期刊文献+
共找到135,163篇文章
< 1 2 250 >
每页显示 20 50 100
MBID:A Scalable Multi-Tier Blockchain Architecture with Physics-Informed Neural Networks for Intrusion Detection in Large-Scale IoT Networks
1
作者 Saeed Ullah Junsheng Wu +3 位作者 Mian Muhammad Kamal Heba G.Mohamed Muhammad Sheraz Teong Chee Chuah 《Computer Modeling in Engineering & Sciences》 2025年第8期2647-2681,共35页
The Internet of Things(IoT)ecosystem faces growing security challenges because it is projected to have 76.88 billion devices by 2025 and $1.4 trillion market value by 2027,operating in distributed networks with resour... The Internet of Things(IoT)ecosystem faces growing security challenges because it is projected to have 76.88 billion devices by 2025 and $1.4 trillion market value by 2027,operating in distributed networks with resource limitations and diverse system architectures.The current conventional intrusion detection systems(IDS)face scalability problems and trust-related issues,but blockchain-based solutions face limitations because of their low transaction throughput(Bitcoin:7 TPS(Transactions Per Second),Ethereum:15-30 TPS)and high latency.The research introduces MBID(Multi-Tier Blockchain Intrusion Detection)as a groundbreaking Multi-Tier Blockchain Intrusion Detection System with AI-Enhanced Detection,which solves the problems in huge IoT networks.The MBID system uses a four-tier architecture that includes device,edge,fog,and cloud layers with blockchain implementations and Physics-Informed Neural Networks(PINNs)for edge-based anomaly detection and a dual consensus mechanism that uses Honesty-based Distributed Proof-of-Authority(HDPoA)and Delegated Proof of Stake(DPoS).The system achieves scalability and efficiency through the combination of dynamic sharding and Interplanetary File System(IPFS)integration.Experimental evaluations demonstrate exceptional performance,achieving a detection accuracy of 99.84%,an ultra-low false positive rate of 0.01% with a False Negative Rate of 0.15%,and a near-instantaneous edge detection latency of 0.40 ms.The system demonstrated an aggregate throughput of 214.57 TPS in a 3-shard configuration,providing a clear,evidence-based path for horizontally scaling to support overmillions of devices with exceeding throughput.The proposed architecture represents a significant advancement in blockchain-based security for IoT networks,effectively balancing the trade-offs between scalability,security,and decentralization. 展开更多
关键词 Internet of things blockchain intrusion detection physics-informed neural networks scalability security
在线阅读 下载PDF
VW-PINNs:A volume weighting method for PDE residuals in physics-informed neural networks
2
作者 Jiahao Song Wenbo Cao +1 位作者 Fei Liao Weiwei Zhang 《Acta Mechanica Sinica》 2025年第3期65-79,共15页
Physics-informed neural networks(PINNs)have shown remarkable prospects in solving the forward and inverse problems involving partial differential equations(PDEs).The method embeds PDEs into the neural network by calcu... Physics-informed neural networks(PINNs)have shown remarkable prospects in solving the forward and inverse problems involving partial differential equations(PDEs).The method embeds PDEs into the neural network by calculating the PDE loss at a set of collocation points,providing advantages such as meshfree and more convenient adaptive sampling.However,when solving PDEs using nonuniform collocation points,PINNs still face challenge regarding inefficient convergence of PDE residuals or even failure.In this work,we first analyze the ill-conditioning of the PDE loss in PINNs under nonuniform collocation points.To address the issue,we define volume weighting residual and propose volume weighting physics-informed neural networks(VW-PINNs).Through weighting the PDE residuals by the volume that the collocation points occupy within the computational domain,we embed explicitly the distribution characteristics of collocation points in the loss evaluation.The fast and sufficient convergence of the PDE residuals for the problems involving nonuniform collocation points is guaranteed.Considering the meshfree characteristics of VW-PINNs,we also develop a volume approximation algorithm based on kernel density estimation to calculate the volume of the collocation points.We validate the universality of VW-PINNs by solving the forward problems involving flow over a circular cylinder and flow over the NACA0012 airfoil under different inflow conditions,where conventional PINNs fail.By solving the Burgers’equation,we verify that VW-PINNs can enhance the efficiency of existing the adaptive sampling method in solving the forward problem by three times,and can reduce the relative L 2 error of conventional PINNs in solving the inverse problem by more than one order of magnitude. 展开更多
