The United Nations’Sustainable Development Goals(SDGs)highlight the importance of affordable and clean energy sources.Solar energy is a perfect example,being both renewable and abundant.Its popularity shows no signs ...The United Nations’Sustainable Development Goals(SDGs)highlight the importance of affordable and clean energy sources.Solar energy is a perfect example,being both renewable and abundant.Its popularity shows no signs of slowing down,with solar photovoltaic(PV)panels being the primary technology for converting sunlight into electricity.Advancements are continuously being made to ensure cost-effectiveness,high-performing cells,extended lifespans,and minimal maintenance requirements.This study focuses on identifying suitable locations for implementing solar PVsystems at theUniversityMalaysia PahangAl SultanAbdullah(UMPSA),Pekan campus including buildings,water bodies,and forest areas.A combined technical and economic analysis is conducted using Helioscope for simulations and the Photovoltaic Geographic Information System(PVGIS)for economic considerations.Helioscope simulation examine case studies for PV installations in forested areas,lakes,and buildings.This approach provides comprehensive estimations of solar photovoltaic potential,annual cost savings,electricity costs,and greenhouse gas emission reductions.Based on land coverage percentages,Floatovoltaics have a large solar PV capacity of 32.3 Megawatts(MW);forest-based photovoltaics(Forestvoltaics)achieve maximum yearly savings of RM 37,268,550;and Building Applied Photovoltaics(BAPV)have the lowest CO2 emissions and net carbon dioxide reduction compared to other plant sizes.It also clarifies the purpose of using both software tools to achieve a comprehensive understanding of both technical and economic aspects.展开更多
The development of vehicle integrated photovoltaics-powered electric vehicles (VIPV-EV) significantly reduces CO<sub>2</sub> emissions from the transport sector to realize a decarbonized society. Although ...The development of vehicle integrated photovoltaics-powered electric vehicles (VIPV-EV) significantly reduces CO<sub>2</sub> emissions from the transport sector to realize a decarbonized society. Although long-distance driving of VIPV-EV without electricity charging is expected in sunny regions, driving distance of VIPV-EV is affected by climate conditions such as solar irradiation and temperature rise of PV modules. In this paper, detailed analytical results for effects of climate conditions such as solar irradiation and temperature rise of PV modules upon driving distance of the VIPV-EV were presented by using test data for Toyota Prius and Nissan Van demonstration cars installed with high-efficiency InGaP/GaAs/InGaAs 3-junction solar cell modules with a module efficiency of more than 30%. The temperature rise of some PV modules studied in this study was shown to be expressed by some coefficients related to solar irradiation, wind speed and radiative cooling. The potential of VIPV-EV to be deployed in 10 major cities was also analyzed. Although sunshine cities such as Phoenix show the high reduction ratio of driving range with 17% due to temperature rise of VIPV modules, populous cities such as Tokyo show low reduction ratio of 9%. It was also shown in this paper that the difference between the driving distance of VIPV-EV driving in the morning and the afternoon is due to PV modules’ radiative cooling. In addition, the importance of heat dissipation of PV modules and the development of high-efficiency PV modules with better temperature coefficients was suggested in order to expand driving range of VIPV-EV. The effects of air-conditioner usage and partial shading in addition to the effects of temperature rise of VIPV modules were suggested as the other power losses of VIPV-EV.展开更多
We investigated the influence of PEG on the surface morphology,photocatalytic performance,photovoltaic conversion efficiency(PCE),and performance in complex environments of TiO_(2)-PEG composite films.The PEG content ...We investigated the influence of PEG on the surface morphology,photocatalytic performance,photovoltaic conversion efficiency(PCE),and performance in complex environments of TiO_(2)-PEG composite films.The PEG content was varied to further optimize the comprehensive performance of the composite films.Using titanium isopropoxide as the main raw material,TiO_(2)-PEG sol was prepared via sol-gel method and coated on the surface of photovoltaic(PV)glass by spin coating.The surface morphology and crystalline phase of the TiO_(2)-PEG film were analyzed,and the effects of the TiO_(2)-PEG film on the photocatalytic performance,PCE,contact angle,and performance in complex environments of PV glass were studied.The experimental results show that under the specified experimental conditions,when 4 g PEG10000 is added,the comprehensive performance of the coated PV glass reaches its optimum,with an average transmittance of 91.73%at 550 nm.Using methylene blue(MB)dye degradation experiments,the degradation rate after 2 hours of xenon lamp irradiation reaches 98.15%.The photovoltaic conversion efficiency of the composite film reaches 16.33%,and the contact angle is 3.28°,indicating a superhydrophilic state.It is demonstrated that the appropriate amount of PEG can enhance the transmittance,self-cleaning performance,and photovoltaic conversion efficiency of coated PV glass.展开更多
