSCB piers was proposed. The numerical simulation results reveal that the peak strength and elastic stiffness decrease with the increase of the section width to steel thickness ratio. Moreover, the increase of the slenderness ratio may result in a significant reduction in the peak strength and elastic stiffness while the ultimate displacement increases. The proposed skeleton curve model can be taken as a reference for seismic performance analyses of the DSCB piers.展开更多
In this study, three rapid repair techniques are proposed to retrofit circular bridge piers that are severely damaged by the flexural failure mode in major earthquakes. The quasi-static tests on three 1:2.5 scaled ci...In this study, three rapid repair techniques are proposed to retrofit circular bridge piers that are severely damaged by the flexural failure mode in major earthquakes. The quasi-static tests on three 1:2.5 scaled circular pier specimens are conducted to evaluate the efficiency of the proposed repair techniques. For the purpose of rapid repair, the repair procedure for all the specimens is conducted within four days, and the behavior of the repaired specimens is evaluated and compared with the original ones. A finite element model is developed to predict the cyclic behavior of the repaired specimens and the numerical results are compared with the test data. It is found that all the repaired specimens exhibit similar or larger lateral strength and deformation capacity than the original ones. The initial lateral stiffness of all the repaired specimens is lower than that of the original ones, while they show a higher lateral stiffness at the later stage of the test. No noticeable difference is observed for the energy dissipation capacity between the original and repaired pier specimens. It is suggested that the repair technique using the early-strength concrete jacket confined by carbon fiber reinforced polymer (CFRP) sheets can be an optimal method for the rapid repair of severely earthquake-damaged circular bridge piers with flexural failure mode.展开更多
文摘Scour around bridge pier foundations is a complex phenomenon that can threaten structural stability.Accurate prediction of scour depth around compound piers remains challenging for bridge engineers.This study investigated the effect of foundation elevation on scour around compound piers and developed reliable scour depth prediction models for economical foundation design.Experiments were conducted under clear-water conditions using two circular piers:(1)a uniform pier(with a diameter of D)and(2)a compound pier consisting of a uniform pier resting on a circular foundation(with a foundation diameter(D_(f))of 2D)positioned at various elevations(Z)relative to the channel bed.Results showed that foundation elevation significantly affected scour depth.Foundations at or below the bed(Z/D≥0)reduced scour,while those projecting into the flow field(Z/D<0)increased scour.The optimal foundation elevation was found to be 0.1D below the bed level,yielding a 57%reduction in scour depth compared to the uniform pier due to its shielding effect against downflow and horseshoe vortices.In addition,regression,artificial neural network(ANN),and M5 model tree models were developed using experimental data from this and previous studies.The M5 model outperformed the traditional HEC-18 equation,regression,and ANN models,with a coefficient of determination greater than 0.85.Sensitivity analysis indicated that flow depth,foundation elevation,and diameter significantly influenced scour depth prediction,whereas sediment size had a lesser impact.
文摘Aiming at the problems of difficulty in balancing construction efficiency and quality,as well as the high safety risks of working at heights during the construction of main piers for highway bridges,this study takes a specific bridge project as an example to introduce the technology of hydraulically sliding formwork for the construction of main piers of highway bridges.An in-depth analysis of the project’s construction process found that this technology can effectively improve construction efficiency,ensure the quality of concrete pouring,and significantly reduce the potential safety hazards of working at heights.It provides a reliable technical solution for constructing the main piers of highway bridges and has important reference significance for similar projects.