关键词 physics-informed neural networks Partial differential equations Nonuniform sampling Residual balancing Deep learning
原文传递
LatentPINNs:Generative physics-informed neural networks via a latent representation learning
3
作者 Mohammad H.Taufik Tariq Alkhalifah 《Artificial Intelligence in Geosciences》 2025年第1期155-165,共11页
Physics-informed neural networks(PINNs)are promising to replace conventional mesh-based partial tial differen-equation(PDE)solvers by offering more accurate and flexible PDE solutions.However,PINNs are hampered by the... Physics-informed neural networks(PINNs)are promising to replace conventional mesh-based partial tial differen-equation(PDE)solvers by offering more accurate and flexible PDE solutions.However,PINNs are hampered by the relatively slow convergence and the need to perform additional,potentially expensive training for new PDE parameters.To solve this limitation,we introduce LatentPINN,a framework that utilizes latent representations of the PDE parameters as additional(to the coordinates)inputs into PINNs and allows for training over the distribution of these parameters.Motivated by the recent progress on generative models,we promote using latent diffusion models to learn compressed latent representations of the distribution of PDE parameters as they act as input parameters for NN functional solutions.We use a two-stage training scheme in which,in the first stage,we learn the latent representations for the distribution of PDE parameters.In the second stage,we train a physics-informed neural network over inputs given by randomly drawn samples from the coordinate space within the solution domain and samples from the learned latent representation of the PDE parameters.Considering their importance in capturing evolving interfaces and fronts in various fields,we test the approach on a class of level set equations given,for example,by the nonlinear Eikonal equation.We share results corresponding to three Eikonal parameters(velocity models)sets.The proposed method performs well on new phase velocity models without the need for any additional training. 展开更多
关键词 physics-informed neural networks PDE solvers Latent representation learning
在线阅读 下载PDF
Enhanced electrode-level diagnostics for lithium-ion battery degradation using physics-informed neural networks 被引量:1
4
作者 Rui Xiong Yinghao He +2 位作者 Yue Sun Yanbo Jia Weixiang Shen 《Journal of Energy Chemistry》 2025年第5期618-627,共10页
For the diagnostics and health management of lithium-ion batteries,numerous models have been developed to understand their degradation characteristics.These models typically fall into two categories:data-driven models... For the diagnostics and health management of lithium-ion batteries,numerous models have been developed to understand their degradation characteristics.These models typically fall into two categories:data-driven models and physical models,each offering unique advantages but also facing limitations.Physics-informed neural networks(PINNs)provide a robust framework to integrate data-driven models with physical principles,ensuring consistency with underlying physics while enabling generalization across diverse operational conditions.This study introduces a PINN-based approach to reconstruct open circuit voltage(OCV)curves and estimate key ageing parameters at both the cell and electrode levels.These parameters include available capacity,electrode capacities,and lithium inventory capacity.The proposed method integrates OCV reconstruction models as functional components into convolutional neural networks(CNNs)and is validated using a public dataset.The results reveal that the estimated ageing parameters closely align with those obtained through offline OCV tests,with errors in reconstructed OCV curves remaining within 15 mV.This demonstrates the ability of the method to deliver fast and accurate degradation diagnostics at the electrode level,advancing the potential for precise and efficient battery health management. 展开更多
关键词 Lithium-ion batteries Electrode level Ageing diagnosis physics-informed neural network Convolutional neural networks
在线阅读 下载PDF
Simultaneous imposition of initial and boundary conditions via decoupled physics-informed neural networks for solving initialboundary value problems
5
作者 K.A.LUONG M.A.WAHAB J.H.LEE 《Applied Mathematics and Mechanics(English Edition)》 2025年第4期763-780,共18页