The power-electronics-based DC microgrid system composed of new energy sources in railway field has low inertia,weak damping characteristics,and the voltage fluctuation microgrid systems caused by the power disturbanc...The power-electronics-based DC microgrid system composed of new energy sources in railway field has low inertia,weak damping characteristics,and the voltage fluctuation microgrid systems caused by the power disturbance of solar.In order to improve the inertia of the DC microgrid system,a virtual DC generator technology is adopted in the interface converter of photovoltaic(PV)power generation unit,so that it has the external characteristics of DC generator.However,the influence of PV maximum power point tracking(MPPT)is not considered in the traditional virtual DC generator control.Therefore,an improved control strategy for virtual DC generator is proposed,and its small signal model is established to analyze the influence of inertia and damping coefficient on stability.The results show that the proposed method effectively weakens the impact on DC bus voltage when the output of PV power unit changes suddenly,which improves the stability of the microgrid.Meanwhile,the correctness and feasibility of the method are verified.展开更多
This research pioneers the integration of geographic information systems(GIS)and 3D modeling within a virtual reality(VR)framework to assess the viability and planning of a 20 MW hybrid wind-solarphotovoltaic(PV)syste...This research pioneers the integration of geographic information systems(GIS)and 3D modeling within a virtual reality(VR)framework to assess the viability and planning of a 20 MW hybrid wind-solarphotovoltaic(PV)system connected to the local grid.The study focuses on Dakhla,Morocco,a region with vast untapped renewable energy potential.By leveraging GIS,we are innovatively analyzing geographical and environmental factors that influence optimal site selection and system design.The incorporation of VR technologies offers an unprecedented level of realism and immersion,allowing stakeholders to virtually experience the project's impact and design in a dynamic,interactive environment.This novel methodology includes extensive data collection,advanced modeling,and simulations,ensuring that the hybrid system is precisely tailored to the unique climatic and environmental conditions of Dakhla.Our analysis reveals that the region possesses a photovoltaic solar potential of approximately2400 k Wh/m^(2) per year,with an average annual wind power density of about 434 W/m^(2) at an 80-meter hub height.Productivity simulations indicate that the 20 MW hybrid system could generate approximately 60 GWh of energy per year and 1369 GWh over its 25-year lifespan.To validate these findings,we employed the System Advisor Model(SAM)software and the Global Solar Photovoltaic Atlas platform.This comprehensive and interdisciplinary approach not only provides a robust assessment of the system's feasibility but also offers valuable insights into its potential socio-economic and environmental impact.展开更多
The power output of the photovoltaic(PV) system having multiple arrays gets reduced to a great extent when it is partially shaded due to environmental hindrances. The maximum power trackers which are conventionally us...The power output of the photovoltaic(PV) system having multiple arrays gets reduced to a great extent when it is partially shaded due to environmental hindrances. The maximum power trackers which are conventionally used may not be competent enough to find the maximum power point(MPP) during partially shaded conditions. The sensible reason for the failure of conventional trackers is during partial shaded conditions the PV arrays exhibit multi peak power curves, thereby making simple maximum power point tracking(MPPT) algorithms like perturb and observe(P&O) to get stuck with local maxima instead of capturing global maxima.Therefore, global search MPPT aided by evolutionary and swarm intelligence algorithms will be conducive to find global power point during partially shaded conditions. This work suggests a unified controller which feeds control signal to its power electronic conditioner placed at each module. The evolutionary algorithm which is taken into consideration in this work is differential evolution(DE).The performance of the proposed method is compared to the classical un-dimensional search controller and it is evident from the Matlab/Simulink results that the unified controller prevails over the distributed counterpart.展开更多