文摘In this study,the flow characteristics around a group of three piers arranged in tandem were investigated both numerically and experimentally.The simulation utilised the volume of fluid(VOF)model in conjunction with the k–ɛmethod(i.e.,for flow turbulence representations),implemented through the ANSYS FLUENT software,to model the free-surface flow.The simulation results were validated against laboratory measurements obtained using an acoustic Doppler velocimeter.The comparative analysis revealed discrepancies between the simulated and measured maximum velocities within the investigated flow field.However,the numerical results demonstrated a distinct vortex-induced flow pattern following the first pier and throughout the vicinity of the entire pier group,which aligned reasonably well with experimental data.In the heavily narrowed spaces between the piers,simulated velocity profiles were overestimated in the free-surface region and underestimated in the areas near the bed to the mid-stream when compared to measurements.These discrepancies diminished away from the regions with intense vortices,indicating that the employed model was capable of simulating relatively less disturbed flow turbulence.Furthermore,velocity results from both simulations and measurements were compared based on velocity distributions at three different depth ratios(0.15,0.40,and 0.62)to assess vortex characteristic around the piers.This comparison revealed consistent results between experimental and simulated data.This research contributes to a deeper understanding of flow dynamics around complex interactive pier systems,which is critical for designing stable and sustainable hydraulic structures.Furthermore,the insights gained from this study provide valuable information for engineers aiming to develop effective strategies for controlling scour and minimizing destructive vortex effects,thereby guiding the design and maintenance of sustainable infrastructure.
基金supported by the National Natural Science Foundation of China(Grant numbers 41977233)。
文摘Bridge pier failures from granular flow impacts are common.Installing defense piles upstream is an effective mitigation strategy,yet their protective mechanisms and standardized design guidelines are unclear.This study employed 3D discrete element method to analyze the influence of defense pile size and placement on its performance across 219 scenarios,providing a detailed examination of their protective mechanisms.Results show that optimizing these factors can reduce the maximum impact force on bridge piers by up to 94%.In terms of size,a critical height threshold is identified,beyond which increasing pile height does not enhance protection.This threshold depends on the movement height of granular particles at the slope base.Protection effectiveness varies with pile size:when H≤0.05 h(H is the height of defense piles,h is the height of bridge),protection marginally improves with increasing height and diameter;for 0.05 h<H<0.15 h,protection strongly correlates with both parameters;for H≥0.15 h,diameter becomes the dominant factor.In terms of placement,an optimal longitudinal distance exists between the defense pile and the bridge pier.The larger the diameter,the greater the optimal longitudinal distance.However,the transverse distance is inversely related to protection effectiveness.Mechanistic analysis shows that defense piles are more effective at redirecting particles to prevent direct collisions with the pier(contributing 100%impact energy reduction before the non-dimensional travel time t*=7.01 and 63%–100%afterward)than at reducing particle velocity.This study provides insights into the protective mechanisms of defense piles and informs strategies for optimizing bridge pier protection in granular flow-prone regions.
基金supported by National Natural Science Foundation of China(Project No.51878156)EPC Innovation Consulting Project for Longkou Nanshan LNG Phase I Receiving Terminal(Z2000LGENT0399).
文摘To mitigate the challenges in managing the damage level of reinforced concrete(RC)pier columns subjected to cyclic reverse loading,this study conducted a series of cyclic reverse tests on RC pier columns.By analyzing the outcomes of destructive testing on various specimens and fine-tuning the results with the aid of the IMK(Ibarra Medina Krawinkler)recovery model,the energy dissipation capacity coefficient of the pier columns were able to be determined.Furthermore,utilizing the calibrated damage model parameters,the damage index for each specimen were calculated.Based on the obtained damage levels,three distinct pre-damage conditions were designed for the pier columns:minor damage,moderate damage,and severe damage.The study then predicted the variations in hysteresis curves and damage indices under cyclic loading conditions.The experimental findings reveal that the displacement at the top of the pier columns can serve as a reliable indicator for controlling the damage level of pier columns post-loading.Moreover,the calibrated damage index model exhibits proficiency in accurately predicting the damage level of RC pier columns under cyclic loading.
基金National Natural Science Foundation of China under Grant Nos.52068045,U21A2012 and 41825015。
文摘Here,a seismic-response analysis model was proposed for evaluating the nonlinear seismic response of a pile-supported bridge pier under frozen and thawed soil conditions.The effect of a seasonally frozen soil layer on the seismic vulnerability of a pile-supported bridge pier was evaluated based on reliability theory.Although the frozen soil layer inhibited the seismic response of the ground surface to a certain extent,it exacerbated the acceleration response at the bridge pier top owing to the low radiation damping effect of the frozen soil layer.Furthermore,the frozen soil layer reduced the lateral displacement of the bridge pier top relative to the ground surface by approximately 80%,thereby preventing damage caused by earthquakes,such as falling girders.Compared to the thawed state of the ground surface,the bending moment of the bridge pier in frozen ground increases.However,the bending moment of the pile foundation in frozen ground decreases,thereby lessening the seismic vulnerability of the bridge pile foundation.The results of this can provide a reference for the seismic response analysis and seismic risk assessment of pile-supported bridges in seasonally frozen regions.