Enforcing initial and boundary conditions(I/BCs)poses challenges in physics-informed neural networks(PINNs).Several PINN studies have gained significant achievements in developing techniques for imposing BCs in static... Enforcing initial and boundary conditions(I/BCs)poses challenges in physics-informed neural networks(PINNs).Several PINN studies have gained significant achievements in developing techniques for imposing BCs in static problems;however,the simultaneous enforcement of I/BCs in dynamic problems remains challenging.To overcome this limitation,a novel approach called decoupled physics-informed neural network(d PINN)is proposed in this work.The d PINN operates based on the core idea of converting a partial differential equation(PDE)to a system of ordinary differential equations(ODEs)via the space-time decoupled formulation.To this end,the latent solution is expressed in the form of a linear combination of approximation functions and coefficients,where approximation functions are admissible and coefficients are unknowns of time that must be solved.Subsequently,the system of ODEs is obtained by implementing the weighted-residual form of the original PDE over the spatial domain.A multi-network structure is used to parameterize the set of coefficient functions,and the loss function of d PINN is established based on minimizing the residuals of the gained ODEs.In this scheme,the decoupled formulation leads to the independent handling of I/BCs.Accordingly,the BCs are automatically satisfied based on suitable selections of admissible functions.Meanwhile,the original ICs are replaced by the Galerkin form of the ICs concerning unknown coefficients,and the neural network(NN)outputs are modified to satisfy the gained ICs.Several benchmark problems involving different types of PDEs and I/BCs are used to demonstrate the superior performance of d PINN compared with regular PINN in terms of solution accuracy and computational cost. 展开更多
关键词 decoupled physics-informed neural network(dPINN) decoupled formulation Galerkin method initial-boundary value problem(IBVP) machine learning
在线阅读 下载PDF
Prediction of velocity and pressure of gas-liquid flow using spectrum-based physics-informed neural networks
6
作者 Nanxi DING Hengzhen FENG +5 位作者 H.Z.LOU Shenghua FU Chenglong LI Zihao ZHANG Wenlong MA Zhengqian ZHANG 《Applied Mathematics and Mechanics(English Edition)》 2025年第2期341-356,共16页
This research introduces a spectrum-based physics-informed neural network(SP-PINN)model to significantly improve the accuracy of calculation of two-phase flow parameters,surpassing existing methods that have limitatio... This research introduces a spectrum-based physics-informed neural network(SP-PINN)model to significantly improve the accuracy of calculation of two-phase flow parameters,surpassing existing methods that have limitations in global and continuous data sampling.SP-PINNs address the challenges of traditional methods in terms of continuous sampling by integrating the spectral analysis and pressure correction into the Navier-Stokes(N-S)equations,enhancing the predictive accuracy especially in critical regions like gas-phase boundaries and velocity peaks.The novel introduction of a pressure-correction module within SP-PINNs mitigates prediction errors,achieving a substantial reduction to 1‰compared with the conventional physics-informed neural network(PINN)approaches.Experimental applications validate the model’s ability to accurately and rapidly predict flow parameters with different sampling time intervals,with the computation time of predicting unsampled data less than 0.01 s.Such advancements signify a 100-fold improvement over traditional DNS calculations,underscoring the model’s potential in the real-time calculation and analysis of multiphase flow dynamics. 展开更多
关键词 physics-informed neural network(PINN) spectral method two-phase flow parameter prediction
在线阅读 下载PDF
Multi-scale physics-informed neural networks for solving high Reynolds number boundary layer flows based on matched asymptotic expansions 被引量:3
7
作者 Jianlin Huang Rundi Qiu +1 位作者 Jingzhu Wang Yiwei Wang 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2024年第2期76-81,共6页
Multi-scale system remains a classical scientific problem in fluid dynamics,biology,etc.In the present study,a scheme of multi-scale Physics-informed neural networks is proposed to solve the boundary layer flow at hig... Multi-scale system remains a classical scientific problem in fluid dynamics,biology,etc.In the present study,a scheme of multi-scale Physics-informed neural networks is proposed to solve the boundary layer flow at high Reynolds numbers without any data.The flow is divided into several regions with different scales based on Prandtl's boundary theory.Different regions are solved with governing equations in different scales.The method of matched asymptotic expansions is used to make the flow field continuously.A flow on a semi infinite flat plate at a high Reynolds number is considered a multi-scale problem because the boundary layer scale is much smaller than the outer flow scale.The results are compared with the reference numerical solutions,which show that the msPINNs can solve the multi-scale problem of the boundary layer in high Reynolds number flows.This scheme can be developed for more multi-scale problems in the future. 展开更多