The operation and power generation of utility-scale solar energy infrastructure in desert areas are affected by changes in surface erosion processes resulting from the construction of solar photovoltaic(PV)power stati...The operation and power generation of utility-scale solar energy infrastructure in desert areas are affected by changes in surface erosion processes resulting from the construction of solar photovoltaic(PV)power stations.However,few studies have addressed the interactions between solar PV arrays and aeolian erosion processes.In this study,wind flow field characteristics and the vertical distribution of sediments were investigated in the near-surface transport layer at three different locations with respect to the solar PV arrays in a 200 WM-p PV power station in the central Hobq Desert,northwestern China.The results indicate that the sediment transport varied around the panels,with the greatest transport occurring between the panels,followed by behind and in front of the panels.The sediment fluxes of all of the observation sites obey an exponential function.The secondary flow field zones formed around the PV panels:the conflux accelerating zone between the panels,the resistance decelerating zone of the under panels,and the transition zone of the rapid velocity increase in front of and behind the panels.This resulted in a greater shear force in front of the panels under the downward flow diversion effect of PV panels,and the wind erosion depressions were finally formed here.The results of this study provide information for planning better technical schemes for wind-sand hazards at solar PV power stations,which would ensure operational stability and safety in desert areas.展开更多
Deserts are ideal places to develop ground-mounted large-scale solar photovoltaic (PV) powerstation. Unfortunately, solar energy production, operation, and maintenance are affected bygeomorphological changes caused by...Deserts are ideal places to develop ground-mounted large-scale solar photovoltaic (PV) powerstation. Unfortunately, solar energy production, operation, and maintenance are affected bygeomorphological changes caused by surface erosion that may occur after the construction of the solar PVpower station. In order to avoid damage to a solar PV power station in sandy areas, it is necessary toinvestigate the characteristics of wind-sand movement under the interference of solar PV array. The studywas undertaken by measuring sediment transport of different wind directions above shifting dunes andthree observation sites around the PV panels in the Hobq Desert, China. The results showed that the twoparameterexponential function provides better fit for the measured flux density profiles to the near-surfaceof solar PV array. However, the saltation height of sand particles changes with the intersection anglebetween the solar PV array and wind direction exceed 45°. The sediment transport rate above shifting duneswas always the greatest, while that around the test PV panels varied accordingly to the wind direction.Moreover, the aeolian sediment transport on the solar PV array was significantly affected by wind direction.The value of sand inhibition rate ranged from 35.46% to 88.51% at different wind directions. When theintersection angle exceeds 45°, the mean value of sediment transport rate above the solar PV array reducesto 82.58% compared with the shifting dunes. The results of our study expand our understanding of theformation and evolution of aeolian geomorphology at the solar PV footprint. This will facilitate the designand control engineering plans for solar PV array in sandy areas that operate according to the wind regime.展开更多
This paper mainly aims at the modeling problem of the photovoltaic (PV) array with a 30 kW PV grid-connected generation system. An iterative method for the time-varying parameters is proposed to model a plant of PV ar...This paper mainly aims at the modeling problem of the photovoltaic (PV) array with a 30 kW PV grid-connected generation system. An iterative method for the time-varying parameters is proposed to model a plant of PV array. The relationship of PV cell and PV array is obtained and the solution for PV array model is unique. The PV grid-connected generation system is used to demonstrate the effectiveness of the proposed method by comparing the calculated values with the actual output of the system.展开更多
In this paper,a computer-controlled photovoltaic(PV)array simulator consisted of a synchronous buck DC converter and its associate control software is proposed and developed to simulate the current-voltage(I-V)output ...In this paper,a computer-controlled photovoltaic(PV)array simulator consisted of a synchronous buck DC converter and its associate control software is proposed and developed to simulate the current-voltage(I-V)output characteristics of a real-time PV array with actual loads connected.The main advantage of this simulator is its ability in simulating different types and sizes of arrays under various illumination and temperature conditions.It can replace the actual PV array and perform all the simulations indoor instead of outside field testing.The mathematical model implemented in this system requires minimum manufacturer's data.This system is a very cost effective and reliable laboratory tool to investigate the output characteristics of PV array under various weather conditions,and is helpful for developing new maximum power point tracking(MPPT)algorithms.展开更多
