A series of new silicon-containing poly(p-arylene vinylene)s (PAVs) with anthracene units in the main chain were synthesized by hydrosilylation reaction. The introduction of organosilicon units improved the solubi...A series of new silicon-containing poly(p-arylene vinylene)s (PAVs) with anthracene units in the main chain were synthesized by hydrosilylation reaction. The introduction of organosilicon units improved the solubility of the polymers, and the π-π conjugation of polymeric chains was interrupted. These polymers behaved as blue-green light emitters with their fluorescence maximum at 447-499 nm and quantum yields in the range of 0.28-0.30 in solution.展开更多
Metal-organic frameworks(MOFs),which are self-assembled porous coordination materials,have garnered considerable attention in the fields of optoelectronics,photovoltaic,photochemistry,and photocatalysis due to their d...Metal-organic frameworks(MOFs),which are self-assembled porous coordination materials,have garnered considerable attention in the fields of optoelectronics,photovoltaic,photochemistry,and photocatalysis due to their diverse structures and excellent tunability.However,the performance of MOF-based optoelectronic applications currently falls short of the industry benchmark.To enhance the performance of MOF materials,it is imperative to undertake comprehensive investigations aimed at gaining a deeper understanding of photophysics and sequentially optimizing properties related to photocarrier transport,recombination,interaction,and transfer.By utilizing femtosecond laser pulses to excite MOFs,time-resolved optical spectroscopy offers a means to observe and characterize these ultrafast microscopic processes.This approach adds the time coordinate as a novel dimension for comprehending the interaction between light and MOFs.Accordingly,this review provides a comprehensive overview of the recent advancements in the photophysics of MOFs and additionally outlines potential avenues for exploring the time domain in the investigation of MOFs.展开更多
Azulene-fused acenes demonstrate enhanced stability,unique aromaticity,and distinctive photophysical properties,rendering them significant in organic electronics.In the present study,we report a new type of nonalterna...Azulene-fused acenes demonstrate enhanced stability,unique aromaticity,and distinctive photophysical properties,rendering them significant in organic electronics.In the present study,we report a new type of nonalternant analogue of pentacene incorporating a non-terminal azulene unit.Aromaticity analyses reveal that the five-membered rings in this analogue exhibit antiaromatic.The extensive conjugated aryl substituents on the acene’s side shift the HOMO distributions from the naphthyl ring and metallacycle to the aryl groups,thereby narrowing the HOMO-LUMO energy gap and enhancing absorptions in the low-energy regions.Furthermore,these fused acenes readily react with base rather than acid,resulting in reversible base/acid stimuli responsiveness.展开更多
Green-emitting iridium(Ⅲ)complexes were synthesised using chlorobridged dimer(ppy)_(2)Ir_(2)Cl_(2)(ppy)_(2),3-hydroxy-2-methyl-γ-pyranone,2-ethyl-3-hydroxy-4-pyranone,and 5-hydroxy-2-(hydroxymethyl)-1,4-pyranone as ...Green-emitting iridium(Ⅲ)complexes were synthesised using chlorobridged dimer(ppy)_(2)Ir_(2)Cl_(2)(ppy)_(2),3-hydroxy-2-methyl-γ-pyranone,2-ethyl-3-hydroxy-4-pyranone,and 5-hydroxy-2-(hydroxymethyl)-1,4-pyranone as the auxiliary ligand.The structure of the target product was characterised by nuclear magnetic resonance spectroscopy(~1H-NMR),infrared spectroscopy(IR)and mass spectrometry(MS),and its thermal stability,photophysical properties and electrochemical properties were investigated.The results show that the decomposition temperatures of Ir1,Ir2 and Ir3 are 349,292 and 200℃,respectively.The maximum emission wavelength of Ir1,Ir2 and Ir3 dissolved in dichloromethane is 491 nm.The HOMO energy level of Ir1,Ir2 and Ir3 are 5.39,-5.38,and-5.30 eV.The LUMO energy levels are-2.86,-2.85,and-2.80 eV,respectively.展开更多
基金supported by the National Natural Science Foundation of China(Nos.50673094 and 20774102)
文摘A series of new silicon-containing poly(p-arylene vinylene)s (PAVs) with anthracene units in the main chain were synthesized by hydrosilylation reaction. The introduction of organosilicon units improved the solubility of the polymers, and the π-π conjugation of polymeric chains was interrupted. These polymers behaved as blue-green light emitters with their fluorescence maximum at 447-499 nm and quantum yields in the range of 0.28-0.30 in solution.