关键词 physics-informed neural networks(PINNs) MULTI-SCALE Fluid dynamics Boundary layer
在线阅读 下载PDF
TCAS-PINN:Physics-informed neural networks with a novel temporal causality-based adaptive sampling method 被引量:1
8
作者 郭嘉 王海峰 +1 位作者 古仕林 侯臣平 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第5期344-364,共21页
Physics-informed neural networks(PINNs)have become an attractive machine learning framework for obtaining solutions to partial differential equations(PDEs).PINNs embed initial,boundary,and PDE constraints into the los... Physics-informed neural networks(PINNs)have become an attractive machine learning framework for obtaining solutions to partial differential equations(PDEs).PINNs embed initial,boundary,and PDE constraints into the loss function.The performance of PINNs is generally affected by both training and sampling.Specifically,training methods focus on how to overcome the training difficulties caused by the special PDE residual loss of PINNs,and sampling methods are concerned with the location and distribution of the sampling points upon which evaluations of PDE residual loss are accomplished.However,a common problem among these original PINNs is that they omit special temporal information utilization during the training or sampling stages when dealing with an important PDE category,namely,time-dependent PDEs,where temporal information plays a key role in the algorithms used.There is one method,called Causal PINN,that considers temporal causality at the training level but not special temporal utilization at the sampling level.Incorporating temporal knowledge into sampling remains to be studied.To fill this gap,we propose a novel temporal causality-based adaptive sampling method that dynamically determines the sampling ratio according to both PDE residual and temporal causality.By designing a sampling ratio determined by both residual loss and temporal causality to control the number and location of sampled points in each temporal sub-domain,we provide a practical solution by incorporating temporal information into sampling.Numerical experiments of several nonlinear time-dependent PDEs,including the Cahn–Hilliard,Korteweg–de Vries,Allen–Cahn and wave equations,show that our proposed sampling method can improve the performance.We demonstrate that using such a relatively simple sampling method can improve prediction performance by up to two orders of magnitude compared with the results from other methods,especially when points are limited. 展开更多
关键词 partial differential equation physics-informed neural networks residual-based adaptive sampling temporal causality
原文传递
MetaPINNs:Predicting soliton and rogue wave of nonlinear PDEs via the improved physics-informed neural networks based on meta-learned optimization
9
作者 郭亚楠 曹小群 +1 位作者 宋君强 冷洪泽 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第2期96-107,共12页
Efficiently solving partial differential equations(PDEs)is a long-standing challenge in mathematics and physics research.In recent years,the rapid development of artificial intelligence technology has brought deep lea... Efficiently solving partial differential equations(PDEs)is a long-standing challenge in mathematics and physics research.In recent years,the rapid development of artificial intelligence technology has brought deep learning-based methods to the forefront of research on numerical methods for partial differential equations.Among them,physics-informed neural networks(PINNs)are a new class of deep learning methods that show great potential in solving PDEs and predicting complex physical phenomena.In the field of nonlinear science,solitary waves and rogue waves have been important research topics.In this paper,we propose an improved PINN that enhances the physical constraints of the neural network model by adding gradient information constraints.In addition,we employ meta-learning optimization to speed up the training process.We apply the improved PINNs to the numerical simulation and prediction of solitary and rogue waves.We evaluate the accuracy of the prediction results by error analysis.The experimental results show that the improved PINNs can make more accurate predictions in less time than that of the original PINNs. 展开更多
关键词 physics-informed neural networks gradient-enhanced loss function meta-learned optimization nonlinear science
原文传递
Chien-physics-informed neural networks for solving singularly perturbed boundary-layer problems 被引量:1
10
作者 Long WANG Lei ZHANG Guowei HE 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第9期1467-1480,共14页