This paper develops a real-time PV arrays maximum power harvesting scheme under partial shading condition(PSC)by reconfiguring PV arrays using Aquila optimizer(AO).AO is based on the natural behaviors of Aquila in cap...This paper develops a real-time PV arrays maximum power harvesting scheme under partial shading condition(PSC)by reconfiguring PV arrays using Aquila optimizer(AO).AO is based on the natural behaviors of Aquila in capturing prey,which can choose the best hunting mechanism ingeniously and quickly by balancing the local exploitation and global exploration via four hunting methods of Aquila:choosing the searching area through high soar with the vertical stoop,exploring in different searching spaces through contour flight with quick glide attack,exploiting in convergence searching space through low flight with slow attack,and swooping through walk and grabbing prey.In general,PV arrays reconfiguration is a problem of discrete optimization,thus a series of discrete operations are adopted in AO to enhance its optimization performance.Simulation results based on 10 cases under PSCs show that the mismatched power loss obtained by AO is the smallest compared with genetic algorithm,particle swarm optimization,ant colony algorithm,grasshopper optimization algorithm,and butterfly optimization algorithm,which reduced by 4.34%against butterfly optimization algorithm.展开更多
The integration of distributed generation brings in new challenges for the operation of distribution networks,including out-of-limit voltage and power flow control.Soft open points(SOP)are new power electronic devices...The integration of distributed generation brings in new challenges for the operation of distribution networks,including out-of-limit voltage and power flow control.Soft open points(SOP)are new power electronic devices that can flexibly control active and reactive power flows.With the exception of active power output,photovoltaic(PV)devices can provide reactive power compensation through an inverter.Thus,a synergetic optimization operation method for SOP and PV in a distribution network is proposed.A synergetic optimization model was developed.The voltage deviation,network loss,and ratio of photovoltaic abandonment were selected as the objective functions.The PV model was improved by considering the three reactive power output modes of the PV inverter.Both the load fluctuation and loss of the SOP were considered.Three multi-objective optimization algorithms were used,and a compromise optimal solution was calculated.Case studies were conducted using an IEEE 33-node system.The simulation results indicated that the SOP and PVs complemented each other in terms of active power transmission and reactive power compensation.Synergetic optimization improves power control capability and flexibility,providing better power quality and PV consumption rate.展开更多
基金the financial support provided by Universiti Malaysia Pahang Al Sultan Abdullah(www.umpsa.edu.my,accessed 10 April 2024)through the Doctoral Research Scheme(DRS)toMr.Rittick Maity and the Postgraduate Research Scheme(PGRS220390).
文摘The United Nations’Sustainable Development Goals(SDGs)highlight the importance of affordable and clean energy sources.Solar energy is a perfect example,being both renewable and abundant.Its popularity shows no signs of slowing down,with solar photovoltaic(PV)panels being the primary technology for converting sunlight into electricity.Advancements are continuously being made to ensure cost-effectiveness,high-performing cells,extended lifespans,and minimal maintenance requirements.This study focuses on identifying suitable locations for implementing solar PVsystems at theUniversityMalaysia PahangAl SultanAbdullah(UMPSA),Pekan campus including buildings,water bodies,and forest areas.A combined technical and economic analysis is conducted using Helioscope for simulations and the Photovoltaic Geographic Information System(PVGIS)for economic considerations.Helioscope simulation examine case studies for PV installations in forested areas,lakes,and buildings.This approach provides comprehensive estimations of solar photovoltaic potential,annual cost savings,electricity costs,and greenhouse gas emission reductions.Based on land coverage percentages,Floatovoltaics have a large solar PV capacity of 32.3 Megawatts(MW);forest-based photovoltaics(Forestvoltaics)achieve maximum yearly savings of RM 37,268,550;and Building Applied Photovoltaics(BAPV)have the lowest CO2 emissions and net carbon dioxide reduction compared to other plant sizes.It also clarifies the purpose of using both software tools to achieve a comprehensive understanding of both technical and economic aspects.