基金supported by the Zhejiang Provincial Natural Science Foundation of China under Grant No.LTGG23E080001Scientific Research Foundation of Hangzhou City University under Grant Nos.X-202107 and X-202109Zhejiang Engineering Research Center of Intelligent Urban Infrastructure under Grant No.IUI2023-ZD-14.
文摘This article provides an overview of the current development status of prestressed segmental precast and assembled piers,Emphasis was placed on analyzing the stress characteristics of bridge piers under impact.The concept of recoverable functional design and its application prospects were elaborated,and finally,the research on the impact resistance performance of prestressed segmental precast and assembled pierswas discussed.Research has shown that optimizing design and material selection can effectively enhance the impact resistance and structural durability of bridge piers.At the same time,the introduction of the concept of recoverable functionality provides new ideas for the rapid repair and functional recovery of bridge piers,which helps to improve the recovery efficiency of bridges after extreme events.Future research should focus on the evaluation methods of impact resistance performance,new connection technologies,in-depth application of recoverable functional design,a combination of impact simulation experiments and numerical analysis,and exploration of comprehensive disaster prevention and reduction strategies.These research results will also promote the further development and innovation of prefabricated assembly technology in bridge engineering,bringing new ideas and methods to the field of engineering construction.
文摘In bridge engineering,monitoring pier offsets is crucial for ensuring both structural safety and construction quality.The total station measurement method using a reflector is widely employed,offering significant advantages in specific scenarios.During measurements,errors are influenced by various factors.Initially,misalignment causes the lateral relative error to increase before decreasing,while longitudinal relative errors fluctuate due to instrument characteristics and operational factors.Lateral movements have a more pronounced impact on these errors.Investigating the positioning layout of pier offsets holds substantial importance as it enables precise displacement monitoring,prevents accidents,aids in maintenance planning,provides valuable references for design and construction,and enhances the pier’s resistance to deflection.Controlling and correcting subsequent errors is essential to ensure the overall safety of the bridge structure.
基金National Natural Science Foundation of China under Grant Nos.51408359,52278527 and 52478536。
文摘To address local concrete damage in joint areas at the footing of prefabricated assembled self-centering bridge piers(PASPs)in seismic design,a damage transfer configuration(DTC)was proposed,based on the bridge pier structure configuration and the mechanism of local damage formation.Integrating the DTC into the PASP,numerical models of a previous experimental reference PASP and a PASP with damage transfer configuration(DTPASP)were established using the finite element software ABAQUS with a concrete damage plasticity(CDP)model.The models were then compared with experimental results regarding damage distribution,hysteresis curves,energy dissipation capacity,the joint opening degree,and residual displacement.The findings indicate that the finite element model developed in this study can well reflect the experimental results of the reference PASP.The incorporation of the DTC proved to be beneficial in preserving structural integrity,bearing capacity,and the functionality of the core structure of bridge piers following an earthquake.Meanwhile,this addition did not exert a significant influence on the seismic behavior of the core structure of the bridge pier.