A physics-informed neural network(PINN)is a powerful tool for solving differential equations in solid and fluid mechanics.However,it suffers from singularly perturbed boundary-layer problems in which there exist sharp... A physics-informed neural network(PINN)is a powerful tool for solving differential equations in solid and fluid mechanics.However,it suffers from singularly perturbed boundary-layer problems in which there exist sharp changes caused by a small perturbation parameter multiplying the highest-order derivatives.In this paper,we introduce Chien's composite expansion method into PINNs,and propose a novel architecture for the PINNs,namely,the Chien-PINN(C-PINN)method.This novel PINN method is validated by singularly perturbed differential equations,and successfully solves the wellknown thin plate bending problems.In particular,no cumbersome matching conditions are needed for the C-PINN method,compared with the previous studies based on matched asymptotic expansions. 展开更多
关键词 physics-informed neural network(PINN) singular perturbation boundarylayer problem composite asymptotic expansion
在线阅读 下载PDF
Radiative heat transfer analysis of a concave porous fin under the local thermal non-equilibrium condition:application of the clique polynomial method and physics-informed neural networks
11
作者 K.CHANDAN K.KARTHIK +3 位作者 K.V.NAGARAJA B.C.PRASANNAKUMARA R.S.VARUN KUMAR T.MUHAMMAD 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第9期1613-1632,共20页
The heat transfer through a concave permeable fin is analyzed by the local thermal non-equilibrium(LTNE)model.The governing dimensional temperature equations for the solid and fluid phases of the porous extended surfa... The heat transfer through a concave permeable fin is analyzed by the local thermal non-equilibrium(LTNE)model.The governing dimensional temperature equations for the solid and fluid phases of the porous extended surface are modeled,and then are nondimensionalized by suitable dimensionless terms.Further,the obtained nondimensional equations are solved by the clique polynomial method(CPM).The effects of several dimensionless parameters on the fin's thermal profiles are shown by graphical illustrations.Additionally,the current study implements deep neural structures to solve physics-governed coupled equations,and the best-suited hyperparameters are attained by comparison with various network combinations.The results of the CPM and physicsinformed neural network(PINN)exhibit good agreement,signifying that both methods effectively solve the thermal modeling problem. 展开更多
关键词 heat transfer FIN porous fin local thermal non-equilibrium(LTNE)model physics-informed neural network(PINN)
在线阅读 下载PDF
Application of physics-informed neural networks for nonlinear buckling analysis of beams 被引量:3
12
作者 Maziyar Bazmara Mohammad Mianroodi Mohammad Silani 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2023年第6期80-92,共13页
This paper proposes a physics-informed neural network(PINN)framework to analyze the nonlinear buckling behavior of a three-dimensional(3D)FG porous,slender beam resting on a Winkler-Pasternak foundation.PINNs need muc... This paper proposes a physics-informed neural network(PINN)framework to analyze the nonlinear buckling behavior of a three-dimensional(3D)FG porous,slender beam resting on a Winkler-Pasternak foundation.PINNs need much less training data to obtain high accuracy using a straightforward network.The powerful tool used in this work can handle any class of PDEs.We use the deep learning platform TensorFlow and DeepXDE library to design our network.In this study,the PINNs framework takes information from the governing differential equations of the beam system and the data from boundary conditions and outputs the critical nonlinear buckling load.The mathematical model is developed using Hamilton’s principle,considering geometry’s nonlinearity.The accuracy of the modeling framework is carefully examined by applying it to various boundary condition cases as well as the physical parameters such as 3D FG indexes on the nonlinear mechanical behaviors.Finally,the PINNs results are validated with those extracted from the generalized differential quadrature method(GDQM).It is found that the proposed PINN framework can characterize the nonlinear buckling behavior of 3D FG porous,slender beams with satisfactory accuracy.Furthermore,PINN is presented to accurately predict the nonlinear buckling behavior of the beam up to 71 times faster than the numerical method. 展开更多
关键词 Deep learning physics-informed neural networks Slender beam Three-directional functionally graded materials Nonlinear buckling Computational mechanics
原文传递
Physics-informed neural networks for estimating stress transfer mechanics in single lap joints 被引量:1
13
作者 Shivam SHARMA Rajneesh AWASTHI +1 位作者 Yedlabala Sudhir SASTRY Pattabhi Ramaiah BUDARAPU 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2021年第8期621-631,共11页