文摘The development of vehicle integrated photovoltaics-powered electric vehicles (VIPV-EV) significantly reduces CO<sub>2</sub> emissions from the transport sector to realize a decarbonized society. Although long-distance driving of VIPV-EV without electricity charging is expected in sunny regions, driving distance of VIPV-EV is affected by climate conditions such as solar irradiation and temperature rise of PV modules. In this paper, detailed analytical results for effects of climate conditions such as solar irradiation and temperature rise of PV modules upon driving distance of the VIPV-EV were presented by using test data for Toyota Prius and Nissan Van demonstration cars installed with high-efficiency InGaP/GaAs/InGaAs 3-junction solar cell modules with a module efficiency of more than 30%. The temperature rise of some PV modules studied in this study was shown to be expressed by some coefficients related to solar irradiation, wind speed and radiative cooling. The potential of VIPV-EV to be deployed in 10 major cities was also analyzed. Although sunshine cities such as Phoenix show the high reduction ratio of driving range with 17% due to temperature rise of VIPV modules, populous cities such as Tokyo show low reduction ratio of 9%. It was also shown in this paper that the difference between the driving distance of VIPV-EV driving in the morning and the afternoon is due to PV modules’ radiative cooling. In addition, the importance of heat dissipation of PV modules and the development of high-efficiency PV modules with better temperature coefficients was suggested in order to expand driving range of VIPV-EV. The effects of air-conditioner usage and partial shading in addition to the effects of temperature rise of VIPV modules were suggested as the other power losses of VIPV-EV.
基金Funded by the Project of Guangxi Science and Technology(No.ZY24212061)the Project of Guangxi Science and Technology Major Program(No.AA24263054)the Project of Beihai Science and Technology(No.202379002)。
文摘We investigated the influence of PEG on the surface morphology,photocatalytic performance,photovoltaic conversion efficiency(PCE),and performance in complex environments of TiO_(2)-PEG composite films.The PEG content was varied to further optimize the comprehensive performance of the composite films.Using titanium isopropoxide as the main raw material,TiO_(2)-PEG sol was prepared via sol-gel method and coated on the surface of photovoltaic(PV)glass by spin coating.The surface morphology and crystalline phase of the TiO_(2)-PEG film were analyzed,and the effects of the TiO_(2)-PEG film on the photocatalytic performance,PCE,contact angle,and performance in complex environments of PV glass were studied.The experimental results show that under the specified experimental conditions,when 4 g PEG10000 is added,the comprehensive performance of the coated PV glass reaches its optimum,with an average transmittance of 91.73%at 550 nm.Using methylene blue(MB)dye degradation experiments,the degradation rate after 2 hours of xenon lamp irradiation reaches 98.15%.The photovoltaic conversion efficiency of the composite film reaches 16.33%,and the contact angle is 3.28°,indicating a superhydrophilic state.It is demonstrated that the appropriate amount of PEG can enhance the transmittance,self-cleaning performance,and photovoltaic conversion efficiency of coated PV glass.
基金supported by National Natural Science Foundation of China(No.52067013)Natural Science Foundation of Gansu Province(No.20JR5RA395)Tianyou Innovation Team of Lanzhou Jiaotong University(No.TY202010).
文摘The power-electronics-based DC microgrid system composed of new energy sources in railway field has low inertia,weak damping characteristics,and the voltage fluctuation microgrid systems caused by the power disturbance of solar.In order to improve the inertia of the DC microgrid system,a virtual DC generator technology is adopted in the interface converter of photovoltaic(PV)power generation unit,so that it has the external characteristics of DC generator.However,the influence of PV maximum power point tracking(MPPT)is not considered in the traditional virtual DC generator control.Therefore,an improved control strategy for virtual DC generator is proposed,and its small signal model is established to analyze the influence of inertia and damping coefficient on stability.The results show that the proposed method effectively weakens the impact on DC bus voltage when the output of PV power unit changes suddenly,which improves the stability of the microgrid.Meanwhile,the correctness and feasibility of the method are verified.