基金National Natural Science Foundation of China under Grant Nos.51921006 and 51725801Fundamental Research Funds for the Central Universities under Grant No.FRFCU5710093320Heilongjiang Touyan Innovation Team Program。
文摘Reinforcement corrosion is the main cause of performance deterioration of reinforced concrete(RC)structures.Limited research has been performed to investigate the life-cycle cost(LCC)of coastal bridge piers with nonuniform corrosion using different materials.In this study,a reliability-based design optimization(RBDO)procedure is improved for the design of coastal bridge piers using six groups of commonly used materials,i.e.,normal performance concrete(NPC)with black steel(BS)rebar,high strength steel(HSS)rebar,epoxy coated(EC)rebar,and stainless steel(SS)rebar(named NPC-BS,NPC-HSS,NPC-EC,and NPC-SS,respectively),NPC with BS with silane soakage on the pier surface(named NPC-Silane),and high-performance concrete(HPC)with BS rebar(named HPC-BS).First,the RBDO procedure is improved for the design optimization of coastal bridge piers,and a bridge is selected to illustrate the procedure.Then,reliability analysis of the pier designed with each group of materials is carried out to obtain the time-dependent reliability in terms of the ultimate and serviceability performances.Next,the repair time of the pier is predicted based on the time-dependent reliability indices.Finally,the time-dependent LCCs for the pier are obtained for the selection of the optimal design.
基金Projects(52022113,52278546)supported by the National Natural Science Foundation of ChinaProject(2020EEEVL0403)supported by the China Earthquake Administration。
文摘Sudden earthquakes pose a threat to the running safety of trains on high-speed railway bridges,and the stiffness of piers is one of the factors affecting the dynamic response of train-track-bridge system.In this paper,a experiment of a train running on a high-speed railway bridge is performed based on a dynamic experiment system,and the corresponding numerical model is established.The reliability of the numerical model is verified by experiments.Then,the experiment and numerical data are analyzed to reveal the pier height effects on the running safety of trains on bridges.The results show that when the pier height changes,the frequency of the bridge below the 30 m pier height changes greater;the increase of pier height causes the transverse fundamental frequency of the bridge close to that of the train,and the shaking angle and lateral displacement of the train are the largest for bridge with 50 m pier,which increases the risk of derailment;with the pier height increases from 8 m to 50 m,the derailment coefficient obtained by numerical simulations increases by 75% on average,and the spectral intensity obtained by experiments increases by 120% on average,two indicators exhibit logarithmic variation.
基金The Natural Science Foundation of Jiangsu Province(NoBK2002061)
文摘A novel seismic design method, namely split-pier seismic design, is proposed. A vertical gap and connect elements are set in split-piers. The lateral stiffness of piers is reduced by cracking of the connect elements under severe earthquake, and the seismic response of bridges is reduced by avoiding the site predominant periods. A model of tied-arch rigid frame bridge with split-piers was designed. Seismic performance was investigated by pseudo-static experimentation on the scale model, The failure process of split-piers, the hysteresis characteristic and the effect of split-piers on the superstructure are presented. Results show that the split-pier has better seismic performance than common ductile piers do.
文摘The equations of the lateral deflection curve of the short pier shear wall under a lateral concentrated load at any level are derived by employing a continuous approach. Lateral flexibility matrixes for the dynamic analysis are also obtained by repeatedly calculating the lateral unit load on the wall at each level where a lumped mass located. Dynamic analyses are implemented for short pier shear walls with different parameters, called the integrative coefficient and the pier strength coefficient related to the dimensions of walls. The influences of two coefficients on the dynamic performances of the structure are studied. Results indicate that with the increase of the integrative coefficient, the periods of top two modes apparently decrease but the other periods of higher frequency modes show little variation when the pier strength coefficient remains constant. Similarly, if the integrative coefficient is constant, the top two periods of the free vibration decrease with the increase of the integrative coefficient but the other periods of higher frequency modes show less variation.
基金The National Natural Science Foundation of China(No.5117810151378112)the Doctoral Fund of Ministry of Education(No.20110092110011)
文摘To study the seismic performance of double-skin steelconcrete composite box( DSCB) piers, a total of 11 DSCB pier specimens were tested under bidirectional cyclic loading. The effects of the loading pattern, the steel plate thickness, the axial load ratio, the slenderness ratio and the aspect ratio were taken into consideration. The damage evolution process and failure modes of the tested specimens are presented in detail. Test results are also discussed in terms of the hysteretic curve, skeleton curve, ductility and energy dissipation capacity of DSCB pier specimens. It can be concluded that the hysteretic performance of DSCB piers in one direction is affected and weakened by the cyclic loading in the other direction. DSCB piers under bidirectional cyclic loading exhibit good performance in terms of load carrying capacity, ductility, and energy dissipation capacity. Overall, DSCB piers can meet the basic aseismic requirements. The research results can be taken as a reference for using DSCB piers as high piers in bridges in strong earthquakeprone areas.
