Acceptable glycemic control when examining the effects of meals was </span></span><span><span><span style="font-family:"">achieved when combining basal insulin therapy and ...Acceptable glycemic control when examining the effects of meals was </span></span><span><span><span style="font-family:"">achieved when combining basal insulin therapy and high concentration insulin injection before a meal, when using a PID controller (Proportionality, Integrity and Derivative actions) alone, when using a PID controller with basal insulin therapy and when combining the three methods of insulin delivery. Naturally, a type 1 diabetic must inject himself with insulin in well-measured doses. Thus, the management and control of diabetes become a complex task when one must be considered the disturbance due to nutrition and sports activity. This concern has been at the center of much research through different approaches through mathematical methods and Artificial Intelligence methods. This article simulates a physiological model of glycemic control in type 1 diabetics by a PID regulatory mechanism, in the context of disturbances caused by the patient’s meals and athletic activity.展开更多
Pregnant women are often complicated with diseases that require treatment with medication.Most drugs administered to pregnant women are off-label without the necessary dose,efficacy,and safety information.Knowledge co...Pregnant women are often complicated with diseases that require treatment with medication.Most drugs administered to pregnant women are off-label without the necessary dose,efficacy,and safety information.Knowledge concerning drug transfer across the placental barrier is essential for understanding fetal drug exposure and hence drug safety and efficacy to the fetus.Transporters expressed in the placenta,including adenosine triphosphate(ATP)-binding cassette efflux transporters and solute carrier uptake transporters,play important roles in determining drug transfer across the placental barrier,leading to fetal exposure to the drugs.In this review,we provide an update on placental drug transport,including in vitro cell/tissue,ex vivo human placenta perfusion,and in vivo animal studies that can be used to determine the expression and function of drug transporters in the placenta as well as placental drug transfer and fetal drug exposure.We also describe how the knowledge of placental drug transfer through passive diffusion or active transport can be combined with physiologically based pharmacokinetic modeling and simulation to predict systemic fetal drug exposure.Finally,we highlight knowledge gaps in studying placental drug transport and predicting fetal drug exposure and discuss future research directions to fill these gaps.展开更多
文摘Acceptable glycemic control when examining the effects of meals was </span></span><span><span><span style="font-family:"">achieved when combining basal insulin therapy and high concentration insulin injection before a meal, when using a PID controller (Proportionality, Integrity and Derivative actions) alone, when using a PID controller with basal insulin therapy and when combining the three methods of insulin delivery. Naturally, a type 1 diabetic must inject himself with insulin in well-measured doses. Thus, the management and control of diabetes become a complex task when one must be considered the disturbance due to nutrition and sports activity. This concern has been at the center of much research through different approaches through mathematical methods and Artificial Intelligence methods. This article simulates a physiological model of glycemic control in type 1 diabetics by a PID regulatory mechanism, in the context of disturbances caused by the patient’s meals and athletic activity.
基金supported by the National Institute on Drug Abuse(Grant P01DA032507)the Eunice Kennedy Shriver National Institute of Child Health and Human Development(Grant R01HD102786)。
文摘Pregnant women are often complicated with diseases that require treatment with medication.Most drugs administered to pregnant women are off-label without the necessary dose,efficacy,and safety information.Knowledge concerning drug transfer across the placental barrier is essential for understanding fetal drug exposure and hence drug safety and efficacy to the fetus.Transporters expressed in the placenta,including adenosine triphosphate(ATP)-binding cassette efflux transporters and solute carrier uptake transporters,play important roles in determining drug transfer across the placental barrier,leading to fetal exposure to the drugs.In this review,we provide an update on placental drug transport,including in vitro cell/tissue,ex vivo human placenta perfusion,and in vivo animal studies that can be used to determine the expression and function of drug transporters in the placenta as well as placental drug transfer and fetal drug exposure.We also describe how the knowledge of placental drug transfer through passive diffusion or active transport can be combined with physiologically based pharmacokinetic modeling and simulation to predict systemic fetal drug exposure.Finally,we highlight knowledge gaps in studying placental drug transport and predicting fetal drug exposure and discuss future research directions to fill these gaps.