文摘This research pioneers the integration of geographic information systems(GIS)and 3D modeling within a virtual reality(VR)framework to assess the viability and planning of a 20 MW hybrid wind-solarphotovoltaic(PV)system connected to the local grid.The study focuses on Dakhla,Morocco,a region with vast untapped renewable energy potential.By leveraging GIS,we are innovatively analyzing geographical and environmental factors that influence optimal site selection and system design.The incorporation of VR technologies offers an unprecedented level of realism and immersion,allowing stakeholders to virtually experience the project's impact and design in a dynamic,interactive environment.This novel methodology includes extensive data collection,advanced modeling,and simulations,ensuring that the hybrid system is precisely tailored to the unique climatic and environmental conditions of Dakhla.Our analysis reveals that the region possesses a photovoltaic solar potential of approximately2400 k Wh/m^(2) per year,with an average annual wind power density of about 434 W/m^(2) at an 80-meter hub height.Productivity simulations indicate that the 20 MW hybrid system could generate approximately 60 GWh of energy per year and 1369 GWh over its 25-year lifespan.To validate these findings,we employed the System Advisor Model(SAM)software and the Global Solar Photovoltaic Atlas platform.This comprehensive and interdisciplinary approach not only provides a robust assessment of the system's feasibility but also offers valuable insights into its potential socio-economic and environmental impact.
文摘The power output of the photovoltaic(PV) system having multiple arrays gets reduced to a great extent when it is partially shaded due to environmental hindrances. The maximum power trackers which are conventionally used may not be competent enough to find the maximum power point(MPP) during partially shaded conditions. The sensible reason for the failure of conventional trackers is during partial shaded conditions the PV arrays exhibit multi peak power curves, thereby making simple maximum power point tracking(MPPT) algorithms like perturb and observe(P&O) to get stuck with local maxima instead of capturing global maxima.Therefore, global search MPPT aided by evolutionary and swarm intelligence algorithms will be conducive to find global power point during partially shaded conditions. This work suggests a unified controller which feeds control signal to its power electronic conditioner placed at each module. The evolutionary algorithm which is taken into consideration in this work is differential evolution(DE).The performance of the proposed method is compared to the classical un-dimensional search controller and it is evident from the Matlab/Simulink results that the unified controller prevails over the distributed counterpart.
基金supported by the Major Science and Technology Projects of Inner Mongolia Autonomous Region of China(zdzx2018058-3)the National Key Research and Development Project of China(2016YFC0500906-3)the Scientific and Technological Innovation Guiding Fund Project of Inner Mongolia Autonomous Region of China and the Scientific Research Project of Universities in Inner Mongolia Autonomous Region of China(NJZY19052)。
文摘The operation and power generation of utility-scale solar energy infrastructure in desert areas are affected by changes in surface erosion processes resulting from the construction of solar photovoltaic(PV)power stations.However,few studies have addressed the interactions between solar PV arrays and aeolian erosion processes.In this study,wind flow field characteristics and the vertical distribution of sediments were investigated in the near-surface transport layer at three different locations with respect to the solar PV arrays in a 200 WM-p PV power station in the central Hobq Desert,northwestern China.The results indicate that the sediment transport varied around the panels,with the greatest transport occurring between the panels,followed by behind and in front of the panels.The sediment fluxes of all of the observation sites obey an exponential function.The secondary flow field zones formed around the PV panels:the conflux accelerating zone between the panels,the resistance decelerating zone of the under panels,and the transition zone of the rapid velocity increase in front of and behind the panels.This resulted in a greater shear force in front of the panels under the downward flow diversion effect of PV panels,and the wind erosion depressions were finally formed here.The results of this study provide information for planning better technical schemes for wind-sand hazards at solar PV power stations,which would ensure operational stability and safety in desert areas.
基金This research was supported by the Major Science and Technology Projects of Inner Mongolia Autonomous Region of China(zdzx2018058-3)the National Key Research and Development Project of China(2016YFC0500906-3)the Scientific and Technological Innovation Guiding Fund Project of Inner Mongolia Autonomous Region of China(R&D and Demonstration of Ecological Deserticulture Technology of Solar Photovoltaic Power Station in Sand Area)and the Scientific Research Project of Universities in Inner Mongolia Autonomous Region of China(NJZY19052).