With the explosive growth of computational resources and data generation,deep machine learning has been successfully employed in various applications.One important and emerging scientific application of deep learning ... With the explosive growth of computational resources and data generation,deep machine learning has been successfully employed in various applications.One important and emerging scientific application of deep learning involves solving differential equations.Here,physics-informed neural networks(PINNs)are developed to solve the differential equations associated with a specific scientific problem.As such,algorithms for solving the differential equations by embedding their initial and boundary conditions in the cost function of the artificial neural networks using algorithmic differentiation must also be developed.In this study,various PINNs are adopted to estimate the stresses in the tablets and the interphase of a single lap joint.The proposed model is represented by two fourth-order non-homogeneous coupled partial differential equations,with the axial stresses in the upper and lower tablets adopted as the dependent variables.The axial stresses are a function of the tablet length,which presents the independent variable.Therefore,the axial stresses in the tablets are estimated by solving the coupled partial differential equations when subjected to the boundary conditions,whereas the remaining stress components are expressed in terms of axial stresses.The results obtained using the developed methodology are validated using the results obtained via MAPLE software. 展开更多
关键词 physics-informed neural networks(PINNs) Algorithmic differentiation Artificial neural networks Loss function Single lap joint
原文传递
Solving nonlinear soliton equations using improved physics-informed neural networks with adaptive mechanisms
14
作者 Yanan Guo Xiaoqun Cao Kecheng Peng 《Communications in Theoretical Physics》 SCIE CAS CSCD 2023年第9期36-50,共15页
Partial differential equations(PDEs)are important tools for scientific research and are widely used in various fields.However,it is usually very difficult to obtain accurate analytical solutions of PDEs,and numerical ... Partial differential equations(PDEs)are important tools for scientific research and are widely used in various fields.However,it is usually very difficult to obtain accurate analytical solutions of PDEs,and numerical methods to solve PDEs are often computationally intensive and very time-consuming.In recent years,Physics Informed Neural Networks(PINNs)have been successfully applied to find numerical solutions of PDEs and have shown great potential.All the while,solitary waves have been of great interest to researchers in the field of nonlinear science.In this paper,we perform numerical simulations of solitary wave solutions of several PDEs using improved PINNs.The improved PINNs not only incorporate constraints on the control equations to ensure the interpretability of the prediction results,which is important for physical field simulations,in addition,an adaptive activation function is introduced.By introducing hyperparameters in the activation function to change the slope of the activation function to avoid the disappearance of the gradient,computing time is saved thereby speeding up training.In this paper,the m Kd V equation,the improved Boussinesq equation,the Caudrey–Dodd–Gibbon–Sawada–Kotera equation and the p-g BKP equation are selected for study,and the errors of the simulation results are analyzed to assess the accuracy of the predicted solitary wave solution.The experimental results show that the improved PINNs are significantly better than the traditional PINNs with shorter training time but more accurate prediction results.The improved PINNs improve the training speed by more than 1.5 times compared with the traditional PINNs,while maintaining the prediction error less than 10~(-2)in this order of magnitude. 展开更多
关键词 physics-informed neural networks adaptive activation function partial differential equations solitary wave
原文传递
Meshfree-based physics-informed neural networks for the unsteady Oseen equations
15
作者 彭珂依 岳靖 +1 位作者 张文 李剑 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第4期151-159,共9页
We propose the meshfree-based physics-informed neural networks for solving the unsteady Oseen equations.Firstly,based on the ideas of meshfree and small sample learning,we only randomly select a small number of spatio... We propose the meshfree-based physics-informed neural networks for solving the unsteady Oseen equations.Firstly,based on the ideas of meshfree and small sample learning,we only randomly select a small number of spatiotemporal points to train the neural network instead of forming a mesh.Specifically,we optimize the neural network by minimizing the loss function to satisfy the differential operators,initial condition and boundary condition.Then,we prove the convergence of the loss function and the convergence of the neural network.In addition,the feasibility and effectiveness of the method are verified by the results of numerical experiments,and the theoretical derivation is verified by the relative error between the neural network solution and the analytical solution. 展开更多