基金Project supported by the Science Challenge Project(Grant No.TZ2018001)the National Natural Science Foundation of China(Grant Nos.11872058 and 21802036)the Project of State Key Laboratory of Environment-friendly Energy Materials,and Southwest University of Science and Technology(Grant No.21fksy07)。
文摘Metal-organic frameworks(MOFs),which are self-assembled porous coordination materials,have garnered considerable attention in the fields of optoelectronics,photovoltaic,photochemistry,and photocatalysis due to their diverse structures and excellent tunability.However,the performance of MOF-based optoelectronic applications currently falls short of the industry benchmark.To enhance the performance of MOF materials,it is imperative to undertake comprehensive investigations aimed at gaining a deeper understanding of photophysics and sequentially optimizing properties related to photocarrier transport,recombination,interaction,and transfer.By utilizing femtosecond laser pulses to excite MOFs,time-resolved optical spectroscopy offers a means to observe and characterize these ultrafast microscopic processes.This approach adds the time coordinate as a novel dimension for comprehending the interaction between light and MOFs.Accordingly,this review provides a comprehensive overview of the recent advancements in the photophysics of MOFs and additionally outlines potential avenues for exploring the time domain in the investigation of MOFs.
基金supported by the National Natural Science Foundation of China(Nos.92156021,22350009,and 22101115)Financial Support for Outstanding Talents Training Fund in Shenzhen,the Guangdong Provincial Key Laboratory of Catalysis(No.2020B121201002)+2 种基金high level of special funds(No.G03050K003)Introduction of Major Talent Projects in Guangdong Province(No.2019CX01C079)supported by the Center for Computational Science and Engineering at SUSTech.
文摘Azulene-fused acenes demonstrate enhanced stability,unique aromaticity,and distinctive photophysical properties,rendering them significant in organic electronics.In the present study,we report a new type of nonalternant analogue of pentacene incorporating a non-terminal azulene unit.Aromaticity analyses reveal that the five-membered rings in this analogue exhibit antiaromatic.The extensive conjugated aryl substituents on the acene’s side shift the HOMO distributions from the naphthyl ring and metallacycle to the aryl groups,thereby narrowing the HOMO-LUMO energy gap and enhancing absorptions in the low-energy regions.Furthermore,these fused acenes readily react with base rather than acid,resulting in reversible base/acid stimuli responsiveness.
文摘Green-emitting iridium(Ⅲ)complexes were synthesised using chlorobridged dimer(ppy)_(2)Ir_(2)Cl_(2)(ppy)_(2),3-hydroxy-2-methyl-γ-pyranone,2-ethyl-3-hydroxy-4-pyranone,and 5-hydroxy-2-(hydroxymethyl)-1,4-pyranone as the auxiliary ligand.The structure of the target product was characterised by nuclear magnetic resonance spectroscopy(~1H-NMR),infrared spectroscopy(IR)and mass spectrometry(MS),and its thermal stability,photophysical properties and electrochemical properties were investigated.The results show that the decomposition temperatures of Ir1,Ir2 and Ir3 are 349,292 and 200℃,respectively.The maximum emission wavelength of Ir1,Ir2 and Ir3 dissolved in dichloromethane is 491 nm.The HOMO energy level of Ir1,Ir2 and Ir3 are 5.39,-5.38,and-5.30 eV.The LUMO energy levels are-2.86,-2.85,and-2.80 eV,respectively.