基金supported by the National Natural Science Foundation of China(No.U2006225)the European Union’s Horizon 2020 Marie Sklodowska-Curie Research and Innovation Staff Exchange Programme(No.778360)。
文摘Rock-embedded foundations with good uplift and bearing capacity are often used in mountains or hilly areas.However,there are soil layers with a certain thickness on the rocks in these mountainous areas,and the utilization of those soil layers is a problem worthy of attention in foundation construction.Considering construction-and cost-related factors,traditional single-form foundations built on such sites often cannot provide sufficient resistance against uplift.Therefore,an anchored pier foundation composed of anchors and belled piers,specifically constructed for such conditions,can be invaluable in practice.This paper introduces an experimental and analytical study to investigate the uplift capacity and the uplift mobilization coefficients(UMCs)of the anchored pier foundation.In this study,three in-situ monotonic pullout tests were carried out to analyze the load–displacement characteristics,axial force distribution,load transfer mechanism,and failure mechanism.A hyperbolic model is used to fit the load–displacement curves and to reveal the asynchrony of the ultimate limit states(ULSs)of the anchor group and the belled pier.Based on the results,the uplift capacity can be calculated by the UMCs and the anchor group and pier uplift capacities.Finally,combined with the estimation of the deformation modulus of the soil and rock,the verification calculation of the uplift capacity and UMC was carried out on the test results from different anchored pier foundations.
基金The National Natural Science Foundation of China(No.51678141,51378112)the Open Fund from the National Engineering Laboratory for Technology of Geological Disaster Prevention in Land Transportation,Southwest Jiaotong University(No.SWJTUGGS-2014001)
文摘An accurate finite element ( FE) model was constructed to examine the hysteretic behavior of double-skin steel-concrete composite box ( DSCB) piers for further understanding the seismic performance of DSCB piers; where the local buckling behavior of steel tubes, the confinement of the in-filled concrete and the interface action between steel tube and in-filled concrete were considered. The accuracy of the proposed FE model was verified by the bidirectional cyclic loading test results. Based on the validated FE model, the effects of some key parameters, such as section width to steel thickness ratio, slenderness ratio, aspect ratio and axial load ratio on the hysteretic behavior of DSCB piers were investigated. Finally, the skeleton curve model of DSCB piers was proposed. The numerical simulation results reveal that the peak strength and elastic stiffness decrease with the increase of the section width to steel thickness ratio. Moreover, the increase of the slenderness ratio may result in a significant reduction in the peak strength and elastic stiffness while the ultimate displacement increases. The proposed skeleton curve model can be taken as a reference for seismic performance analyses of the DSCB piers.
基金National Natural Science Foundation of China under Grant No.51678150Science for Earthquake Resilience under Grant No.XH17064Australian Research Council Discovery Early Career Researcher Award(DECRA)
文摘In this study, three rapid repair techniques are proposed to retrofit circular bridge piers that are severely damaged by the flexural failure mode in major earthquakes. The quasi-static tests on three 1:2.5 scaled circular pier specimens are conducted to evaluate the efficiency of the proposed repair techniques. For the purpose of rapid repair, the repair procedure for all the specimens is conducted within four days, and the behavior of the repaired specimens is evaluated and compared with the original ones. A finite element model is developed to predict the cyclic behavior of the repaired specimens and the numerical results are compared with the test data. It is found that all the repaired specimens exhibit similar or larger lateral strength and deformation capacity than the original ones. The initial lateral stiffness of all the repaired specimens is lower than that of the original ones, while they show a higher lateral stiffness at the later stage of the test. No noticeable difference is observed for the energy dissipation capacity between the original and repaired pier specimens. It is suggested that the repair technique using the early-strength concrete jacket confined by carbon fiber reinforced polymer (CFRP) sheets can be an optimal method for the rapid repair of severely earthquake-damaged circular bridge piers with flexural failure mode.