文摘Deserts are ideal places to develop ground-mounted large-scale solar photovoltaic (PV) powerstation. Unfortunately, solar energy production, operation, and maintenance are affected bygeomorphological changes caused by surface erosion that may occur after the construction of the solar PVpower station. In order to avoid damage to a solar PV power station in sandy areas, it is necessary toinvestigate the characteristics of wind-sand movement under the interference of solar PV array. The studywas undertaken by measuring sediment transport of different wind directions above shifting dunes andthree observation sites around the PV panels in the Hobq Desert, China. The results showed that the twoparameterexponential function provides better fit for the measured flux density profiles to the near-surfaceof solar PV array. However, the saltation height of sand particles changes with the intersection anglebetween the solar PV array and wind direction exceed 45°. The sediment transport rate above shifting duneswas always the greatest, while that around the test PV panels varied accordingly to the wind direction.Moreover, the aeolian sediment transport on the solar PV array was significantly affected by wind direction.The value of sand inhibition rate ranged from 35.46% to 88.51% at different wind directions. When theintersection angle exceeds 45°, the mean value of sediment transport rate above the solar PV array reducesto 82.58% compared with the shifting dunes. The results of our study expand our understanding of theformation and evolution of aeolian geomorphology at the solar PV footprint. This will facilitate the designand control engineering plans for solar PV array in sandy areas that operate according to the wind regime.
基金Supported by the National Natural Science Foundation of China (61233004, 61074061)the State Key Development Program for Basic Research of China (2013CB035500)+1 种基金the National High Technology Research and Development Program of China(2011AA040901)Key Project of Ministry of Railways of China (J2011J004)
文摘This paper mainly aims at the modeling problem of the photovoltaic (PV) array with a 30 kW PV grid-connected generation system. An iterative method for the time-varying parameters is proposed to model a plant of PV array. The relationship of PV cell and PV array is obtained and the solution for PV array model is unique. The PV grid-connected generation system is used to demonstrate the effectiveness of the proposed method by comparing the calculated values with the actual output of the system.
文摘In this paper,a computer-controlled photovoltaic(PV)array simulator consisted of a synchronous buck DC converter and its associate control software is proposed and developed to simulate the current-voltage(I-V)output characteristics of a real-time PV array with actual loads connected.The main advantage of this simulator is its ability in simulating different types and sizes of arrays under various illumination and temperature conditions.It can replace the actual PV array and perform all the simulations indoor instead of outside field testing.The mathematical model implemented in this system requires minimum manufacturer's data.This system is a very cost effective and reliable laboratory tool to investigate the output characteristics of PV array under various weather conditions,and is helpful for developing new maximum power point tracking(MPPT)algorithms.
基金supported by the Scientific Research Projects of Inner Mongolia Power(Group)Co.,Ltd.(Internal Electric Technology(2021)No.3).
文摘This paper develops a real-time PV arrays maximum power harvesting scheme under partial shading condition(PSC)by reconfiguring PV arrays using Aquila optimizer(AO).AO is based on the natural behaviors of Aquila in capturing prey,which can choose the best hunting mechanism ingeniously and quickly by balancing the local exploitation and global exploration via four hunting methods of Aquila:choosing the searching area through high soar with the vertical stoop,exploring in different searching spaces through contour flight with quick glide attack,exploiting in convergence searching space through low flight with slow attack,and swooping through walk and grabbing prey.In general,PV arrays reconfiguration is a problem of discrete optimization,thus a series of discrete operations are adopted in AO to enhance its optimization performance.Simulation results based on 10 cases under PSCs show that the mismatched power loss obtained by AO is the smallest compared with genetic algorithm,particle swarm optimization,ant colony algorithm,grasshopper optimization algorithm,and butterfly optimization algorithm,which reduced by 4.34%against butterfly optimization algorithm.
基金supported by the Science and Technology Project of SGCC(kj2022-075).
文摘The integration of distributed generation brings in new challenges for the operation of distribution networks,including out-of-limit voltage and power flow control.Soft open points(SOP)are new power electronic devices that can flexibly control active and reactive power flows.With the exception of active power output,photovoltaic(PV)devices can provide reactive power compensation through an inverter.Thus,a synergetic optimization operation method for SOP and PV in a distribution network is proposed.A synergetic optimization model was developed.The voltage deviation,network loss,and ratio of photovoltaic abandonment were selected as the objective functions.The PV model was improved by considering the three reactive power output modes of the PV inverter.Both the load fluctuation and loss of the SOP were considered.Three multi-objective optimization algorithms were used,and a compromise optimal solution was calculated.Case studies were conducted using an IEEE 33-node system.The simulation results indicated that the SOP and PVs complemented each other in terms of active power transmission and reactive power compensation.Synergetic optimization improves power control capability and flexibility,providing better power quality and PV consumption rate.