关键词 physics-informed neural networks the unsteady Oseen equation convergence small sample learning
原文传递
Data-driven fusion and fission solutions in the Hirota–Satsuma–Ito equation via the physics-informed neural networks method
16
作者 Jianlong Sun Kaijie Xing Hongli An 《Communications in Theoretical Physics》 SCIE CAS CSCD 2023年第11期15-23,共9页
Fusion and fission are two important phenomena that have been experimentally observed in many real physical models.In this paper,we investigate the two phenomena in the(2+1)-dimensional Hirota-Satsuma-Ito equation via... Fusion and fission are two important phenomena that have been experimentally observed in many real physical models.In this paper,we investigate the two phenomena in the(2+1)-dimensional Hirota-Satsuma-Ito equation via the physics-informed neural networks(PINN)method.By choosing suitable physically constrained initial boundary conditions,the data-driven fusion and fission solutions are obtained for the first time.Dynamical behaviors and error analysis of these solutions are investigated via illustratively numerical figures,which show that good results are achieved.It is pointed out that the PINN method adopted here can be effectively used to construct the data-driven fusion and fission solutions for other nonlinear integrable equations.Based on the powerful predictive capability of the PINN method and wide applications of fusion and fission in many physical areas,it is hoped that the data-driven solutions obtained here will be helpful for experts to predict or explain related physical phenomena. 展开更多
关键词 Hirota-Satsuma-Ito equation physics-informed neural networks method fusion and fission solutions
原文传递
Physics-informed neural networks with residual/gradient-based adaptive sampling methods for solving partial differential equations with sharp solutions 被引量:6
17
作者 Zhiping MAO Xuhui MENG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第7期1069-1084,共16页
We consider solving the forward and inverse partial differential equations(PDEs)which have sharp solutions with physics-informed neural networks(PINNs)in this work.In particular,to better capture the sharpness of the ... We consider solving the forward and inverse partial differential equations(PDEs)which have sharp solutions with physics-informed neural networks(PINNs)in this work.In particular,to better capture the sharpness of the solution,we propose the adaptive sampling methods(ASMs)based on the residual and the gradient of the solution.We first present a residual only-based ASM denoted by ASMⅠ.In this approach,we first train the neural network using a small number of residual points and divide the computational domain into a certain number of sub-domains,then we add new residual points in the sub-domain which has the largest mean absolute value of the residual,and those points which have the largest absolute values of the residual in this sub-domain as new residual points.We further develop a second type of ASM(denoted by ASMⅡ)based on both the residual and the gradient of the solution due to the fact that only the residual may not be able to efficiently capture the sharpness of the solution.The procedure of ASMⅡis almost the same as that of ASMⅠ,and we add new residual points which have not only large residuals but also large gradients.To demonstrate the effectiveness of the present methods,we use both ASMⅠand ASMⅡto solve a number of PDEs,including the Burger equation,the compressible Euler equation,the Poisson equation over an Lshape domain as well as the high-dimensional Poisson equation.It has been shown from the numerical results that the sharp solutions can be well approximated by using either ASMⅠor ASMⅡ,and both methods deliver much more accurate solutions than the original PINNs with the same number of residual points.Moreover,the ASMⅡalgorithm has better performance in terms of accuracy,efficiency,and stability compared with the ASMⅠalgorithm.This means that the gradient of the solution improves the stability and efficiency of the adaptive sampling procedure as well as the accuracy of the solution.Furthermore,we also employ the similar adaptive sampling technique for the data points of boundary conditions(BCs)if the sharpness of the solution is near the boundary.The result of the L-shape Poisson problem indicates that the present method can significantly improve the efficiency,stability,and accuracy. 展开更多
关键词 physics-informed neural network(PINN) adaptive sampling high-dimension L-shape Poisson equation accuracy
