Computed tomography has been proven to be useful for non-destructive inspection of structures and materials. We build a three-dimensional imaging system with the photonically generated incoherent noise source and the ...Computed tomography has been proven to be useful for non-destructive inspection of structures and materials. We build a three-dimensional imaging system with the photonically generated incoherent noise source and the Schottky barrier diode detector in the terahertz frequency band (90–140GHz). Based on the computed tomography technique, the three-dimensional image of a ceramic sample is reconstructed successfully by stacking the slices at different heights. The imaging results not only indicate the ability of terahertz wave in the non-invasive sensing and non-destructive inspection applications, but also prove the effectiveness and superiority of the uni-traveling-carrier photodiode as a terahertz source in the imaging applications.展开更多
Photonics-based radar with a photonic de-chirp receiver has the advantages of broadband operation and real-time signal processing, but it suffers from interference from image frequencies and other undesired frequency-...Photonics-based radar with a photonic de-chirp receiver has the advantages of broadband operation and real-time signal processing, but it suffers from interference from image frequencies and other undesired frequency-mixing components, due to single-channel real-valued photonic frequency mixing. In this paper, we propose a photonicsbased radar with a photonic frequency-doubling transmitter and a balanced in-phase and quadrature(I/Q)de-chirp receiver. This radar transmits broadband linearly frequency-modulated signals generated by photonic frequency doubling and performs I/Q de-chirping of the radar echoes based on a balanced photonic I/Q frequency mixer, which is realized by applying a 90° optical hybrid followed by balanced photodetectors. The proposed radar has a high range resolution because of the large operation bandwidth and achieves interference-free detection by suppressing the image frequencies and other undesired frequency-mixing components. In the experiment, a photonics-based K-band radar with a bandwidth of 8 GHz is demonstrated. The balanced I/Q de-chirping receiver achieves an image-rejection ratio of over 30 dB and successfully eliminates the interference due to the baseband envelope and the frequency mixing between radar echoes of different targets. In addition, the desired dechirped signal power is also enhanced with balanced detection. Based on the established photonics-based radar,inverse synthetic aperture radar imaging is also implemented, through which the advantages of the proposed radar are verified.展开更多
A broadband photonic analog-to-digital converter(ADC) for X-band radar applications is proposed and experimentally demonstrated. An X-band signal with arbitrary waveform and a bandwidth up to 2 GHz can be synchronou...A broadband photonic analog-to-digital converter(ADC) for X-band radar applications is proposed and experimentally demonstrated. An X-band signal with arbitrary waveform and a bandwidth up to 2 GHz can be synchronously sampled and processed due to the optical sampling structure. In the experiment, the chirp signal centered at 9 GHz with a bandwidth of 1.6 GHz is sampled and down-converted with a signal-to-noise ratio of 7.20 d B and an improved noise figure. Adopting the photonic ADC in the radar receiver and the above signal as the transmitted radar signal, an X-band inverse synthetic aperture radar system is set up, and the range and cross-range resolutions of 9.4 and 8.3 cm are obtained, respectively.展开更多
We experimentally demonstrate the ultra-high range resolution of a photonics-based microwave radar using a high repetition rate actively mode-locked laser(AMLL). The transmitted signal and sampling clock in the rada...We experimentally demonstrate the ultra-high range resolution of a photonics-based microwave radar using a high repetition rate actively mode-locked laser(AMLL). The transmitted signal and sampling clock in the radar originate from the same AMLL to achieve a large instantaneous bandwidth. A Ka band linearly frequency modulated signal with a bandwidth up to 8 GHz is successfully generated and processed with the electro-optical upconversion and direct photonic sampling. The minor lobe suppression(MLS) algorithm is adopted to enhance the dynamic range at a cost of the range resolution. Two-target discrimination with the MLS algorithm proves the range resolution reaches 2.8 cm. The AMLL-based microwave-photonics radar shows promising applications in high-resolution imaging radars having the features of high-frequency band and large bandwidth.展开更多
基金Supported by the Hundred Talents Program of Chinese Academy of Sciencesthe National Basic Research Program of China under Grant No 2014CB339803+2 种基金the Major National Development Project of Scientific Instrument and Equipment under Grant No2011YQ150021the National Natural Science Foundation of China under Grant Nos 61575214,61574155,61404149 and 61404150the Shanghai Municipal Commission of Science and Technology under Grant Nos 14530711300,15560722000 and 15ZR1447500
文摘Computed tomography has been proven to be useful for non-destructive inspection of structures and materials. We build a three-dimensional imaging system with the photonically generated incoherent noise source and the Schottky barrier diode detector in the terahertz frequency band (90–140GHz). Based on the computed tomography technique, the three-dimensional image of a ceramic sample is reconstructed successfully by stacking the slices at different heights. The imaging results not only indicate the ability of terahertz wave in the non-invasive sensing and non-destructive inspection applications, but also prove the effectiveness and superiority of the uni-traveling-carrier photodiode as a terahertz source in the imaging applications.