在线阅读 下载PDF
Effective data sampling strategies and boundary condition constraints of physics-informed neural networks for identifying material properties in solid mechanics 被引量:3
18
作者 W.WU M.DANEKER +2 位作者 M.A.JOLLEY K.T.TURNER L.LU 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第7期1039-1068,共30页
Material identification is critical for understanding the relationship between mechanical properties and the associated mechanical functions.However,material identification is a challenging task,especially when the ch... Material identification is critical for understanding the relationship between mechanical properties and the associated mechanical functions.However,material identification is a challenging task,especially when the characteristic of the material is highly nonlinear in nature,as is common in biological tissue.In this work,we identify unknown material properties in continuum solid mechanics via physics-informed neural networks(PINNs).To improve the accuracy and efficiency of PINNs,we develop efficient strategies to nonuniformly sample observational data.We also investigate different approaches to enforce Dirichlet-type boundary conditions(BCs)as soft or hard constraints.Finally,we apply the proposed methods to a diverse set of time-dependent and time-independent solid mechanic examples that span linear elastic and hyperelastic material space.The estimated material parameters achieve relative errors of less than 1%.As such,this work is relevant to diverse applications,including optimizing structural integrity and developing novel materials. 展开更多
关键词 solid mechanics material identification physics-informed neural network(PINN) data sampling boundary condition(BC)constraint
在线阅读 下载PDF
ESR-PINNs:Physics-informed neural networks with expansion-shrinkage resampling selection strategies 被引量:1
19
作者 刘佳楠 侯庆志 +1 位作者 魏建国 孙泽玮 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第7期337-346,共10页
Neural network methods have been widely used in many fields of scientific research with the rapid increase of computing power.The physics-informed neural networks(PINNs)have received much attention as a major breakthr... Neural network methods have been widely used in many fields of scientific research with the rapid increase of computing power.The physics-informed neural networks(PINNs)have received much attention as a major breakthrough in solving partial differential equations using neural networks.In this paper,a resampling technique based on the expansion-shrinkage point(ESP)selection strategy is developed to dynamically modify the distribution of training points in accordance with the performance of the neural networks.In this new approach both training sites with slight changes in residual values and training points with large residuals are taken into account.In order to make the distribution of training points more uniform,the concept of continuity is further introduced and incorporated.This method successfully addresses the issue that the neural network becomes ill or even crashes due to the extensive alteration of training point distribution.The effectiveness of the improved physics-informed neural networks with expansion-shrinkage resampling is demonstrated through a series of numerical experiments. 展开更多
关键词 physical informed neural networks RESAMPLING partial differential equation
原文传递
Application of physics-informed neural networks to multidimensional quantum tunneling 被引量:1
20
作者 P.W.Wen C.J.Lin +2 位作者 L.Yang H.M.Jia N.R.Ma 《Chinese Physics C》 2025年第8期281-288,共8页
Physics-Informed Neural Networks(PINNs)have emerged as a powerful tool for solving high-dimensional partial differential equations and have demonstrated promising results across various fields of physics and engineeri... Physics-Informed Neural Networks(PINNs)have emerged as a powerful tool for solving high-dimensional partial differential equations and have demonstrated promising results across various fields of physics and engineering.In this paper,we present the first application of PINNs to quantum tunneling in heavy-ion fusion reactions.By incorporating the physical laws directly into the neural network's loss function,PINNs enable the accurate solution of the multidimensional Schr?dinger equation,whose wavefunction has substantial oscillations.The calculated quantum tunneling probabilities exhibit good agreement with those obtained using the finite element method at the considered near barrier energy region.Furthermore,we demonstrate a significant advantage of the PINN approach to save and fine-tune pre-trained neural networks for related tunneling calculations,thereby enhancing computational efficiency and adaptability. 展开更多
关键词 fusion reactions quantum tunneling physics-informed neural networks
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部