基金National Natural Science Foundation of China(NSFC)(61871214,61527820)Natural Science Foundation of Jiangsu Province(BK20180066)+1 种基金The Jiangsu Provincial Program for High-level Talents in Six Areas(DZXX-005)Fundamental Research Funds for the Central Universities(NS2018028,NC2018005)
文摘Photonics-based radar with a photonic de-chirp receiver has the advantages of broadband operation and real-time signal processing, but it suffers from interference from image frequencies and other undesired frequency-mixing components, due to single-channel real-valued photonic frequency mixing. In this paper, we propose a photonicsbased radar with a photonic frequency-doubling transmitter and a balanced in-phase and quadrature(I/Q)de-chirp receiver. This radar transmits broadband linearly frequency-modulated signals generated by photonic frequency doubling and performs I/Q de-chirping of the radar echoes based on a balanced photonic I/Q frequency mixer, which is realized by applying a 90° optical hybrid followed by balanced photodetectors. The proposed radar has a high range resolution because of the large operation bandwidth and achieves interference-free detection by suppressing the image frequencies and other undesired frequency-mixing components. In the experiment, a photonics-based K-band radar with a bandwidth of 8 GHz is demonstrated. The balanced I/Q de-chirping receiver achieves an image-rejection ratio of over 30 dB and successfully eliminates the interference due to the baseband envelope and the frequency mixing between radar echoes of different targets. In addition, the desired dechirped signal power is also enhanced with balanced detection. Based on the established photonics-based radar,inverse synthetic aperture radar imaging is also implemented, through which the advantages of the proposed radar are verified.
基金supported in part by the National Natural Science Foundation of China(NSFC)(Nos.61690191,61690192,61420106003,and 61621064)Chuanxin Funding,and Beijing Natural Science Foundation(No.4172027)
文摘A broadband photonic analog-to-digital converter(ADC) for X-band radar applications is proposed and experimentally demonstrated. An X-band signal with arbitrary waveform and a bandwidth up to 2 GHz can be synchronously sampled and processed due to the optical sampling structure. In the experiment, the chirp signal centered at 9 GHz with a bandwidth of 1.6 GHz is sampled and down-converted with a signal-to-noise ratio of 7.20 d B and an improved noise figure. Adopting the photonic ADC in the radar receiver and the above signal as the transmitted radar signal, an X-band inverse synthetic aperture radar system is set up, and the range and cross-range resolutions of 9.4 and 8.3 cm are obtained, respectively.
基金partially supported by the National Natural Science Foundation of China(Nos.61571292and 61535006)by the State Key Lab Project of Shanghai Jiao Tong University(No.2014ZZ03016)by STCSM
文摘We experimentally demonstrate the ultra-high range resolution of a photonics-based microwave radar using a high repetition rate actively mode-locked laser(AMLL). The transmitted signal and sampling clock in the radar originate from the same AMLL to achieve a large instantaneous bandwidth. A Ka band linearly frequency modulated signal with a bandwidth up to 8 GHz is successfully generated and processed with the electro-optical upconversion and direct photonic sampling. The minor lobe suppression(MLS) algorithm is adopted to enhance the dynamic range at a cost of the range resolution. Two-target discrimination with the MLS algorithm proves the range resolution reaches 2.8 cm. The AMLL-based microwave-photonics radar shows promising applications in high-resolution imaging radars having the features of high-frequency band and large bandwidth.